Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
6e2e0ec8
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6e2e0ec8
编写于
9月 04, 2018
作者:
D
Dang Qingqing
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into quantize_transpiler_update
上级
0a07cb4b
9557cc21
变更
27
隐藏空白更改
内联
并排
Showing
27 changed file
with
881 addition
and
446 deletion
+881
-446
README.md
README.md
+7
-14
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-0
paddle/fluid/framework/rw_lock.h
paddle/fluid/framework/rw_lock.h
+0
-71
paddle/fluid/operators/conv_cudnn_op.cu.cc
paddle/fluid/operators/conv_cudnn_op.cu.cc
+30
-27
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
+33
-26
paddle/fluid/operators/detection/bbox_util.h
paddle/fluid/operators/detection/bbox_util.h
+66
-0
paddle/fluid/operators/detection/generate_proposal_labels_op.cc
.../fluid/operators/detection/generate_proposal_labels_op.cc
+8
-31
paddle/fluid/operators/detection/generate_proposals_op.cc
paddle/fluid/operators/detection/generate_proposals_op.cc
+2
-3
paddle/fluid/operators/detection/rpn_target_assign_op.cc
paddle/fluid/operators/detection/rpn_target_assign_op.cc
+179
-112
paddle/fluid/operators/roi_pool_op.cu
paddle/fluid/operators/roi_pool_op.cu
+6
-6
paddle/fluid/operators/roi_pool_op.h
paddle/fluid/operators/roi_pool_op.h
+2
-2
paddle/fluid/operators/sequence_enumerate_op.cc
paddle/fluid/operators/sequence_enumerate_op.cc
+97
-0
paddle/fluid/operators/sequence_enumerate_op.cu
paddle/fluid/operators/sequence_enumerate_op.cu
+84
-0
paddle/fluid/operators/sequence_enumerate_op.h
paddle/fluid/operators/sequence_enumerate_op.h
+56
-0
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+9
-65
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+1
-7
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+18
-21
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+47
-0
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+8
-10
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
+11
-9
python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py
python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py
+3
-1
python/paddle/fluid/tests/unittests/test_generate_proposal_labels.py
...le/fluid/tests/unittests/test_generate_proposal_labels.py
+2
-2
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+7
-0
python/paddle/fluid/tests/unittests/test_roi_pool_op.py
python/paddle/fluid/tests/unittests/test_roi_pool_op.py
+2
-2
python/paddle/fluid/tests/unittests/test_rpn_target_assign_op.py
...paddle/fluid/tests/unittests/test_rpn_target_assign_op.py
+95
-36
python/paddle/fluid/tests/unittests/test_sequence_enumerate_op.py
...addle/fluid/tests/unittests/test_sequence_enumerate_op.py
+105
-0
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+2
-1
未找到文件。
README.md
浏览文件 @
6e2e0ec8
...
@@ -76,33 +76,26 @@ pip install paddlepaddle-gpu==0.14.0.post85
...
@@ -76,33 +76,26 @@ pip install paddlepaddle-gpu==0.14.0.post85
## Installation
## Installation
It is recommended to check out the
It is recommended to read
[
this doc
](
http://paddlepaddle.org/documentation/docs/zh/0.14.0/new_docs/beginners_guide/install/install_doc.html
)
on our website.
[
Docker installation guide
](
http://www.paddlepaddle.org/docs/develop/documentation/fluid/en/build_and_install/docker_install_en.html
)
before looking into the
[
build from source guide
](
http://www.paddlepaddle.org/docs/develop/documentation/fluid/en/build_and_install/build_from_source_en.html
)
.
## Documentation
## Documentation
We provide
[
English
](
http://
www.paddlepaddle.org/docs/develop/documentation/en
/getstarted/index_en.html
)
and
We provide
[
English
](
http://
paddlepaddle.org/documentation/docs/en/0.14.0
/getstarted/index_en.html
)
and
[
Chinese
](
http://
www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/index_cn
.html
)
documentation.
[
Chinese
](
http://
paddlepaddle.org/documentation/docs/zh/0.14.0/new_docs/beginners_guide/index
.html
)
documentation.
-
[
Deep Learning 101
](
http
://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html
)
-
[
Deep Learning 101
](
http
s://github.com/PaddlePaddle/book
)
You might want to start from this online interactive book that can run in a Jupyter Notebook.
You might want to start from this online interactive book that can run in a Jupyter Notebook.
-
[
Distributed Training
](
http://
www.paddlepaddle.org/docs/develop/documentation/en/howto/cluster/index_en
.html
)
-
[
Distributed Training
](
http://
paddlepaddle.org/documentation/docs/zh/0.14.0/new_docs/user_guides/howto/training/cluster_howto
.html
)
You can run distributed training jobs on MPI clusters.
You can run distributed training jobs on MPI clusters.
-
[
Distributed Training on Kubernetes
](
http://www.paddlepaddle.org/docs/develop/documentation/en/howto/cluster/multi_cluster/k8s_en.html
)
-
[
Python API
](
http://paddlepaddle.org/documentation/api/zh/0.14.0/fluid.html
)
You can also run distributed training jobs on Kubernetes clusters.
-
[
Python API
](
http://www.paddlepaddle.org/docs/develop/api/en/overview.html
)
Our new API enables much shorter programs.
Our new API enables much shorter programs.
-
[
How to Contribute
](
http://
www.paddlepaddle.org/docs/develop/documentation/fluid/en/dev/contribute_to_paddle_en
.html
)
-
[
How to Contribute
](
http://
paddlepaddle.org/documentation/docs/zh/0.14.0/new_docs/advanced_usage/development/contribute_to_paddle
.html
)
We appreciate your contributions!
We appreciate your contributions!
...
...
paddle/fluid/API.spec
浏览文件 @
6e2e0ec8
...
@@ -172,6 +172,7 @@ paddle.fluid.layers.sequence_mask ArgSpec(args=['x', 'maxlen', 'dtype', 'name'],
...
@@ -172,6 +172,7 @@ paddle.fluid.layers.sequence_mask ArgSpec(args=['x', 'maxlen', 'dtype', 'name'],
paddle.fluid.layers.stack ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,))
paddle.fluid.layers.stack ArgSpec(args=['x', 'axis'], varargs=None, keywords=None, defaults=(0,))
paddle.fluid.layers.pad2d ArgSpec(args=['input', 'paddings', 'mode', 'pad_value', 'data_format', 'name'], varargs=None, keywords=None, defaults=([0, 0, 0, 0], 'constant', 0.0, 'NCHW', None))
paddle.fluid.layers.pad2d ArgSpec(args=['input', 'paddings', 'mode', 'pad_value', 'data_format', 'name'], varargs=None, keywords=None, defaults=([0, 0, 0, 0], 'constant', 0.0, 'NCHW', None))
paddle.fluid.layers.unstack ArgSpec(args=['x', 'axis', 'num'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.unstack ArgSpec(args=['x', 'axis', 'num'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.sequence_enumerate ArgSpec(args=['input', 'win_size', 'pad_value', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_recordio_file ArgSpec(args=['filename', 'shapes', 'lod_levels', 'dtypes', 'pass_num', 'for_parallel'], varargs=None, keywords=None, defaults=(1, True))
paddle.fluid.layers.open_recordio_file ArgSpec(args=['filename', 'shapes', 'lod_levels', 'dtypes', 'pass_num', 'for_parallel'], varargs=None, keywords=None, defaults=(1, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
...
...
paddle/fluid/framework/rw_lock.h
浏览文件 @
6e2e0ec8
...
@@ -56,76 +56,5 @@ struct RWLock {
...
@@ -56,76 +56,5 @@ struct RWLock {
};
};
#endif
#endif
class
RWLockGuard
{
public:
enum
Status
{
kUnLock
,
kWRLock
,
kRDLock
};
RWLockGuard
(
RWLock
*
rw_lock
,
Status
init_status
)
:
lock_
(
rw_lock
),
status_
(
Status
::
kUnLock
)
{
switch
(
init_status
)
{
case
Status
::
kRDLock
:
{
RDLock
();
break
;
}
case
Status
::
kWRLock
:
{
WRLock
();
break
;
}
case
Status
::
kUnLock
:
{
break
;
}
}
}
void
WRLock
()
{
switch
(
status_
)
{
case
Status
::
kUnLock
:
{
lock_
->
WRLock
();
status_
=
Status
::
kWRLock
;
break
;
}
case
Status
::
kWRLock
:
{
break
;
}
case
Status
::
kRDLock
:
{
PADDLE_THROW
(
"Please unlock read lock first before invoking write lock."
);
break
;
}
}
}
void
RDLock
()
{
switch
(
status_
)
{
case
Status
::
kUnLock
:
{
lock_
->
RDLock
();
status_
=
Status
::
kRDLock
;
break
;
}
case
Status
::
kRDLock
:
{
break
;
}
case
Status
::
kWRLock
:
{
PADDLE_THROW
(
"Please unlock write lock first before invoking read lock."
);
break
;
}
}
}
void
UnLock
()
{
if
(
status_
!=
Status
::
kUnLock
)
{
lock_
->
UNLock
();
status_
=
Status
::
kUnLock
;
}
}
~
RWLockGuard
()
{
UnLock
();
}
private:
RWLock
*
lock_
;
Status
status_
;
};
}
// namespace framework
}
// namespace framework
}
// namespace paddle
}
// namespace paddle
paddle/fluid/operators/conv_cudnn_op.cu.cc
浏览文件 @
6e2e0ec8
...
@@ -118,6 +118,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -118,6 +118,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
output_channels
/
groups
*
output_height
*
output_width
*
output_depth
;
output_channels
/
groups
*
output_height
*
output_width
*
output_depth
;
int
group_offset_filter
=
filter
->
numel
()
/
groups
;
int
group_offset_filter
=
filter
->
numel
()
/
groups
;
// ------------------- cudnn conv workspace ---------------------
// ------------------- cudnn conv workspace ---------------------
void
*
cudnn_workspace
=
nullptr
;
size_t
workspace_size_in_bytes
;
// final workspace to allocate.
size_t
workspace_size_in_bytes
;
// final workspace to allocate.
size_t
workspace_size_limit
=
kCONV_CUDNN_WORKSPACE_LIMIT_BYTES
;
size_t
workspace_size_limit
=
kCONV_CUDNN_WORKSPACE_LIMIT_BYTES
;
if
(
user_workspace_size
>
0
)
{
if
(
user_workspace_size
>
0
)
{
...
@@ -158,18 +159,20 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -158,18 +159,20 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_LE
(
workspace_size_in_bytes
,
workspace_size_limit
,
PADDLE_ENFORCE_LE
(
workspace_size_in_bytes
,
workspace_size_limit
,
"workspace_size to be allocated exceeds the limit"
);
"workspace_size to be allocated exceeds the limit"
);
// Allocate on GPU memory
platform
::
CUDAPlace
gpu
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
cudnn_workspace
=
paddle
::
memory
::
Alloc
(
gpu
,
workspace_size_in_bytes
);
// ------------------- cudnn conv forward ---------------------
// ------------------- cudnn conv forward ---------------------
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
handle
,
&
alpha
,
cudnn_input_desc
,
input_data
+
i
*
group_offset_in
,
handle
,
&
alpha
,
cudnn_input_desc
,
input_data
+
i
*
group_offset_in
,
cudnn_filter_desc
,
filter_data
+
i
*
group_offset_filter
,
cudnn_filter_desc
,
filter_data
+
i
*
group_offset_filter
,
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_output_desc
,
output_data
+
i
*
group_offset_out
));
&
beta
,
cudnn_output_desc
,
output_data
+
i
*
group_offset_out
));
};
dev_ctx
.
RunCudnnFuncWithWorkspace
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
// Release the cudnn workspace
paddle
::
memory
::
Free
(
gpu
,
cudnn_workspace
);
}
}
};
};
...
@@ -311,7 +314,11 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -311,7 +314,11 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
cudnn_filter_desc
,
filter_algo
,
&
tmp_size
));
cudnn_filter_desc
,
filter_algo
,
&
tmp_size
));
workspace_size_in_bytes
=
std
::
max
(
workspace_size_in_bytes
,
tmp_size
);
workspace_size_in_bytes
=
std
::
max
(
workspace_size_in_bytes
,
tmp_size
);
}
}
// ------------------- cudnn conv workspace ---------------------
// Already on GPU
void
*
cudnn_workspace
=
nullptr
;
platform
::
CUDAPlace
gpu
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
cudnn_workspace
=
paddle
::
memory
::
Alloc
(
gpu
,
workspace_size_in_bytes
);
// ------------------- cudnn conv backward data ---------------------
// ------------------- cudnn conv backward data ---------------------
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
if
(
input_grad
)
{
if
(
input_grad
)
{
...
@@ -319,15 +326,12 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -319,15 +326,12 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
// Because beta is zero, it is unnecessary to reset input_grad.
// Because beta is zero, it is unnecessary to reset input_grad.
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
handle
,
&
alpha
,
cudnn_filter_desc
,
handle
,
&
alpha
,
cudnn_filter_desc
,
filter_data
+
i
*
group_offset_filter
,
cudnn_output_grad_desc
,
filter_data
+
i
*
group_offset_filter
,
cudnn_output_grad_desc
,
output_grad_data
+
i
*
group_offset_out
,
cudnn_conv_desc
,
data_algo
,
output_grad_data
+
i
*
group_offset_out
,
cudnn_conv_desc
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_input_desc
,
data_algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
input_grad_data
+
i
*
group_offset_in
));
cudnn_input_desc
,
input_grad_data
+
i
*
group_offset_in
));
};
dev_ctx
.
RunCudnnFuncWithWorkspace
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
}
}
// ------------------- cudnn conv backward filter ---------------------
// ------------------- cudnn conv backward filter ---------------------
...
@@ -335,17 +339,16 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -335,17 +339,16 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
T
*
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset filter_grad.
// Because beta is zero, it is unnecessary to reset filter_grad.
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
handle
,
&
alpha
,
cudnn_input_desc
,
input_data
+
i
*
group_offset_in
,
handle
,
&
alpha
,
cudnn_input_desc
,
cudnn_output_grad_desc
,
output_grad_data
+
i
*
group_offset_out
,
input_data
+
i
*
group_offset_in
,
cudnn_output_grad_desc
,
cudnn_conv_desc
,
filter_algo
,
cudnn_workspace
,
output_grad_data
+
i
*
group_offset_out
,
cudnn_conv_desc
,
workspace_size_in_bytes
,
&
beta
,
cudnn_filter_desc
,
filter_algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
filter_grad_data
+
i
*
group_offset_filter
));
cudnn_filter_desc
,
filter_grad_data
+
i
*
group_offset_filter
));
};
dev_ctx
.
RunCudnnFuncWithWorkspace
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
}
}
// Release the cudnn workspace
paddle
::
memory
::
Free
(
gpu
,
cudnn_workspace
);
}
}
};
};
...
...
paddle/fluid/operators/conv_transpose_cudnn_op.cu.cc
浏览文件 @
6e2e0ec8
...
@@ -76,6 +76,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
...
@@ -76,6 +76,7 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
conv_desc
.
descriptor
<
T
>
(
paddings
,
strides
,
dilations
);
conv_desc
.
descriptor
<
T
>
(
paddings
,
strides
,
dilations
);
// ------------------- cudnn conv workspace ---------------------
// ------------------- cudnn conv workspace ---------------------
void
*
cudnn_workspace
=
nullptr
;
size_t
workspace_size_in_bytes
;
// final workspace to allocate.
size_t
workspace_size_in_bytes
;
// final workspace to allocate.
size_t
workspace_size_limit
=
kConvCUDNNWorkspaceLimitBytes
;
size_t
workspace_size_limit
=
kConvCUDNNWorkspaceLimitBytes
;
if
(
user_workspace_size
>
0
)
{
if
(
user_workspace_size
>
0
)
{
...
@@ -99,21 +100,25 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
...
@@ -99,21 +100,25 @@ class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
handle
,
cudnn_filter_desc
,
cudnn_input_desc
,
cudnn_conv_desc
,
handle
,
cudnn_filter_desc
,
cudnn_input_desc
,
cudnn_conv_desc
,
cudnn_output_desc
,
algo
,
&
workspace_size_in_bytes
));
cudnn_output_desc
,
algo
,
&
workspace_size_in_bytes
));
// Allocate on GPU memory
platform
::
CUDAPlace
gpu
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
cudnn_workspace
=
paddle
::
memory
::
Alloc
(
gpu
,
workspace_size_in_bytes
);
// ------------------- cudnn conv transpose forward ---------------------
// ------------------- cudnn conv transpose forward ---------------------
int
input_offset
=
input
->
numel
()
/
input
->
dims
()[
0
]
/
groups
;
int
input_offset
=
input
->
numel
()
/
input
->
dims
()[
0
]
/
groups
;
int
output_offset
=
output
->
numel
()
/
output
->
dims
()[
0
]
/
groups
;
int
output_offset
=
output
->
numel
()
/
output
->
dims
()[
0
]
/
groups
;
int
filter_offset
=
filter
->
numel
()
/
groups
;
int
filter_offset
=
filter
->
numel
()
/
groups
;
T
alpha
=
1.0
f
,
beta
=
0.0
f
;
T
alpha
=
1.0
f
,
beta
=
0.0
f
;
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
handle
,
&
alpha
,
cudnn_filter_desc
,
filter_data
+
filter_offset
*
g
,
handle
,
&
alpha
,
cudnn_filter_desc
,
filter_data
+
filter_offset
*
g
,
cudnn_input_desc
,
input_data
+
input_offset
*
g
,
cudnn_conv_desc
,
cudnn_input_desc
,
input_data
+
input_offset
*
g
,
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_output_desc
,
output_data
+
output_offset
*
g
));
cudnn_output_desc
,
output_data
+
output_offset
*
g
));
};
dev_ctx
.
RunCudnnFuncWithWorkspace
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
// Release the cudnn workspace
paddle
::
memory
::
Free
(
gpu
,
cudnn_workspace
);
}
}
};
};
...
@@ -201,6 +206,11 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
...
@@ -201,6 +206,11 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
std
::
max
(
workspace_size_in_bytes
,
bwd_filter_ws_size
);
std
::
max
(
workspace_size_in_bytes
,
bwd_filter_ws_size
);
}
}
// ------------------- cudnn conv workspace ---------------------
// Already on GPU
void
*
cudnn_workspace
=
nullptr
;
platform
::
CUDAPlace
gpu
=
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx
.
GetPlace
());
cudnn_workspace
=
paddle
::
memory
::
Alloc
(
gpu
,
workspace_size_in_bytes
);
// ------------------- cudnn conv backward data ---------------------
// ------------------- cudnn conv backward data ---------------------
// FIXME(typhoonzero): template type T may not be the same as cudnn call.
// FIXME(typhoonzero): template type T may not be the same as cudnn call.
int
input_offset
=
input
->
numel
()
/
input
->
dims
()[
0
]
/
groups
;
int
input_offset
=
input
->
numel
()
/
input
->
dims
()[
0
]
/
groups
;
...
@@ -212,15 +222,12 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
...
@@ -212,15 +222,12 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset input_grad.
// Because beta is zero, it is unnecessary to reset input_grad.
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
handle
,
&
alpha
,
cudnn_output_desc
,
handle
,
&
alpha
,
cudnn_output_desc
,
output_grad_data
+
output_grad_offset
*
g
,
cudnn_filter_desc
,
output_grad_data
+
output_grad_offset
*
g
,
cudnn_filter_desc
,
filter_data
+
filter_offset
*
g
,
cudnn_conv_desc
,
data_algo
,
filter_data
+
filter_offset
*
g
,
cudnn_conv_desc
,
data_algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_input_desc
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_input_desc
,
input_grad_data
+
input_offset
*
g
));
input_grad_data
+
input_offset
*
g
));
};
dev_ctx
.
RunCudnnFuncWithWorkspace
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
}
}
...
@@ -230,17 +237,17 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
...
@@ -230,17 +237,17 @@ class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
// Because beta is zero, it is unnecessary to reset filter_grad.
// Because beta is zero, it is unnecessary to reset filter_grad.
// Gradient with respect to the filter
// Gradient with respect to the filter
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
handle
,
&
alpha
,
cudnn_output_desc
,
handle
,
&
alpha
,
cudnn_output_desc
,
output_grad_data
+
output_grad_offset
*
g
,
cudnn_input_desc
,
output_grad_data
+
output_grad_offset
*
g
,
cudnn_input_desc
,
input_data
+
input_offset
*
g
,
cudnn_conv_desc
,
filter_algo
,
input_data
+
input_offset
*
g
,
cudnn_conv_desc
,
filter_algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_filter_desc
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
filter_grad_data
+
filter_offset
*
g
));
cudnn_filter_desc
,
filter_grad_data
+
filter_offset
*
g
));
};
dev_ctx
.
RunCudnnFuncWithWorkspace
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
}
}
// Release the cudnn workspace
paddle
::
memory
::
Free
(
gpu
,
cudnn_workspace
);
}
}
};
};
...
...
paddle/fluid/operators/detection/bbox_util.h
0 → 100644
浏览文件 @
6e2e0ec8
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
namespace
operators
{
/*
* transform that computes target bounding-box regression deltas
* given proposal boxes and ground-truth boxes.
*/
template
<
typename
T
>
inline
void
BoxToDelta
(
const
int
box_num
,
const
framework
::
Tensor
&
ex_boxes
,
const
framework
::
Tensor
&
gt_boxes
,
const
T
*
weights
,
const
bool
normalized
,
framework
::
Tensor
*
box_delta
)
{
auto
ex_boxes_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
ex_boxes
);
auto
gt_boxes_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
gt_boxes
);
auto
trg
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
*
box_delta
);
T
ex_w
,
ex_h
,
ex_ctr_x
,
ex_ctr_y
,
gt_w
,
gt_h
,
gt_ctr_x
,
gt_ctr_y
;
for
(
int64_t
i
=
0
;
i
<
box_num
;
++
i
)
{
ex_w
=
ex_boxes_et
(
i
,
2
)
-
ex_boxes_et
(
i
,
0
)
+
(
normalized
==
false
);
ex_h
=
ex_boxes_et
(
i
,
3
)
-
ex_boxes_et
(
i
,
1
)
+
(
normalized
==
false
);
ex_ctr_x
=
ex_boxes_et
(
i
,
0
)
+
0.5
*
ex_w
;
ex_ctr_y
=
ex_boxes_et
(
i
,
1
)
+
0.5
*
ex_h
;
gt_w
=
gt_boxes_et
(
i
,
2
)
-
gt_boxes_et
(
i
,
0
)
+
(
normalized
==
false
);
gt_h
=
gt_boxes_et
(
i
,
3
)
-
gt_boxes_et
(
i
,
1
)
+
(
normalized
==
false
);
gt_ctr_x
=
gt_boxes_et
(
i
,
0
)
+
0.5
*
gt_w
;
gt_ctr_y
=
gt_boxes_et
(
i
,
1
)
+
0.5
*
gt_h
;
trg
(
i
,
0
)
=
(
gt_ctr_x
-
ex_ctr_x
)
/
ex_w
;
trg
(
i
,
1
)
=
(
gt_ctr_y
-
ex_ctr_y
)
/
ex_h
;
trg
(
i
,
2
)
=
std
::
log
(
gt_w
/
ex_w
);
trg
(
i
,
3
)
=
std
::
log
(
gt_h
/
ex_h
);
if
(
weights
)
{
trg
(
i
,
0
)
=
trg
(
i
,
0
)
/
weights
[
0
];
trg
(
i
,
1
)
=
trg
(
i
,
1
)
/
weights
[
1
];
trg
(
i
,
2
)
=
trg
(
i
,
2
)
/
weights
[
2
];
trg
(
i
,
3
)
=
trg
(
i
,
3
)
/
weights
[
3
];
}
}
}
template
<
typename
T
>
void
Gather
(
const
T
*
in
,
const
int
in_stride
,
const
int
*
index
,
const
int
num
,
T
*
out
)
{
const
int
stride_bytes
=
in_stride
*
sizeof
(
T
);
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
int
id
=
index
[
i
];
memcpy
(
out
+
i
*
in_stride
,
in
+
id
*
in_stride
,
stride_bytes
);
}
}
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/detection/generate_proposal_labels_op.cc
浏览文件 @
6e2e0ec8
...
@@ -14,6 +14,7 @@ limitations under the License. */
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include <string>
#include <string>
#include <vector>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/math_function.h"
...
@@ -133,31 +134,6 @@ void BboxOverlaps(const Tensor& r_boxes, const Tensor& c_boxes,
...
@@ -133,31 +134,6 @@ void BboxOverlaps(const Tensor& r_boxes, const Tensor& c_boxes,
}
}
}
}
template
<
typename
T
>
void
BoxToDelta
(
int
box_num
,
const
Tensor
&
ex_boxes
,
const
Tensor
&
gt_boxes
,
const
std
::
vector
<
float
>&
weights
,
Tensor
*
box_delta
)
{
auto
ex_boxes_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
ex_boxes
);
auto
gt_boxes_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
gt_boxes
);
auto
box_delta_et
=
framework
::
EigenTensor
<
T
,
2
>::
From
(
*
box_delta
);
T
ex_w
,
ex_h
,
ex_ctr_x
,
ex_ctr_y
,
gt_w
,
gt_h
,
gt_ctr_x
,
gt_ctr_y
;
for
(
int64_t
i
=
0
;
i
<
box_num
;
++
i
)
{
ex_w
=
ex_boxes_et
(
i
,
2
)
-
ex_boxes_et
(
i
,
0
)
+
1
;
ex_h
=
ex_boxes_et
(
i
,
3
)
-
ex_boxes_et
(
i
,
1
)
+
1
;
ex_ctr_x
=
ex_boxes_et
(
i
,
0
)
+
0.5
*
ex_w
;
ex_ctr_y
=
ex_boxes_et
(
i
,
1
)
+
0.5
*
ex_h
;
gt_w
=
gt_boxes_et
(
i
,
2
)
-
gt_boxes_et
(
i
,
0
)
+
1
;
gt_h
=
gt_boxes_et
(
i
,
3
)
-
gt_boxes_et
(
i
,
1
)
+
1
;
gt_ctr_x
=
gt_boxes_et
(
i
,
0
)
+
0.5
*
gt_w
;
gt_ctr_y
=
gt_boxes_et
(
i
,
1
)
+
0.5
*
gt_h
;
box_delta_et
(
i
,
0
)
=
(
gt_ctr_x
-
ex_ctr_x
)
/
ex_w
/
weights
[
0
];
box_delta_et
(
i
,
1
)
=
(
gt_ctr_y
-
ex_ctr_y
)
/
ex_h
/
weights
[
1
];
box_delta_et
(
i
,
2
)
=
log
(
gt_w
/
ex_w
)
/
ex_w
/
weights
[
2
];
box_delta_et
(
i
,
3
)
=
log
(
gt_h
/
ex_h
)
/
ex_h
/
weights
[
3
];
}
}
template
<
typename
T
>
template
<
typename
T
>
std
::
vector
<
std
::
vector
<
int
>>
SampleFgBgGt
(
std
::
vector
<
std
::
vector
<
int
>>
SampleFgBgGt
(
const
platform
::
CPUDeviceContext
&
context
,
Tensor
*
iou
,
const
platform
::
CPUDeviceContext
&
context
,
Tensor
*
iou
,
...
@@ -243,12 +219,11 @@ void GatherBoxesLabels(const platform::CPUDeviceContext& context,
...
@@ -243,12 +219,11 @@ void GatherBoxesLabels(const platform::CPUDeviceContext& context,
Tensor
*
sampled_labels
,
Tensor
*
sampled_gts
)
{
Tensor
*
sampled_labels
,
Tensor
*
sampled_gts
)
{
int
fg_num
=
fg_inds
.
size
();
int
fg_num
=
fg_inds
.
size
();
int
bg_num
=
bg_inds
.
size
();
int
bg_num
=
bg_inds
.
size
();
int
gt_num
=
fg_num
+
bg_num
;
Tensor
fg_inds_t
,
bg_inds_t
,
gt_box_inds_t
,
gt_label_inds_t
;
Tensor
fg_inds_t
,
bg_inds_t
,
gt_box_inds_t
,
gt_label_inds_t
;
int
*
fg_inds_data
=
fg_inds_t
.
mutable_data
<
int
>
({
fg_num
},
context
.
GetPlace
());
int
*
fg_inds_data
=
fg_inds_t
.
mutable_data
<
int
>
({
fg_num
},
context
.
GetPlace
());
int
*
bg_inds_data
=
bg_inds_t
.
mutable_data
<
int
>
({
bg_num
},
context
.
GetPlace
());
int
*
bg_inds_data
=
bg_inds_t
.
mutable_data
<
int
>
({
bg_num
},
context
.
GetPlace
());
int
*
gt_box_inds_data
=
int
*
gt_box_inds_data
=
gt_box_inds_t
.
mutable_data
<
int
>
({
gt
_num
},
context
.
GetPlace
());
gt_box_inds_t
.
mutable_data
<
int
>
({
fg
_num
},
context
.
GetPlace
());
int
*
gt_label_inds_data
=
int
*
gt_label_inds_data
=
gt_label_inds_t
.
mutable_data
<
int
>
({
fg_num
},
context
.
GetPlace
());
gt_label_inds_t
.
mutable_data
<
int
>
({
fg_num
},
context
.
GetPlace
());
std
::
copy
(
fg_inds
.
begin
(),
fg_inds
.
end
(),
fg_inds_data
);
std
::
copy
(
fg_inds
.
begin
(),
fg_inds
.
end
(),
fg_inds_data
);
...
@@ -303,18 +278,20 @@ std::vector<Tensor> SampleRoisForOneImage(
...
@@ -303,18 +278,20 @@ std::vector<Tensor> SampleRoisForOneImage(
// Gather boxes and labels
// Gather boxes and labels
Tensor
sampled_boxes
,
sampled_labels
,
sampled_gts
;
Tensor
sampled_boxes
,
sampled_labels
,
sampled_gts
;
int
boxes_num
=
fg_inds
.
size
()
+
bg_inds
.
size
();
int
fg_num
=
fg_inds
.
size
();
int
bg_num
=
bg_inds
.
size
();
int
boxes_num
=
fg_num
+
bg_num
;
framework
::
DDim
bbox_dim
({
boxes_num
,
kBoxDim
});
framework
::
DDim
bbox_dim
({
boxes_num
,
kBoxDim
});
sampled_boxes
.
mutable_data
<
T
>
(
bbox_dim
,
context
.
GetPlace
());
sampled_boxes
.
mutable_data
<
T
>
(
bbox_dim
,
context
.
GetPlace
());
sampled_labels
.
mutable_data
<
int
>
({
boxes_num
},
context
.
GetPlace
());
sampled_labels
.
mutable_data
<
int
>
({
boxes_num
},
context
.
GetPlace
());
sampled_gts
.
mutable_data
<
T
>
(
bbox_dim
,
context
.
GetPlace
());
sampled_gts
.
mutable_data
<
T
>
(
{
fg_num
,
kBoxDim
}
,
context
.
GetPlace
());
GatherBoxesLabels
<
T
>
(
context
,
boxes
,
*
gt_boxes
,
*
gt_classes
,
fg_inds
,
bg_inds
,
GatherBoxesLabels
<
T
>
(
context
,
boxes
,
*
gt_boxes
,
*
gt_classes
,
fg_inds
,
bg_inds
,
gt_inds
,
&
sampled_boxes
,
&
sampled_labels
,
&
sampled_gts
);
gt_inds
,
&
sampled_boxes
,
&
sampled_labels
,
&
sampled_gts
);
// Compute targets
// Compute targets
Tensor
bbox_targets_single
;
Tensor
bbox_targets_single
;
bbox_targets_single
.
mutable_data
<
T
>
(
bbox_dim
,
context
.
GetPlace
());
bbox_targets_single
.
mutable_data
<
T
>
(
bbox_dim
,
context
.
GetPlace
());
BoxToDelta
<
T
>
(
boxes_num
,
sampled_boxes
,
sampled_gts
,
bbox_reg_weights
,
BoxToDelta
<
T
>
(
fg_num
,
sampled_boxes
,
sampled_gts
,
nullptr
,
false
,
&
bbox_targets_single
);
&
bbox_targets_single
);
// Scale rois
// Scale rois
...
@@ -427,7 +404,7 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
...
@@ -427,7 +404,7 @@ class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
auto
rpn_rois_lod
=
rpn_rois
->
lod
().
back
();
auto
rpn_rois_lod
=
rpn_rois
->
lod
().
back
();
auto
gt_classes_lod
=
gt_classes
->
lod
().
back
();
auto
gt_classes_lod
=
gt_classes
->
lod
().
back
();
auto
gt_boxes_lod
=
gt_boxes
->
lod
().
back
();
auto
gt_boxes_lod
=
gt_boxes
->
lod
().
back
();
for
(
size_
t
i
=
0
;
i
<
n
;
++
i
)
{
for
(
in
t
i
=
0
;
i
<
n
;
++
i
)
{
Tensor
rpn_rois_slice
=
Tensor
rpn_rois_slice
=
rpn_rois
->
Slice
(
rpn_rois_lod
[
i
],
rpn_rois_lod
[
i
+
1
]);
rpn_rois
->
Slice
(
rpn_rois_lod
[
i
],
rpn_rois_lod
[
i
+
1
]);
Tensor
gt_classes_slice
=
Tensor
gt_classes_slice
=
...
...
paddle/fluid/operators/detection/generate_proposals_op.cc
浏览文件 @
6e2e0ec8
...
@@ -311,8 +311,7 @@ class GenerateProposalsKernel : public framework::OpKernel<T> {
...
@@ -311,8 +311,7 @@ class GenerateProposalsKernel : public framework::OpKernel<T> {
rpn_rois
->
mutable_data
<
T
>
({
bbox_deltas
->
numel
()
/
4
,
4
},
rpn_rois
->
mutable_data
<
T
>
({
bbox_deltas
->
numel
()
/
4
,
4
},
context
.
GetPlace
());
context
.
GetPlace
());
rpn_roi_probs
->
mutable_data
<
T
>
({
scores
->
numel
()
/
4
,
1
},
rpn_roi_probs
->
mutable_data
<
T
>
({
scores
->
numel
(),
1
},
context
.
GetPlace
());
context
.
GetPlace
());
Tensor
bbox_deltas_swap
,
scores_swap
;
Tensor
bbox_deltas_swap
,
scores_swap
;
bbox_deltas_swap
.
mutable_data
<
T
>
({
num
,
h_bbox
,
w_bbox
,
c_bbox
},
bbox_deltas_swap
.
mutable_data
<
T
>
({
num
,
h_bbox
,
w_bbox
,
c_bbox
},
...
@@ -421,7 +420,7 @@ class GenerateProposalsKernel : public framework::OpKernel<T> {
...
@@ -421,7 +420,7 @@ class GenerateProposalsKernel : public framework::OpKernel<T> {
CPUGather
<
T
>
(
ctx
,
proposals
,
keep
,
&
bbox_sel
);
CPUGather
<
T
>
(
ctx
,
proposals
,
keep
,
&
bbox_sel
);
CPUGather
<
T
>
(
ctx
,
scores_sel
,
keep
,
&
scores_filter
);
CPUGather
<
T
>
(
ctx
,
scores_sel
,
keep
,
&
scores_filter
);
if
(
nms_thresh
<=
0
)
{
if
(
nms_thresh
<=
0
)
{
return
std
::
make_pair
(
bbox_sel
,
scores_
sel
);
return
std
::
make_pair
(
bbox_sel
,
scores_
filter
);
}
}
Tensor
keep_nms
=
NMS
<
T
>
(
ctx
,
&
bbox_sel
,
&
scores_filter
,
nms_thresh
,
eta
);
Tensor
keep_nms
=
NMS
<
T
>
(
ctx
,
&
bbox_sel
,
&
scores_filter
,
nms_thresh
,
eta
);
...
...
paddle/fluid/operators/detection/rpn_target_assign_op.cc
浏览文件 @
6e2e0ec8
...
@@ -14,6 +14,7 @@ limitations under the License. */
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include <random>
#include <random>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
paddle
{
...
@@ -46,156 +47,219 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel {
...
@@ -46,156 +47,219 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel {
auto
in_dims
=
ctx
->
GetInputDim
(
"DistMat"
);
auto
in_dims
=
ctx
->
GetInputDim
(
"DistMat"
);
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
2
,
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
2
,
"The rank of Input(DistMat) must be 2."
);
"The rank of Input(DistMat) must be 2."
);
ctx
->
SetOutputDim
(
"LocationIndex"
,
{
-
1
});
ctx
->
SetOutputDim
(
"ScoreIndex"
,
{
-
1
});
ctx
->
SetOutputDim
(
"TargetLabel"
,
{
-
1
,
1
});
ctx
->
SetOutputDim
(
"TargetBBox"
,
{
-
1
,
4
});
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"DistMat"
)
->
type
()),
platform
::
CPUPlace
());
}
}
};
};
template
<
typename
T
>
template
<
typename
T
>
class
RpnTargetAssignKernel
:
public
framework
::
OpKernel
<
T
>
{
class
RpnTargetAssignKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
anchor_t
=
context
.
Input
<
Tensor
>
(
"Anchor"
);
// (H*W*A) * 4
auto
*
gt_bbox_t
=
context
.
Input
<
Tensor
>
(
"GtBox"
);
auto
*
dist_t
=
context
.
Input
<
LoDTensor
>
(
"DistMat"
);
auto
*
loc_index_t
=
context
.
Output
<
Tensor
>
(
"LocationIndex"
);
auto
*
score_index_t
=
context
.
Output
<
Tensor
>
(
"ScoreIndex"
);
auto
*
tgt_bbox_t
=
context
.
Output
<
Tensor
>
(
"TargetBBox"
);
auto
*
tgt_lbl_t
=
context
.
Output
<
Tensor
>
(
"TargetLabel"
);
auto
lod
=
dist_t
->
lod
().
back
();
int64_t
batch_num
=
static_cast
<
int64_t
>
(
lod
.
size
()
-
1
);
int64_t
anchor_num
=
dist_t
->
dims
()[
1
];
PADDLE_ENFORCE_EQ
(
anchor_num
,
anchor_t
->
dims
()[
0
]);
int
rpn_batch_size
=
context
.
Attr
<
int
>
(
"rpn_batch_size_per_im"
);
float
pos_threshold
=
context
.
Attr
<
float
>
(
"rpn_positive_overlap"
);
float
neg_threshold
=
context
.
Attr
<
float
>
(
"rpn_negative_overlap"
);
float
fg_fraction
=
context
.
Attr
<
float
>
(
"fg_fraction"
);
int
fg_num_per_batch
=
static_cast
<
int
>
(
rpn_batch_size
*
fg_fraction
);
int64_t
max_num
=
batch_num
*
anchor_num
;
auto
place
=
context
.
GetPlace
();
tgt_bbox_t
->
mutable_data
<
T
>
({
max_num
,
4
},
place
);
auto
*
loc_index
=
loc_index_t
->
mutable_data
<
int
>
({
max_num
},
place
);
auto
*
score_index
=
score_index_t
->
mutable_data
<
int
>
({
max_num
},
place
);
Tensor
tmp_tgt_lbl
;
auto
*
tmp_lbl_data
=
tmp_tgt_lbl
.
mutable_data
<
int64_t
>
({
max_num
},
place
);
auto
&
dev_ctx
=
context
.
device_context
<
platform
::
CPUDeviceContext
>
();
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
int64_t
>
iset
;
iset
(
dev_ctx
,
&
tmp_tgt_lbl
,
static_cast
<
int64_t
>
(
-
1
));
std
::
random_device
rnd
;
std
::
minstd_rand
engine
;
int
seed
=
context
.
Attr
<
bool
>
(
"fix_seed"
)
?
context
.
Attr
<
int
>
(
"seed"
)
:
rnd
();
engine
.
seed
(
seed
);
int
fg_num
=
0
;
int
bg_num
=
0
;
for
(
int
i
=
0
;
i
<
batch_num
;
++
i
)
{
Tensor
dist
=
dist_t
->
Slice
(
lod
[
i
],
lod
[
i
+
1
]);
Tensor
gt_bbox
=
gt_bbox_t
->
Slice
(
lod
[
i
],
lod
[
i
+
1
]);
auto
fg_bg_gt
=
SampleFgBgGt
(
dev_ctx
,
dist
,
pos_threshold
,
neg_threshold
,
rpn_batch_size
,
fg_num_per_batch
,
engine
,
tmp_lbl_data
+
i
*
anchor_num
);
int
cur_fg_num
=
fg_bg_gt
[
0
].
size
();
int
cur_bg_num
=
fg_bg_gt
[
1
].
size
();
std
::
transform
(
fg_bg_gt
[
0
].
begin
(),
fg_bg_gt
[
0
].
end
(),
loc_index
,
[
i
,
anchor_num
](
int
d
)
{
return
d
+
i
*
anchor_num
;
});
memcpy
(
score_index
,
loc_index
,
cur_fg_num
*
sizeof
(
int
));
std
::
transform
(
fg_bg_gt
[
1
].
begin
(),
fg_bg_gt
[
1
].
end
(),
score_index
+
cur_fg_num
,
[
i
,
anchor_num
](
int
d
)
{
return
d
+
i
*
anchor_num
;
});
// get target bbox deltas
if
(
cur_fg_num
)
{
Tensor
fg_gt
;
T
*
gt_data
=
fg_gt
.
mutable_data
<
T
>
({
cur_fg_num
,
4
},
place
);
Tensor
tgt_bbox
=
tgt_bbox_t
->
Slice
(
fg_num
,
fg_num
+
cur_fg_num
);
T
*
tgt_data
=
tgt_bbox
.
data
<
T
>
();
Gather
<
T
>
(
anchor_t
->
data
<
T
>
(),
4
,
reinterpret_cast
<
int
*>
(
&
fg_bg_gt
[
0
][
0
]),
cur_fg_num
,
tgt_data
);
Gather
<
T
>
(
gt_bbox
.
data
<
T
>
(),
4
,
reinterpret_cast
<
int
*>
(
&
fg_bg_gt
[
2
][
0
]),
cur_fg_num
,
gt_data
);
BoxToDelta
<
T
>
(
cur_fg_num
,
tgt_bbox
,
fg_gt
,
nullptr
,
false
,
&
tgt_bbox
);
}
loc_index
+=
cur_fg_num
;
score_index
+=
cur_fg_num
+
cur_bg_num
;
fg_num
+=
cur_fg_num
;
bg_num
+=
cur_bg_num
;
}
int
lbl_num
=
fg_num
+
bg_num
;
PADDLE_ENFORCE_LE
(
fg_num
,
max_num
);
PADDLE_ENFORCE_LE
(
lbl_num
,
max_num
);
tgt_bbox_t
->
Resize
({
fg_num
,
4
});
loc_index_t
->
Resize
({
fg_num
});
score_index_t
->
Resize
({
lbl_num
});
auto
*
lbl_data
=
tgt_lbl_t
->
mutable_data
<
int64_t
>
({
lbl_num
,
1
},
place
);
Gather
<
int64_t
>
(
tmp_lbl_data
,
1
,
score_index_t
->
data
<
int
>
(),
lbl_num
,
lbl_data
);
}
private:
void
ScoreAssign
(
const
T
*
dist_data
,
const
Tensor
&
anchor_to_gt_max
,
void
ScoreAssign
(
const
T
*
dist_data
,
const
Tensor
&
anchor_to_gt_max
,
const
int
row
,
const
int
col
,
const
float
pos_threshold
,
const
int
row
,
const
int
col
,
const
float
pos_threshold
,
const
float
neg_threshold
,
int64_t
*
target_label
_data
,
const
float
neg_threshold
,
int64_t
*
target_label
,
std
::
vector
<
int
>*
fg_inds
,
std
::
vector
<
int
>*
bg_inds
)
const
{
std
::
vector
<
int
>*
fg_inds
,
std
::
vector
<
int
>*
bg_inds
)
const
{
int
fg_offset
=
fg_inds
->
size
();
float
epsilon
=
0.0001
;
int
bg_offset
=
bg_inds
->
size
();
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
for
(
int64_t
i
=
0
;
i
<
row
;
++
i
)
{
const
T
*
v
=
dist_data
+
i
*
col
;
const
T
*
v
=
dist_data
+
i
*
col
;
T
max
_dist
=
*
std
::
max_element
(
v
,
v
+
col
);
T
max
=
*
std
::
max_element
(
v
,
v
+
col
);
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
T
val
=
dist_data
[
i
*
col
+
j
];
if
(
std
::
abs
(
max
-
v
[
j
])
<
epsilon
)
{
if
(
val
==
max_dist
)
target_label_data
[
j
]
=
1
;
target_label
[
j
]
=
1
;
}
}
}
}
}
// Pick the fg/bg and count the number
// Pick the fg/bg
const
T
*
anchor_to_gt_max_data
=
anchor_to_gt_max
.
data
<
T
>
();
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
for
(
int64_t
j
=
0
;
j
<
col
;
++
j
)
{
if
(
anchor_to_gt_max
.
data
<
T
>
()[
j
]
>
pos_threshold
)
{
if
(
anchor_to_gt_max
_data
[
j
]
>=
pos_threshold
)
{
target_label
_data
[
j
]
=
1
;
target_label
[
j
]
=
1
;
}
else
if
(
anchor_to_gt_max
.
data
<
T
>
()
[
j
]
<
neg_threshold
)
{
}
else
if
(
anchor_to_gt_max
_data
[
j
]
<
neg_threshold
)
{
target_label
_data
[
j
]
=
0
;
target_label
[
j
]
=
0
;
}
}
if
(
target_label
_data
[
j
]
==
1
)
{
if
(
target_label
[
j
]
==
1
)
{
fg_inds
->
push_back
(
fg_offset
+
j
);
fg_inds
->
push_back
(
j
);
}
else
if
(
target_label
_data
[
j
]
==
0
)
{
}
else
if
(
target_label
[
j
]
==
0
)
{
bg_inds
->
push_back
(
bg_offset
+
j
);
bg_inds
->
push_back
(
j
);
}
}
}
}
}
}
void
ReservoirSampling
(
const
int
num
,
const
int
offset
,
void
ReservoirSampling
(
const
int
num
,
std
::
minstd_rand
engine
,
std
::
minstd_rand
engine
,
std
::
vector
<
int
>*
inds
)
const
{
std
::
vector
<
int
>*
inds
)
const
{
std
::
uniform_real_distribution
<
float
>
uniform
(
0
,
1
);
std
::
uniform_real_distribution
<
float
>
uniform
(
0
,
1
);
const
int64_t
size
=
static_cast
<
int64_t
>
(
inds
->
size
()
-
offset
);
size_t
len
=
inds
->
size
(
);
if
(
size
>
num
)
{
if
(
len
>
static_cast
<
size_t
>
(
num
)
)
{
for
(
int64_t
i
=
num
;
i
<
size
;
++
i
)
{
for
(
size_t
i
=
num
;
i
<
len
;
++
i
)
{
int
rng_ind
=
std
::
floor
(
uniform
(
engine
)
*
i
);
int
rng_ind
=
std
::
floor
(
uniform
(
engine
)
*
i
);
if
(
rng_ind
<
num
)
if
(
rng_ind
<
num
)
std
::
iter_swap
(
inds
->
begin
()
+
rng_ind
+
offset
,
std
::
iter_swap
(
inds
->
begin
()
+
rng_ind
,
inds
->
begin
()
+
i
);
inds
->
begin
()
+
i
+
offset
);
}
}
inds
->
resize
(
num
);
}
}
}
}
void
RpnTargetAssign
(
const
framework
::
ExecutionContext
&
ctx
,
// std::vector<std::vector<int>> RpnTargetAssign(
const
Tensor
&
dist
,
const
float
pos_threshold
,
std
::
vector
<
std
::
vector
<
int
>>
SampleFgBgGt
(
const
float
neg_threshold
,
const
int
rpn_batch_size
,
const
platform
::
CPUDeviceContext
&
ctx
,
const
Tensor
&
dist
,
const
int
fg_num
,
std
::
minstd_rand
engine
,
const
float
pos_threshold
,
const
float
neg_threshold
,
std
::
vector
<
int
>*
fg_inds
,
std
::
vector
<
int
>*
bg_inds
,
const
int
rpn_batch_size
,
const
int
fg_num
,
std
::
minstd_rand
engine
,
int64_t
*
target_label_data
)
const
{
int64_t
*
target_label
)
const
{
auto
*
dist_data
=
dist
.
data
<
T
>
();
auto
*
dist_data
=
dist
.
data
<
T
>
();
int64_t
row
=
dist
.
dims
()[
0
];
int
row
=
dist
.
dims
()[
0
];
int64_t
col
=
dist
.
dims
()[
1
];
int
col
=
dist
.
dims
()[
1
];
int
fg_offset
=
fg_inds
->
size
();
int
bg_offset
=
bg_inds
->
size
();
std
::
vector
<
int
>
fg_inds
;
std
::
vector
<
int
>
bg_inds
;
std
::
vector
<
int
>
gt_inds
;
// Calculate the max IoU between anchors and gt boxes
// Calculate the max IoU between anchors and gt boxes
Tensor
anchor_to_gt_max
;
// Map from anchor to gt box that has highest overlap
anchor_to_gt_max
.
mutable_data
<
T
>
(
auto
place
=
ctx
.
GetPlace
();
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
col
),
1
}),
Tensor
anchor_to_gt_max
,
anchor_to_gt_argmax
;
platform
::
CPUPlace
());
anchor_to_gt_max
.
mutable_data
<
T
>
({
col
},
place
);
auto
&
place
=
*
ctx
.
template
device_context
<
platform
::
CPUDeviceContext
>()
int
*
argmax
=
anchor_to_gt_argmax
.
mutable_data
<
int
>
({
col
},
place
);
.
eigen_device
();
auto
x
=
EigenMatrix
<
T
>::
From
(
dist
);
auto
x
=
framework
::
EigenMatrix
<
T
>::
From
(
dist
);
auto
x_col_max
=
EigenMatrix
<
T
>::
From
(
anchor_to_gt_max
);
auto
x_col_max
=
framework
::
EigenVector
<
T
>::
Flatten
(
anchor_to_gt_max
);
x_col_max
.
device
(
place
)
=
auto
x_col_argmax
=
x
.
maximum
(
Eigen
::
DSizes
<
int
,
1
>
(
0
))
framework
::
EigenVector
<
int
>::
Flatten
(
anchor_to_gt_argmax
);
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
static_cast
<
int64_t
>
(
col
),
1
));
x_col_max
=
x
.
maximum
(
Eigen
::
DSizes
<
int
,
1
>
(
0
));
x_col_argmax
=
x
.
argmax
(
0
).
template
cast
<
int
>();
// Follow the Faster RCNN's implementation
// Follow the Faster RCNN's implementation
ScoreAssign
(
dist_data
,
anchor_to_gt_max
,
row
,
col
,
pos_threshold
,
ScoreAssign
(
dist_data
,
anchor_to_gt_max
,
row
,
col
,
pos_threshold
,
neg_threshold
,
target_label
_data
,
fg_inds
,
bg_inds
);
neg_threshold
,
target_label
,
&
fg_inds
,
&
bg_inds
);
// Reservoir Sampling
// Reservoir Sampling
ReservoirSampling
(
fg_num
,
fg_offset
,
engine
,
fg_inds
);
ReservoirSampling
(
fg_num
,
engine
,
&
fg_inds
);
int
bg_num
=
rpn_batch_size
-
(
fg_inds
->
size
()
-
fg_offset
);
int
fg_num2
=
static_cast
<
int
>
(
fg_inds
.
size
()
);
ReservoirSampling
(
bg_num
,
bg_offset
,
engine
,
bg_inds
)
;
int
bg_num
=
rpn_batch_size
-
fg_num2
;
}
ReservoirSampling
(
bg_num
,
engine
,
&
bg_inds
);
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
gt_inds
.
reserve
(
fg_num2
);
auto
*
dist
=
context
.
Input
<
LoDTensor
>
(
"DistMat"
);
for
(
int
i
=
0
;
i
<
fg_num2
;
++
i
)
{
auto
*
loc_index
=
context
.
Output
<
Tensor
>
(
"LocationIndex"
);
gt_inds
.
emplace_back
(
argmax
[
fg_inds
[
i
]]);
auto
*
score_index
=
context
.
Output
<
Tensor
>
(
"ScoreIndex"
);
auto
*
tgt_lbl
=
context
.
Output
<
Tensor
>
(
"TargetLabel"
);
auto
col
=
dist
->
dims
()[
1
];
int64_t
n
=
dist
->
lod
().
size
()
==
0UL
?
1
:
static_cast
<
int64_t
>
(
dist
->
lod
().
back
().
size
()
-
1
);
if
(
dist
->
lod
().
size
())
{
PADDLE_ENFORCE_EQ
(
dist
->
lod
().
size
(),
1UL
,
"Only support 1 level of LoD."
);
}
}
int
rpn_batch_size
=
context
.
Attr
<
int
>
(
"rpn_batch_size_per_im"
);
std
::
vector
<
std
::
vector
<
int
>>
fg_bg_gt
;
float
pos_threshold
=
context
.
Attr
<
float
>
(
"rpn_positive_overlap"
);
fg_bg_gt
.
emplace_back
(
fg_inds
);
float
neg_threshold
=
context
.
Attr
<
float
>
(
"rpn_negative_overlap"
);
fg_bg_gt
.
emplace_back
(
bg_inds
);
float
fg_fraction
=
context
.
Attr
<
float
>
(
"fg_fraction"
);
fg_bg_gt
.
emplace_back
(
gt_inds
);
int
fg_num
=
static_cast
<
int
>
(
rpn_batch_size
*
fg_fraction
);
int64_t
*
target_label_data
=
tgt_lbl
->
mutable_data
<
int64_t
>
({
n
*
col
,
1
},
context
.
GetPlace
());
auto
&
dev_ctx
=
context
.
device_context
<
platform
::
CPUDeviceContext
>
();
return
fg_bg_gt
;
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
int64_t
>
iset
;
iset
(
dev_ctx
,
tgt_lbl
,
static_cast
<
int
>
(
-
1
));
std
::
vector
<
int
>
fg_inds
;
std
::
vector
<
int
>
bg_inds
;
std
::
random_device
rnd
;
std
::
minstd_rand
engine
;
int
seed
=
context
.
Attr
<
bool
>
(
"fix_seed"
)
?
context
.
Attr
<
int
>
(
"seed"
)
:
rnd
();
engine
.
seed
(
seed
);
if
(
n
==
1
)
{
RpnTargetAssign
(
context
,
*
dist
,
pos_threshold
,
neg_threshold
,
rpn_batch_size
,
fg_num
,
engine
,
&
fg_inds
,
&
bg_inds
,
target_label_data
);
}
else
{
auto
lod
=
dist
->
lod
().
back
();
for
(
size_t
i
=
0
;
i
<
lod
.
size
()
-
1
;
++
i
)
{
Tensor
one_ins
=
dist
->
Slice
(
lod
[
i
],
lod
[
i
+
1
]);
RpnTargetAssign
(
context
,
one_ins
,
pos_threshold
,
neg_threshold
,
rpn_batch_size
,
fg_num
,
engine
,
&
fg_inds
,
&
bg_inds
,
target_label_data
+
i
*
col
);
}
}
int
*
loc_index_data
=
loc_index
->
mutable_data
<
int
>
(
{
static_cast
<
int
>
(
fg_inds
.
size
())},
context
.
GetPlace
());
int
*
score_index_data
=
score_index
->
mutable_data
<
int
>
(
{
static_cast
<
int
>
(
fg_inds
.
size
()
+
bg_inds
.
size
())},
context
.
GetPlace
());
memcpy
(
loc_index_data
,
reinterpret_cast
<
int
*>
(
&
fg_inds
[
0
]),
fg_inds
.
size
()
*
sizeof
(
int
));
memcpy
(
score_index_data
,
reinterpret_cast
<
int
*>
(
&
fg_inds
[
0
]),
fg_inds
.
size
()
*
sizeof
(
int
));
memcpy
(
score_index_data
+
fg_inds
.
size
(),
reinterpret_cast
<
int
*>
(
&
bg_inds
[
0
]),
bg_inds
.
size
()
*
sizeof
(
int
));
}
}
};
};
class
RpnTargetAssignOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
RpnTargetAssignOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
public:
void
Make
()
override
{
void
Make
()
override
{
AddInput
(
"Anchor"
,
"(Tensor) input anchor is a 2-D Tensor with shape [H*W*A, 4]."
);
AddInput
(
"GtBox"
,
"(LoDTensor) input groud-truth bbox with shape [K, 4]."
);
AddInput
(
AddInput
(
"DistMat"
,
"DistMat"
,
"(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape "
"(LoDTensor or Tensor) this input is a 2-D LoDTensor with shape "
...
@@ -241,12 +305,15 @@ class RpnTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -241,12 +305,15 @@ class RpnTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker {
"ScoreIndex"
,
"ScoreIndex"
,
"(Tensor), The indexes of foreground and background anchors in all "
"(Tensor), The indexes of foreground and background anchors in all "
"RPN anchors(The rest anchors are ignored). The shape of the "
"RPN anchors(The rest anchors are ignored). The shape of the "
"ScoreIndex is [F + B], F and B depend on the value of input "
"ScoreIndex is [F + B], F and B are sampled foreground and backgroud "
"tensor and attributes."
);
" number."
);
AddOutput
(
"TargetLabel"
,
AddOutput
(
"TargetBBox"
,
"(Tensor<int64_t>), The target labels of each anchor with shape "
"(Tensor<int64_t>), The target bbox deltas with shape "
"[K * M, 1], "
"[F, 4], F is the sampled foreground number."
);
"K and M is the same as they are in DistMat."
);
AddOutput
(
"TargetLabel"
,
"(Tensor<int64_t>), The target labels of each anchor with shape "
"[F + B, 1], F and B are sampled foreground and backgroud number."
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
This operator can be, for given the IoU between the ground truth bboxes and the
This operator can be, for given the IoU between the ground truth bboxes and the
anchors, to assign classification and regression targets to each prediction.
anchors, to assign classification and regression targets to each prediction.
...
...
paddle/fluid/operators/roi_pool_op.cu
浏览文件 @
6e2e0ec8
...
@@ -31,7 +31,7 @@ static inline int NumBlocks(const int N) {
...
@@ -31,7 +31,7 @@ static inline int NumBlocks(const int N) {
template
<
typename
T
>
template
<
typename
T
>
__global__
void
GPUROIPoolForward
(
__global__
void
GPUROIPoolForward
(
const
int
nthreads
,
const
T
*
input_data
,
const
int64_t
*
input_rois
,
const
int
nthreads
,
const
T
*
input_data
,
const
T
*
input_rois
,
const
float
spatial_scale
,
const
int
channels
,
const
int
height
,
const
float
spatial_scale
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
int
*
roi_batch_id_data
,
T
*
output_data
,
int64_t
*
argmax_data
)
{
int
*
roi_batch_id_data
,
T
*
output_data
,
int64_t
*
argmax_data
)
{
...
@@ -43,7 +43,7 @@ __global__ void GPUROIPoolForward(
...
@@ -43,7 +43,7 @@ __global__ void GPUROIPoolForward(
int
c
=
(
i
/
pooled_width
/
pooled_height
)
%
channels
;
int
c
=
(
i
/
pooled_width
/
pooled_height
)
%
channels
;
int
n
=
i
/
pooled_width
/
pooled_height
/
channels
;
int
n
=
i
/
pooled_width
/
pooled_height
/
channels
;
const
int64_t
*
offset_input_rois
=
input_rois
+
n
*
kROISize
;
const
T
*
offset_input_rois
=
input_rois
+
n
*
kROISize
;
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
int
roi_batch_ind
=
roi_batch_id_data
[
n
];
int
roi_start_w
=
round
(
offset_input_rois
[
0
]
*
spatial_scale
);
int
roi_start_w
=
round
(
offset_input_rois
[
0
]
*
spatial_scale
);
int
roi_start_h
=
round
(
offset_input_rois
[
1
]
*
spatial_scale
);
int
roi_start_h
=
round
(
offset_input_rois
[
1
]
*
spatial_scale
);
...
@@ -93,7 +93,7 @@ __global__ void GPUROIPoolForward(
...
@@ -93,7 +93,7 @@ __global__ void GPUROIPoolForward(
template
<
typename
T
>
template
<
typename
T
>
__global__
void
GPUROIPoolBackward
(
__global__
void
GPUROIPoolBackward
(
const
int
nthreads
,
const
int64_t
*
input_rois
,
const
T
*
output_grad
,
const
int
nthreads
,
const
T
*
input_rois
,
const
T
*
output_grad
,
const
int64_t
*
argmax_data
,
const
int
num_rois
,
const
float
spatial_scale
,
const
int64_t
*
argmax_data
,
const
int
num_rois
,
const
float
spatial_scale
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
channels
,
const
int
height
,
const
int
width
,
const
int
pooled_height
,
const
int
pooled_width
,
int
*
roi_batch_id_data
,
const
int
pooled_height
,
const
int
pooled_width
,
int
*
roi_batch_id_data
,
...
@@ -174,8 +174,8 @@ class GPUROIPoolOpKernel : public framework::OpKernel<T> {
...
@@ -174,8 +174,8 @@ class GPUROIPoolOpKernel : public framework::OpKernel<T> {
GPUROIPoolForward
<
GPUROIPoolForward
<
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
output_size
,
in
->
data
<
T
>
(),
rois
->
data
<
int64_t
>
(),
spatial_scale
,
output_size
,
in
->
data
<
T
>
(),
rois
->
data
<
T
>
(),
spatial_scale
,
channels
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
height
,
width
,
pooled_height
,
pooled_width
,
roi_batch_id_list_gpu
.
data
<
int
>
(),
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
roi_batch_id_list_gpu
.
data
<
int
>
(),
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
argmax
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
()));
argmax
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
()));
}
}
...
@@ -228,7 +228,7 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel<T> {
...
@@ -228,7 +228,7 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel<T> {
if
(
output_grad_size
>
0
)
{
if
(
output_grad_size
>
0
)
{
GPUROIPoolBackward
<
GPUROIPoolBackward
<
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
T
><<<
blocks
,
threads
,
0
,
ctx
.
cuda_device_context
().
stream
()
>>>
(
output_grad_size
,
rois
->
data
<
int64_t
>
(),
out_grad
->
data
<
T
>
(),
output_grad_size
,
rois
->
data
<
T
>
(),
out_grad
->
data
<
T
>
(),
argmax
->
data
<
int64_t
>
(),
rois_num
,
spatial_scale
,
channels
,
height
,
argmax
->
data
<
int64_t
>
(),
rois_num
,
spatial_scale
,
channels
,
height
,
width
,
pooled_height
,
pooled_width
,
width
,
pooled_height
,
pooled_width
,
roi_batch_id_list_gpu
.
data
<
int
>
(),
roi_batch_id_list_gpu
.
data
<
int
>
(),
...
...
paddle/fluid/operators/roi_pool_op.h
浏览文件 @
6e2e0ec8
...
@@ -72,7 +72,7 @@ class CPUROIPoolOpKernel : public framework::OpKernel<T> {
...
@@ -72,7 +72,7 @@ class CPUROIPoolOpKernel : public framework::OpKernel<T> {
T
*
output_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
output_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int64_t
*
argmax_data
=
argmax
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
int64_t
*
argmax_data
=
argmax
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
const
int64_t
*
rois_data
=
rois
->
data
<
int64_t
>
();
const
T
*
rois_data
=
rois
->
data
<
T
>
();
for
(
int
n
=
0
;
n
<
rois_num
;
++
n
)
{
for
(
int
n
=
0
;
n
<
rois_num
;
++
n
)
{
int
roi_batch_id
=
roi_batch_id_data
[
n
];
int
roi_batch_id
=
roi_batch_id_data
[
n
];
int
roi_start_w
=
round
(
rois_data
[
0
]
*
spatial_scale
);
int
roi_start_w
=
round
(
rois_data
[
0
]
*
spatial_scale
);
...
@@ -171,7 +171,7 @@ class CPUROIPoolGradOpKernel : public framework::OpKernel<T> {
...
@@ -171,7 +171,7 @@ class CPUROIPoolGradOpKernel : public framework::OpKernel<T> {
}
}
}
}
const
int64_t
*
rois_data
=
rois
->
data
<
int64_t
>
();
const
T
*
rois_data
=
rois
->
data
<
T
>
();
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
const
T
*
out_grad_data
=
out_grad
->
data
<
T
>
();
const
int64_t
*
argmax_data
=
argmax
->
data
<
int64_t
>
();
const
int64_t
*
argmax_data
=
argmax
->
data
<
int64_t
>
();
T
*
in_grad_data
=
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
in_grad_data
=
in_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
paddle/fluid/operators/sequence_enumerate_op.cc
0 → 100644
浏览文件 @
6e2e0ec8
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/sequence_enumerate_op.h"
namespace
paddle
{
namespace
operators
{
class
SequenceEnumerateOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of SequecceEnumerate operator should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(X) of SequenceEnumerate operator should not be null."
);
const
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2UL
,
"Input(X) of SequenceEnumerate operator's rank should be 2."
);
PADDLE_ENFORCE_EQ
(
x_dims
[
1
],
1UL
,
"Input(X) of SequenceEnumerate operator's 2nd dimension should be 1."
);
const
auto
win_size
=
ctx
->
Attrs
().
Get
<
int
>
(
"win_size"
);
ctx
->
SetOutputDim
(
"Out"
,
{
x_dims
[
0
],
win_size
});
ctx
->
ShareLoD
(
"X"
,
"Out"
);
}
};
class
SequenceEnumerateOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"(2-D LoDTensor with the 2nd dimension equal to 1) "
"Input LoDTensor of SequenceEnumerate operator."
);
AddOutput
(
"Out"
,
"(2-D LoDTensor with the 2nd dimension equal to win_size) "
"Output LoDTensor of SequenceEnumerate operator."
);
AddAttr
<
int
>
(
"win_size"
,
"(int) The enumerate sequence window size."
)
.
AddCustomChecker
([](
const
int
&
win_size
)
{
PADDLE_ENFORCE
(
win_size
>=
2
,
"The window size should be not less than 2."
);
});
AddAttr
<
int
>
(
"pad_value"
,
"(int) The enumerate sequence padding value."
)
.
SetDefault
(
0
);
AddComment
(
R"DOC(
Sequence Enumerate Operator.
Generate a new sequence for the input index sequence, which enumerates all the
sub-sequences with length `win_size` of the input.
The enumerated sequence has the same 1st dimension with variable `input`, and
the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
Examples:
Case 1:
Input:
X.lod = [[0, 3, 5]]
X.data = [[1], [2], [3], [4], [5]]
X.dims = [5, 1]
Attrs:
win_size = 2
pad_value = 0
Output:
Out.lod = [[0, 3, 5]]
Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
Out.dims = [5, 2]
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_WITHOUT_GRADIENT
(
sequence_enumerate
,
ops
::
SequenceEnumerateOp
,
ops
::
SequenceEnumerateOpMaker
);
REGISTER_OP_CPU_KERNEL
(
sequence_enumerate
,
ops
::
SequenceEnumerateKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int32_t
>
,
ops
::
SequenceEnumerateKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
);
paddle/fluid/operators/sequence_enumerate_op.cu
0 → 100644
浏览文件 @
6e2e0ec8
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include "paddle/fluid/operators/sequence_enumerate_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace
paddle
{
namespace
operators
{
using
platform
::
PADDLE_CUDA_NUM_THREADS
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
>
__global__
void
CalcOutPut
(
const
T
*
in_data
,
const
size_t
*
in_lod
,
const
size_t
lod_len
,
const
int64_t
win_size
,
const
int64_t
pad_value
,
T
*
out_data
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
in_lod
[
lod_len
-
1
])
{
int
end_idx
=
0
;
// Get LoD interval of index
for
(
int
i
=
1
;
i
<
lod_len
;
++
i
)
{
if
(
index
<
in_lod
[
i
])
{
end_idx
=
in_lod
[
i
];
break
;
}
}
for
(
size_t
i
=
0
;
i
<
win_size
;
++
i
)
{
int
word_pos
=
index
+
i
;
out_data
[
index
*
win_size
+
i
]
=
word_pos
<
end_idx
?
in_data
[
word_pos
]
:
pad_value
;
}
}
}
template
<
typename
T
>
class
SequenceEnumerateOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
win_size
=
context
.
Attr
<
int
>
(
"win_size"
);
int
pad_value
=
context
.
Attr
<
int
>
(
"pad_value"
);
auto
in_dims
=
in
->
dims
();
auto
in_lod
=
in
->
lod
();
PADDLE_ENFORCE_EQ
(
static_cast
<
uint64_t
>
(
in_dims
[
0
]),
in_lod
[
0
].
back
(),
"The actual input data's size mismatched with LoD information."
);
/* Generate enumerate sequence set */
auto
stream
=
context
.
cuda_device_context
().
stream
();
auto
lod0
=
in_lod
[
0
];
auto
in_len
=
in
->
numel
();
auto
in_data
=
in
->
data
<
T
>
();
auto
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// Copy LoD to GPU
const
size_t
*
dev_in_lod_ptr
=
lod0
.
CUDAData
(
context
.
GetPlace
());
// Calc output tensor
CalcOutPut
<<<
(
in_len
-
1
)
/
PADDLE_CUDA_NUM_THREADS
+
1
,
PADDLE_CUDA_NUM_THREADS
,
0
,
stream
>>>
(
in_data
,
dev_in_lod_ptr
,
lod0
.
size
(),
win_size
,
pad_value
,
out_data
);
}
};
}
// namespace operators
}
// namespace paddle
REGISTER_OP_CUDA_KERNEL
(
sequence_enumerate
,
paddle
::
operators
::
SequenceEnumerateOpCUDAKernel
<
int32_t
>
,
paddle
::
operators
::
SequenceEnumerateOpCUDAKernel
<
int64_t
>
);
paddle/fluid/operators/sequence_enumerate_op.h
0 → 100644
浏览文件 @
6e2e0ec8
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
SequenceEnumerateKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
int
win_size
=
context
.
Attr
<
int
>
(
"win_size"
);
int
pad_value
=
context
.
Attr
<
int
>
(
"pad_value"
);
auto
in_dims
=
in
->
dims
();
auto
in_lod
=
in
->
lod
();
PADDLE_ENFORCE_EQ
(
static_cast
<
uint64_t
>
(
in_dims
[
0
]),
in_lod
[
0
].
back
(),
"The actual input data's size mismatched with LoD information."
);
// Generate enumerate sequence set
auto
lod0
=
in_lod
[
0
];
auto
in_data
=
in
->
data
<
T
>
();
auto
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
size_t
i
=
0
;
i
<
lod0
.
size
()
-
1
;
++
i
)
{
for
(
size_t
idx
=
lod0
[
i
];
idx
<
lod0
[
i
+
1
];
++
idx
)
{
for
(
int
word_idx
=
0
;
word_idx
<
win_size
;
++
word_idx
)
{
size_t
word_pos
=
idx
+
word_idx
;
out_data
[
win_size
*
idx
+
word_idx
]
=
word_pos
<
lod0
[
i
+
1
]
?
in_data
[
word_pos
]
:
pad_value
;
}
}
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/platform/device_context.cc
浏览文件 @
6e2e0ec8
...
@@ -16,9 +16,6 @@ limitations under the License. */
...
@@ -16,9 +16,6 @@ limitations under the License. */
#include <vector>
#include <vector>
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/memory/memory.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
#endif
namespace
paddle
{
namespace
paddle
{
namespace
platform
{
namespace
platform
{
...
@@ -145,59 +142,7 @@ class EigenCudaStreamDevice : public Eigen::StreamInterface {
...
@@ -145,59 +142,7 @@ class EigenCudaStreamDevice : public Eigen::StreamInterface {
mutable
unsigned
int
*
semaphore_
;
mutable
unsigned
int
*
semaphore_
;
};
};
class
CudnnHolder
{
CUDADeviceContext
::
CUDADeviceContext
(
CUDAPlace
place
)
:
place_
(
place
)
{
public:
CudnnHolder
(
const
cudaStream_t
*
stream
,
const
CUDAPlace
&
place
)
:
workspace_
(
nullptr
),
workspace_len_
(
0
),
stream_
(
stream
),
place_
(
place
)
{
PADDLE_ENFORCE
(
dynload
::
cudnnCreate
(
&
cudnn_handle_
));
PADDLE_ENFORCE
(
dynload
::
cudnnSetStream
(
cudnn_handle_
,
*
stream_
));
}
cudnnHandle_t
cudnn_handle
()
const
{
return
cudnn_handle_
;
}
void
RunFunc
(
const
std
::
function
<
void
(
void
*
)
>&
cudnn_func
,
size_t
required_workspace_len
)
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mtx_
);
if
(
required_workspace_len
>
workspace_len_
)
{
ReallocateWorkspace
(
required_workspace_len
);
}
cudnn_func
(
workspace_
);
}
~
CudnnHolder
()
{
PADDLE_ENFORCE
(
dynload
::
cudnnDestroy
(
cudnn_handle_
));
if
(
workspace_
!=
nullptr
)
{
paddle
::
memory
::
Free
(
place_
,
workspace_
);
}
}
private:
void
ReallocateWorkspace
(
size_t
required_workspace_len
)
{
if
(
required_workspace_len
<=
workspace_len_
)
{
return
;
}
void
*
new_workspace
=
paddle
::
memory
::
Alloc
(
place_
,
required_workspace_len
);
if
(
workspace_
!=
nullptr
)
{
// Maybe someone is using the current workspace
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
*
stream_
));
paddle
::
memory
::
Free
(
place_
,
workspace_
);
}
workspace_
=
new_workspace
;
workspace_len_
=
required_workspace_len
;
}
cudnnHandle_t
cudnn_handle_
;
void
*
workspace_
;
size_t
workspace_len_
;
const
cudaStream_t
*
stream_
;
// not owned;
const
CUDAPlace
place_
;
std
::
mutex
mtx_
;
};
CUDADeviceContext
::
CUDADeviceContext
(
CUDAPlace
place
)
:
place_
(
place
),
cudnn_holder_
(
nullptr
)
{
SetDeviceId
(
place_
.
device
);
SetDeviceId
(
place_
.
device
);
compute_capability
=
GetCUDAComputeCapability
(
place_
.
device
);
compute_capability
=
GetCUDAComputeCapability
(
place_
.
device
);
multi_process
=
GetCUDAMultiProcessors
(
place_
.
device
);
multi_process
=
GetCUDAMultiProcessors
(
place_
.
device
);
...
@@ -209,7 +154,10 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
...
@@ -209,7 +154,10 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place)
PADDLE_ENFORCE
(
dynload
::
cublasCreate
(
&
cublas_handle_
));
PADDLE_ENFORCE
(
dynload
::
cublasCreate
(
&
cublas_handle_
));
PADDLE_ENFORCE
(
dynload
::
cublasSetStream
(
cublas_handle_
,
stream_
));
PADDLE_ENFORCE
(
dynload
::
cublasSetStream
(
cublas_handle_
,
stream_
));
if
(
dynload
::
HasCUDNN
())
{
if
(
dynload
::
HasCUDNN
())
{
cudnn_holder_
.
reset
(
new
CudnnHolder
(
&
stream_
,
place
));
PADDLE_ENFORCE
(
dynload
::
cudnnCreate
(
&
cudnn_handle_
));
PADDLE_ENFORCE
(
dynload
::
cudnnSetStream
(
cudnn_handle_
,
stream_
));
}
else
{
cudnn_handle_
=
nullptr
;
}
}
}
}
...
@@ -217,6 +165,9 @@ CUDADeviceContext::~CUDADeviceContext() {
...
@@ -217,6 +165,9 @@ CUDADeviceContext::~CUDADeviceContext() {
SetDeviceId
(
place_
.
device
);
SetDeviceId
(
place_
.
device
);
Wait
();
Wait
();
PADDLE_ENFORCE
(
dynload
::
cublasDestroy
(
cublas_handle_
));
PADDLE_ENFORCE
(
dynload
::
cublasDestroy
(
cublas_handle_
));
if
(
cudnn_handle_
!=
nullptr
)
{
PADDLE_ENFORCE
(
dynload
::
cudnnDestroy
(
cudnn_handle_
));
}
eigen_stream_
.
reset
();
eigen_stream_
.
reset
();
eigen_device_
.
reset
();
eigen_device_
.
reset
();
PADDLE_ENFORCE
(
cudaStreamDestroy
(
stream_
));
PADDLE_ENFORCE
(
cudaStreamDestroy
(
stream_
));
...
@@ -245,14 +196,7 @@ cublasHandle_t CUDADeviceContext::cublas_handle() const {
...
@@ -245,14 +196,7 @@ cublasHandle_t CUDADeviceContext::cublas_handle() const {
return
cublas_handle_
;
return
cublas_handle_
;
}
}
cudnnHandle_t
CUDADeviceContext
::
cudnn_handle
()
const
{
cudnnHandle_t
CUDADeviceContext
::
cudnn_handle
()
const
{
return
cudnn_handle_
;
}
return
cudnn_holder_
->
cudnn_handle
();
}
void
CUDADeviceContext
::
RunCudnnFuncWithWorkspace
(
const
std
::
function
<
void
(
void
*
)
>&
cudnn_func
,
size_t
workspace_len
)
const
{
cudnn_holder_
->
RunFunc
(
cudnn_func
,
workspace_len
);
}
cudaStream_t
CUDADeviceContext
::
stream
()
const
{
return
stream_
;
}
cudaStream_t
CUDADeviceContext
::
stream
()
const
{
return
stream_
;
}
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
6e2e0ec8
...
@@ -69,7 +69,6 @@ struct DefaultDeviceContextType<platform::CPUPlace> {
...
@@ -69,7 +69,6 @@ struct DefaultDeviceContextType<platform::CPUPlace> {
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
class
EigenCudaStreamDevice
;
class
EigenCudaStreamDevice
;
class
CudnnHolder
;
class
CUDADeviceContext
:
public
DeviceContext
{
class
CUDADeviceContext
:
public
DeviceContext
{
public:
public:
...
@@ -97,11 +96,6 @@ class CUDADeviceContext : public DeviceContext {
...
@@ -97,11 +96,6 @@ class CUDADeviceContext : public DeviceContext {
/*! \brief Return cudnn handle in the device context. */
/*! \brief Return cudnn handle in the device context. */
cudnnHandle_t
cudnn_handle
()
const
;
cudnnHandle_t
cudnn_handle
()
const
;
/*! \brief Run a cudnn function with the workspace provided by
* CUDADeviceContext */
void
RunCudnnFuncWithWorkspace
(
const
std
::
function
<
void
(
void
*
)
>&
cudnn_func
,
size_t
workspace_len
)
const
;
/*! \brief Return cuda stream in the device context. */
/*! \brief Return cuda stream in the device context. */
cudaStream_t
stream
()
const
;
cudaStream_t
stream
()
const
;
...
@@ -117,8 +111,8 @@ class CUDADeviceContext : public DeviceContext {
...
@@ -117,8 +111,8 @@ class CUDADeviceContext : public DeviceContext {
std
::
unique_ptr
<
Eigen
::
GpuDevice
>
eigen_device_
;
std
::
unique_ptr
<
Eigen
::
GpuDevice
>
eigen_device_
;
std
::
unique_ptr
<
EigenCudaStreamDevice
>
eigen_stream_
;
std
::
unique_ptr
<
EigenCudaStreamDevice
>
eigen_stream_
;
std
::
unique_ptr
<
CudnnHolder
>
cudnn_holder_
;
cudaStream_t
stream_
;
cudaStream_t
stream_
;
cudnnHandle_t
cudnn_handle_
;
cublasHandle_t
cublas_handle_
;
cublasHandle_t
cublas_handle_
;
int
compute_capability
;
int
compute_capability
;
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
6e2e0ec8
...
@@ -145,26 +145,23 @@ def rpn_target_assign(loc,
...
@@ -145,26 +145,23 @@ def rpn_target_assign(loc,
"""
"""
helper
=
LayerHelper
(
'rpn_target_assign'
,
**
locals
())
helper
=
LayerHelper
(
'rpn_target_assign'
,
**
locals
())
# 1. Compute the regression target bboxes
# Compute overlaps between the prior boxes and the gt boxes overlaps
target_bbox
=
box_coder
(
prior_box
=
anchor_box
,
prior_box_var
=
anchor_var
,
target_box
=
gt_box
,
code_type
=
'encode_center_size'
,
box_normalized
=
False
)
# 2. Compute overlaps between the prior boxes and the gt boxes overlaps
iou
=
iou_similarity
(
x
=
gt_box
,
y
=
anchor_box
)
iou
=
iou_similarity
(
x
=
gt_box
,
y
=
anchor_box
)
# 3. Assign target label to anchors
# Assign target label to anchors
loc_index
=
helper
.
create_tmp_variable
(
dtype
=
anchor_box
.
dtype
)
loc_index
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
score_index
=
helper
.
create_tmp_variable
(
dtype
=
anchor_box
.
dtype
)
score_index
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
target_label
=
helper
.
create_tmp_variable
(
dtype
=
anchor_box
.
dtype
)
target_label
=
helper
.
create_tmp_variable
(
dtype
=
'int64'
)
target_bbox
=
helper
.
create_tmp_variable
(
dtype
=
anchor_box
.
dtype
)
helper
.
append_op
(
helper
.
append_op
(
type
=
"rpn_target_assign"
,
type
=
"rpn_target_assign"
,
inputs
=
{
'DistMat'
:
iou
},
inputs
=
{
'Anchor'
:
anchor_box
,
'GtBox'
:
gt_box
,
'DistMat'
:
iou
},
outputs
=
{
outputs
=
{
'LocationIndex'
:
loc_index
,
'LocationIndex'
:
loc_index
,
'ScoreIndex'
:
score_index
,
'ScoreIndex'
:
score_index
,
'TargetLabel'
:
target_label
'TargetLabel'
:
target_label
,
'TargetBBox'
:
target_bbox
,
},
},
attrs
=
{
attrs
=
{
'rpn_batch_size_per_im'
:
rpn_batch_size_per_im
,
'rpn_batch_size_per_im'
:
rpn_batch_size_per_im
,
...
@@ -173,16 +170,16 @@ def rpn_target_assign(loc,
...
@@ -173,16 +170,16 @@ def rpn_target_assign(loc,
'fg_fraction'
:
fg_fraction
'fg_fraction'
:
fg_fraction
})
})
# 4. Reshape and gather the target entry
loc_index
.
stop_gradient
=
True
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
(
-
1
,
2
))
score_index
.
stop_gradient
=
True
loc
=
nn
.
reshape
(
x
=
loc
,
shape
=
(
-
1
,
4
))
target_label
.
stop_gradient
=
True
target_label
=
nn
.
reshape
(
x
=
target_label
,
shape
=
(
-
1
,
1
))
target_bbox
.
stop_gradient
=
True
target_bbox
=
nn
.
reshape
(
x
=
target_bbox
,
shape
=
(
-
1
,
4
))
scores
=
nn
.
reshape
(
x
=
scores
,
shape
=
(
-
1
,
1
))
loc
=
nn
.
reshape
(
x
=
loc
,
shape
=
(
-
1
,
4
))
predicted_scores
=
nn
.
gather
(
scores
,
score_index
)
predicted_scores
=
nn
.
gather
(
scores
,
score_index
)
predicted_location
=
nn
.
gather
(
loc
,
loc_index
)
predicted_location
=
nn
.
gather
(
loc
,
loc_index
)
target_label
=
nn
.
gather
(
target_label
,
score_index
)
target_bbox
=
nn
.
gather
(
target_bbox
,
loc_index
)
return
predicted_scores
,
predicted_location
,
target_label
,
target_bbox
return
predicted_scores
,
predicted_location
,
target_label
,
target_bbox
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
6e2e0ec8
...
@@ -111,6 +111,7 @@ __all__ = [
...
@@ -111,6 +111,7 @@ __all__ = [
'stack'
,
'stack'
,
'pad2d'
,
'pad2d'
,
'unstack'
,
'unstack'
,
'sequence_enumerate'
,
]
]
...
@@ -5823,6 +5824,51 @@ def flatten(x, axis=1, name=None):
...
@@ -5823,6 +5824,51 @@ def flatten(x, axis=1, name=None):
return
out
return
out
def
sequence_enumerate
(
input
,
win_size
,
pad_value
=
0
,
name
=
None
):
"""
Generate a new sequence for the input index sequence, which enumerates all the
sub-sequences with length `win_size` of the input.
The enumerated sequence has the same 1st dimension with variable `input`, and
the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
Examples:
Case 1:
Input:
X.lod = [[0, 3, 5]]
X.data = [[1], [2], [3], [4], [5]]
X.dims = [5, 1]
Attrs:
win_size = 2
pad_value = 0
Output:
Out.lod = [[0, 3, 5]]
Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
Out.dims = [5, 2]
Args:
input (Variable): The input variable which is a index sequence.
win_size (int): The window size for enumerating all sub-sequences.
pad_value (int): The padding value, default 0.
Returns:
Variable: The enumerate sequence variable which is a LoDTensor.
Examples:
.. code-block:: python
x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
"""
helper
=
LayerHelper
(
'sequence_enumerate'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
helper
.
input_dtype
(),
stop_gradient
=
True
)
helper
.
append_op
(
type
=
'sequence_enumerate'
,
inputs
=
{
'X'
:
input
},
outputs
=
{
'Out'
:
out
},
attrs
=
{
'win_size'
:
win_size
,
'pad_value'
:
pad_value
})
def
sequence_mask
(
x
,
maxlen
=
None
,
dtype
=
'int64'
,
name
=
None
):
def
sequence_mask
(
x
,
maxlen
=
None
,
dtype
=
'int64'
,
name
=
None
):
"""
"""
**SequenceMask Layer**
**SequenceMask Layer**
...
@@ -5902,6 +5948,7 @@ def stack(x, axis=0):
...
@@ -5902,6 +5948,7 @@ def stack(x, axis=0):
helper
.
append_op
(
helper
.
append_op
(
type
=
'stack'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Y'
:
out
},
type
=
'stack'
,
inputs
=
{
'X'
:
x
},
outputs
=
{
'Y'
:
out
},
attrs
=
{
'axis'
:
axis
})
attrs
=
{
'axis'
:
axis
})
return
out
return
out
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
6e2e0ec8
...
@@ -281,7 +281,7 @@ class TestRpnTargetAssign(unittest.TestCase):
...
@@ -281,7 +281,7 @@ class TestRpnTargetAssign(unittest.TestCase):
gt_box
=
layers
.
data
(
gt_box
=
layers
.
data
(
name
=
'gt_box'
,
shape
=
[
4
],
lod_level
=
1
,
dtype
=
'float32'
)
name
=
'gt_box'
,
shape
=
[
4
],
lod_level
=
1
,
dtype
=
'float32'
)
pred
icted_scores
,
predicted_location
,
target_label
,
targe
t_bbox
=
layers
.
rpn_target_assign
(
pred
_scores
,
pred_loc
,
tgt_lbl
,
tg
t_bbox
=
layers
.
rpn_target_assign
(
loc
=
loc
,
loc
=
loc
,
scores
=
scores
,
scores
=
scores
,
anchor_box
=
anchor_box
,
anchor_box
=
anchor_box
,
...
@@ -292,15 +292,13 @@ class TestRpnTargetAssign(unittest.TestCase):
...
@@ -292,15 +292,13 @@ class TestRpnTargetAssign(unittest.TestCase):
rpn_positive_overlap
=
0.7
,
rpn_positive_overlap
=
0.7
,
rpn_negative_overlap
=
0.3
)
rpn_negative_overlap
=
0.3
)
self
.
assertIsNotNone
(
predicted_scores
)
self
.
assertIsNotNone
(
pred_scores
)
self
.
assertIsNotNone
(
predicted_location
)
self
.
assertIsNotNone
(
pred_loc
)
self
.
assertIsNotNone
(
target_label
)
self
.
assertIsNotNone
(
tgt_lbl
)
self
.
assertIsNotNone
(
target_bbox
)
self
.
assertIsNotNone
(
tgt_bbox
)
assert
predicted_scores
.
shape
[
1
]
==
2
assert
pred_scores
.
shape
[
1
]
==
1
assert
predicted_location
.
shape
[
1
]
==
4
assert
pred_loc
.
shape
[
1
]
==
4
assert
predicted_location
.
shape
[
1
]
==
target_bbox
.
shape
[
1
]
assert
pred_loc
.
shape
[
1
]
==
tgt_bbox
.
shape
[
1
]
print
(
str
(
program
))
class
TestGenerateProposals
(
unittest
.
TestCase
):
class
TestGenerateProposals
(
unittest
.
TestCase
):
...
...
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
浏览文件 @
6e2e0ec8
...
@@ -37,7 +37,7 @@ def fusion_gru(
...
@@ -37,7 +37,7 @@ def fusion_gru(
h0
,
h0
,
wh
,
wh
,
np
.
zeros
(
np
.
zeros
(
(
1
,
wh
.
shape
[
1
]),
dtype
=
'float
64
'
),
(
1
,
wh
.
shape
[
1
]),
dtype
=
'float
32
'
),
is_reverse
,
is_reverse
,
act_state
,
act_state
,
act_gate
)
act_gate
)
...
@@ -62,15 +62,15 @@ class TestFusionGRUOp(OpTest):
...
@@ -62,15 +62,15 @@ class TestFusionGRUOp(OpTest):
T
=
sum
(
self
.
lod
[
0
])
T
=
sum
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
N
=
len
(
self
.
lod
[
0
])
x
=
np
.
random
.
rand
(
T
,
self
.
M
).
astype
(
'float
64
'
)
x
=
np
.
random
.
rand
(
T
,
self
.
M
).
astype
(
'float
32
'
)
wx
=
np
.
random
.
rand
(
self
.
M
,
3
*
self
.
D
).
astype
(
'float
64
'
)
wx
=
np
.
random
.
rand
(
self
.
M
,
3
*
self
.
D
).
astype
(
'float
32
'
)
wh
=
np
.
random
.
rand
(
self
.
D
,
3
*
self
.
D
).
astype
(
'float
64
'
)
wh
=
np
.
random
.
rand
(
self
.
D
,
3
*
self
.
D
).
astype
(
'float
32
'
)
bias
=
np
.
random
.
rand
(
bias
=
np
.
random
.
rand
(
1
,
3
*
self
.
D
).
astype
(
'float
64
'
)
if
self
.
with_bias
else
np
.
zeros
(
1
,
3
*
self
.
D
).
astype
(
'float
32
'
)
if
self
.
with_bias
else
np
.
zeros
(
(
1
,
3
*
self
.
D
),
dtype
=
'float
64
'
)
(
1
,
3
*
self
.
D
),
dtype
=
'float
32
'
)
h0
=
np
.
random
.
rand
(
h0
=
np
.
random
.
rand
(
N
,
self
.
D
).
astype
(
'float
64
'
)
if
self
.
with_h0
else
np
.
zeros
(
N
,
self
.
D
).
astype
(
'float
32
'
)
if
self
.
with_h0
else
np
.
zeros
(
(
N
,
self
.
D
),
dtype
=
'float
64
'
)
(
N
,
self
.
D
),
dtype
=
'float
32
'
)
_
,
_
,
_
,
hidden
=
fusion_gru
(
_
,
_
,
_
,
hidden
=
fusion_gru
(
x
,
self
.
lod
,
h0
,
wx
,
wh
,
bias
,
self
.
is_reverse
,
x
,
self
.
lod
,
h0
,
wx
,
wh
,
bias
,
self
.
is_reverse
,
...
@@ -93,7 +93,9 @@ class TestFusionGRUOp(OpTest):
...
@@ -93,7 +93,9 @@ class TestFusionGRUOp(OpTest):
}
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
(
atol
=
1e-8
)
for
use_seq
in
{
True
,
False
}:
self
.
attrs
[
'use_seq'
]
=
use_seq
self
.
check_output
()
class
TestFusionGRUOpNoInitial
(
TestFusionGRUOp
):
class
TestFusionGRUOpNoInitial
(
TestFusionGRUOp
):
...
...
python/paddle/fluid/tests/unittests/test_fusion_lstm_op.py
浏览文件 @
6e2e0ec8
...
@@ -114,7 +114,9 @@ class TestFusionLSTMOp(OpTest):
...
@@ -114,7 +114,9 @@ class TestFusionLSTMOp(OpTest):
}
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
for
use_seq
in
{
True
,
False
}:
self
.
attrs
[
'use_seq'
]
=
use_seq
self
.
check_output
()
class
TestFusionLSTMOpInit
(
TestFusionLSTMOp
):
class
TestFusionLSTMOpInit
(
TestFusionLSTMOp
):
...
...
python/paddle/fluid/tests/unittests/test_generate_proposal_labels.py
浏览文件 @
6e2e0ec8
...
@@ -177,8 +177,8 @@ def _box_to_delta(ex_boxes, gt_boxes, weights):
...
@@ -177,8 +177,8 @@ def _box_to_delta(ex_boxes, gt_boxes, weights):
dx
=
(
gt_ctr_x
-
ex_ctr_x
)
/
ex_w
/
weights
[
0
]
dx
=
(
gt_ctr_x
-
ex_ctr_x
)
/
ex_w
/
weights
[
0
]
dy
=
(
gt_ctr_y
-
ex_ctr_y
)
/
ex_h
/
weights
[
1
]
dy
=
(
gt_ctr_y
-
ex_ctr_y
)
/
ex_h
/
weights
[
1
]
dw
=
(
np
.
log
(
gt_w
/
ex_w
))
/
ex_w
/
weights
[
2
]
dw
=
(
np
.
log
(
gt_w
/
ex_w
))
/
weights
[
2
]
dh
=
(
np
.
log
(
gt_h
/
ex_h
))
/
ex_h
/
weights
[
3
]
dh
=
(
np
.
log
(
gt_h
/
ex_h
))
/
weights
[
3
]
targets
=
np
.
vstack
([
dx
,
dy
,
dw
,
dh
]).
transpose
()
targets
=
np
.
vstack
([
dx
,
dy
,
dw
,
dh
]).
transpose
()
return
targets
return
targets
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
6e2e0ec8
...
@@ -549,6 +549,13 @@ class TestBook(unittest.TestCase):
...
@@ -549,6 +549,13 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
out
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
print
(
str
(
program
))
def
test_sequence_enumerate
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
"input"
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
out
=
layers
.
sequence_enumerate
(
input
=
x
,
win_size
=
2
,
pad_value
=
0
)
print
(
str
(
program
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_roi_pool_op.py
浏览文件 @
6e2e0ec8
...
@@ -61,7 +61,7 @@ class TestROIPoolOp(OpTest):
...
@@ -61,7 +61,7 @@ class TestROIPoolOp(OpTest):
for
i
in
range
(
self
.
rois_num
):
for
i
in
range
(
self
.
rois_num
):
roi
=
self
.
rois
[
i
]
roi
=
self
.
rois
[
i
]
roi_batch_id
=
roi
[
0
]
roi_batch_id
=
int
(
roi
[
0
])
roi_start_w
=
int
(
cpt
.
round
(
roi
[
1
]
*
self
.
spatial_scale
))
roi_start_w
=
int
(
cpt
.
round
(
roi
[
1
]
*
self
.
spatial_scale
))
roi_start_h
=
int
(
cpt
.
round
(
roi
[
2
]
*
self
.
spatial_scale
))
roi_start_h
=
int
(
cpt
.
round
(
roi
[
2
]
*
self
.
spatial_scale
))
roi_end_w
=
int
(
cpt
.
round
(
roi
[
3
]
*
self
.
spatial_scale
))
roi_end_w
=
int
(
cpt
.
round
(
roi
[
3
]
*
self
.
spatial_scale
))
...
@@ -125,7 +125,7 @@ class TestROIPoolOp(OpTest):
...
@@ -125,7 +125,7 @@ class TestROIPoolOp(OpTest):
roi
=
[
bno
,
x1
,
y1
,
x2
,
y2
]
roi
=
[
bno
,
x1
,
y1
,
x2
,
y2
]
rois
.
append
(
roi
)
rois
.
append
(
roi
)
self
.
rois_num
=
len
(
rois
)
self
.
rois_num
=
len
(
rois
)
self
.
rois
=
np
.
array
(
rois
).
astype
(
"
int64
"
)
self
.
rois
=
np
.
array
(
rois
).
astype
(
"
float32
"
)
def
setUp
(
self
):
def
setUp
(
self
):
self
.
op_type
=
"roi_pool"
self
.
op_type
=
"roi_pool"
...
...
python/paddle/fluid/tests/unittests/test_rpn_target_assign_op.py
浏览文件 @
6e2e0ec8
...
@@ -18,12 +18,17 @@ import unittest
...
@@ -18,12 +18,17 @@ import unittest
import
numpy
as
np
import
numpy
as
np
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
op_test
import
OpTest
from
test_anchor_generator_op
import
anchor_generator_in_python
from
test_generate_proposal_labels
import
_generate_groundtruth
from
test_generate_proposal_labels
import
_bbox_overlaps
,
_box_to_delta
def
rpn_target_assign
(
iou
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
def
rpn_target_assign
(
gt_anchor_iou
,
rpn_batch_size_per_im
,
rpn_negative_overlap
,
fg_fraction
):
rpn_
positive_overlap
,
rpn_
negative_overlap
,
fg_fraction
):
iou
=
np
.
transpose
(
iou
)
iou
=
np
.
transpose
(
gt_anchor_
iou
)
anchor_to_gt_max
=
iou
.
max
(
axis
=
1
)
anchor_to_gt_max
=
iou
.
max
(
axis
=
1
)
anchor_to_gt_argmax
=
iou
.
argmax
(
axis
=
1
)
gt_to_anchor_argmax
=
iou
.
argmax
(
axis
=
0
)
gt_to_anchor_argmax
=
iou
.
argmax
(
axis
=
0
)
gt_to_anchor_max
=
iou
[
gt_to_anchor_argmax
,
np
.
arange
(
iou
.
shape
[
1
])]
gt_to_anchor_max
=
iou
[
gt_to_anchor_argmax
,
np
.
arange
(
iou
.
shape
[
1
])]
anchors_with_max_overlap
=
np
.
where
(
iou
==
gt_to_anchor_max
)[
0
]
anchors_with_max_overlap
=
np
.
where
(
iou
==
gt_to_anchor_max
)[
0
]
...
@@ -42,59 +47,113 @@ def rpn_target_assign(iou, rpn_batch_size_per_im, rpn_positive_overlap,
...
@@ -42,59 +47,113 @@ def rpn_target_assign(iou, rpn_batch_size_per_im, rpn_positive_overlap,
num_bg
=
rpn_batch_size_per_im
-
np
.
sum
(
tgt_lbl
==
1
)
num_bg
=
rpn_batch_size_per_im
-
np
.
sum
(
tgt_lbl
==
1
)
bg_inds
=
np
.
where
(
anchor_to_gt_max
<
rpn_negative_overlap
)[
0
]
bg_inds
=
np
.
where
(
anchor_to_gt_max
<
rpn_negative_overlap
)[
0
]
tgt_lbl
[
bg_inds
]
=
0
if
len
(
bg_inds
)
>
num_bg
:
if
len
(
bg_inds
)
>
num_bg
:
enable_inds
=
bg_inds
[
np
.
random
.
randint
(
len
(
bg_inds
),
size
=
num_bg
)]
enable_inds
=
bg_inds
[
np
.
random
.
randint
(
len
(
bg_inds
),
size
=
num_bg
)]
tgt_lbl
[
enable_inds
]
=
0
tgt_lbl
[
enable_inds
]
=
0
bg_inds
=
np
.
where
(
tgt_lbl
==
0
)[
0
]
bg_inds
=
np
.
where
(
tgt_lbl
==
0
)[
0
]
tgt_lbl
[
bg_inds
]
=
0
loc_index
=
fg_inds
loc_index
=
fg_inds
score_index
=
np
.
hstack
((
fg_inds
,
bg_inds
))
score_index
=
np
.
hstack
((
fg_inds
,
bg_inds
))
tgt_lbl
=
np
.
expand_dims
(
tgt_lbl
,
axis
=
1
)
tgt_lbl
=
np
.
expand_dims
(
tgt_lbl
,
axis
=
1
)
return
loc_index
,
score_index
,
tgt_lbl
gt_inds
=
anchor_to_gt_argmax
[
fg_inds
]
return
loc_index
,
score_index
,
tgt_lbl
,
gt_inds
def
get_anchor
(
n
,
c
,
h
,
w
):
input_feat
=
np
.
random
.
random
((
n
,
c
,
h
,
w
)).
astype
(
'float32'
)
anchors
,
_
=
anchor_generator_in_python
(
input_feat
=
input_feat
,
anchor_sizes
=
[
32.
,
64.
],
aspect_ratios
=
[
0.5
,
1.0
],
variances
=
[
1.0
,
1.0
,
1.0
,
1.0
],
stride
=
[
16.0
,
16.0
],
offset
=
0.5
)
return
anchors
def
rpn_blob
(
anchor
,
gt_boxes
,
iou
,
lod
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
fg_fraction
):
loc_indexes
=
[]
score_indexes
=
[]
tmp_tgt_labels
=
[]
tgt_bboxes
=
[]
anchor_num
=
anchor
.
shape
[
0
]
batch_size
=
len
(
lod
)
-
1
for
i
in
range
(
batch_size
):
b
,
e
=
lod
[
i
],
lod
[
i
+
1
]
iou_slice
=
iou
[
b
:
e
,
:]
bboxes_slice
=
gt_boxes
[
b
:
e
,
:]
loc_idx
,
score_idx
,
tgt_lbl
,
gt_inds
=
rpn_target_assign
(
iou_slice
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
fg_fraction
)
fg_bboxes
=
bboxes_slice
[
gt_inds
]
fg_anchors
=
anchor
[
loc_idx
]
box_deltas
=
_box_to_delta
(
fg_anchors
,
fg_bboxes
,
[
1.
,
1.
,
1.
,
1.
])
if
i
==
0
:
loc_indexes
=
loc_idx
score_indexes
=
score_idx
tmp_tgt_labels
=
tgt_lbl
tgt_bboxes
=
box_deltas
else
:
loc_indexes
=
np
.
concatenate
(
[
loc_indexes
,
loc_idx
+
i
*
anchor_num
])
score_indexes
=
np
.
concatenate
(
[
score_indexes
,
score_idx
+
i
*
anchor_num
])
tmp_tgt_labels
=
np
.
concatenate
([
tmp_tgt_labels
,
tgt_lbl
])
tgt_bboxes
=
np
.
vstack
([
tgt_bboxes
,
box_deltas
])
tgt_labels
=
tmp_tgt_labels
[
score_indexes
]
return
loc_indexes
,
score_indexes
,
tgt_bboxes
,
tgt_labels
class
TestRpnTargetAssignOp
(
OpTest
):
class
TestRpnTargetAssignOp
(
OpTest
):
def
setUp
(
self
):
def
setUp
(
self
):
iou
=
np
.
random
.
random
((
10
,
8
)).
astype
(
"float32"
)
n
,
c
,
h
,
w
=
2
,
4
,
14
,
14
self
.
op_type
=
"rpn_target_assign"
anchor
=
get_anchor
(
n
,
c
,
h
,
w
)
self
.
inputs
=
{
'DistMat'
:
iou
}
gt_num
=
10
self
.
attrs
=
{
anchor
=
anchor
.
reshape
(
-
1
,
4
)
'rpn_batch_size_per_im'
:
256
,
anchor_num
=
anchor
.
shape
[
0
]
'rpn_positive_overlap'
:
0.95
,
'rpn_negative_overlap'
:
0.3
,
'fg_fraction'
:
0.25
,
'fix_seed'
:
True
}
loc_index
,
score_index
,
tgt_lbl
=
rpn_target_assign
(
iou
,
256
,
0.95
,
0.3
,
0.25
)
self
.
outputs
=
{
'LocationIndex'
:
loc_index
,
'ScoreIndex'
:
score_index
,
'TargetLabel'
:
tgt_lbl
,
}
def
test_check_output
(
self
):
im_shapes
=
[[
64
,
64
],
[
64
,
64
]]
self
.
check_output
()
gt_box
,
lod
=
_generate_groundtruth
(
im_shapes
,
3
,
4
)
bbox
=
np
.
vstack
([
v
[
'boxes'
]
for
v
in
gt_box
])
iou
=
_bbox_overlaps
(
bbox
,
anchor
)
anchor
=
anchor
.
astype
(
'float32'
)
bbox
=
bbox
.
astype
(
'float32'
)
iou
=
iou
.
astype
(
'float32'
)
loc_index
,
score_index
,
tgt_bbox
,
tgt_lbl
=
rpn_blob
(
anchor
,
bbox
,
iou
,
[
0
,
4
,
8
],
25600
,
0.95
,
0.03
,
0.25
)
class
TestRpnTargetAssignOp2
(
OpTest
):
def
setUp
(
self
):
iou
=
np
.
random
.
random
((
10
,
20
)).
astype
(
"float32"
)
self
.
op_type
=
"rpn_target_assign"
self
.
op_type
=
"rpn_target_assign"
self
.
inputs
=
{
'DistMat'
:
iou
}
self
.
inputs
=
{
'Anchor'
:
anchor
,
'GtBox'
:
(
bbox
,
[[
4
,
4
]]),
'DistMat'
:
(
iou
,
[[
4
,
4
]]),
}
self
.
attrs
=
{
self
.
attrs
=
{
'rpn_batch_size_per_im'
:
128
,
'rpn_batch_size_per_im'
:
25600
,
'rpn_positive_overlap'
:
0.5
,
'rpn_positive_overlap'
:
0.
9
5
,
'rpn_negative_overlap'
:
0.
5
,
'rpn_negative_overlap'
:
0.
03
,
'fg_fraction'
:
0.5
,
'fg_fraction'
:
0.
2
5
,
'fix_seed'
:
True
'fix_seed'
:
True
}
}
loc_index
,
score_index
,
tgt_lbl
=
rpn_target_assign
(
iou
,
128
,
0.5
,
0.5
,
0.5
)
self
.
outputs
=
{
self
.
outputs
=
{
'LocationIndex'
:
loc_index
,
'LocationIndex'
:
loc_index
.
astype
(
'int32'
),
'ScoreIndex'
:
score_index
,
'ScoreIndex'
:
score_index
.
astype
(
'int32'
),
'TargetLabel'
:
tgt_lbl
,
'TargetBBox'
:
tgt_bbox
.
astype
(
'float32'
),
'TargetLabel'
:
tgt_lbl
.
astype
(
'int64'
),
}
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_sequence_enumerate_op.py
0 → 100644
浏览文件 @
6e2e0ec8
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
def
sequence_enumerate
(
input_seq
,
in_lod
,
win_size
,
pad_value
):
lod0
=
[
0
]
for
i
in
range
(
0
,
len
(
in_lod
[
0
])):
lod0
.
append
(
lod0
[
i
]
+
in_lod
[
0
][
i
])
out_seq
=
[]
for
i
in
range
(
0
,
len
(
lod0
)
-
1
):
for
idx
in
range
(
lod0
[
i
],
lod0
[
i
+
1
]):
single_seq
=
[]
for
word_idx
in
range
(
win_size
):
word_pos
=
idx
+
word_idx
dat
=
input_seq
[
word_pos
]
if
word_pos
<
lod0
[
i
+
1
]
\
else
pad_value
single_seq
.
append
(
dat
)
out_seq
.
append
(
single_seq
)
return
out_seq
class
TestSequenceEnumerateOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"sequence_enumerate"
self
.
init_test_case
()
self
.
inputs
=
{
'X'
:
(
self
.
in_seq
,
self
.
lod
)}
self
.
attrs
=
{
'win_size'
:
self
.
win_size
,
'pad_value'
:
self
.
pad_value
}
self
.
outputs
=
{
'Out'
:
(
self
.
out_seq
,
self
.
lod
)}
def
test_check_output
(
self
):
self
.
check_output
()
def
init_test_case
(
self
):
self
.
in_seq
=
np
.
random
.
randint
(
0
,
10
,
(
30
,
1
)).
astype
(
"int32"
)
self
.
lod
=
[[
9
,
4
,
11
,
6
]]
self
.
win_size
=
2
self
.
pad_value
=
0
out_seq
=
sequence_enumerate
(
self
.
in_seq
,
self
.
lod
,
self
.
win_size
,
self
.
pad_value
)
self
.
out_seq
=
np
.
array
(
out_seq
).
astype
(
"int32"
)
class
TesSequenceEnumerateOpInt64
(
TestSequenceEnumerateOp
):
def
init_test_case
(
self
):
self
.
in_seq
=
np
.
random
.
randint
(
0
,
10
,
(
30
,
1
)).
astype
(
"int64"
)
self
.
lod
=
[[
9
,
4
,
11
,
6
]]
self
.
win_size
=
2
self
.
pad_value
=
0
out_seq
=
sequence_enumerate
(
self
.
in_seq
,
self
.
lod
,
self
.
win_size
,
self
.
pad_value
)
self
.
out_seq
=
np
.
array
(
out_seq
).
astype
(
"int64"
)
class
TestSequenceEnumerateOpLargeWinSize
(
TestSequenceEnumerateOp
):
def
init_test_case
(
self
):
self
.
in_seq
=
np
.
random
.
randint
(
0
,
10
,
(
30
,
1
)).
astype
(
"int32"
)
self
.
lod
=
[[
9
,
4
,
11
,
6
]]
self
.
win_size
=
5
self
.
pad_value
=
0
out_seq
=
sequence_enumerate
(
self
.
in_seq
,
self
.
lod
,
self
.
win_size
,
self
.
pad_value
)
self
.
out_seq
=
np
.
array
(
out_seq
).
astype
(
"int32"
)
class
TestSequenceEnumerateOpMaxWinSize
(
TestSequenceEnumerateOp
):
def
init_test_case
(
self
):
self
.
in_seq
=
np
.
random
.
randint
(
0
,
10
,
(
30
,
1
)).
astype
(
"int32"
)
self
.
lod
=
[[
9
,
4
,
11
,
6
]]
self
.
win_size
=
30
self
.
pad_value
=
0
out_seq
=
sequence_enumerate
(
self
.
in_seq
,
self
.
lod
,
self
.
win_size
,
self
.
pad_value
)
self
.
out_seq
=
np
.
array
(
out_seq
).
astype
(
"int32"
)
class
TestSequenceEnumerateOpLargePadValue
(
TestSequenceEnumerateOp
):
def
init_test_case
(
self
):
self
.
in_seq
=
np
.
random
.
randint
(
0
,
10
,
(
30
,
1
)).
astype
(
"int32"
)
self
.
lod
=
[[
9
,
4
,
11
,
6
]]
self
.
win_size
=
5
self
.
pad_value
=
5
out_seq
=
sequence_enumerate
(
self
.
in_seq
,
self
.
lod
,
self
.
win_size
,
self
.
pad_value
)
self
.
out_seq
=
np
.
array
(
out_seq
).
astype
(
"int32"
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
6e2e0ec8
...
@@ -1096,7 +1096,8 @@ class DistributeTranspiler(object):
...
@@ -1096,7 +1096,8 @@ class DistributeTranspiler(object):
self
.
table_name
]
self
.
table_name
]
zero_dim
=
int
(
zero_dim
=
int
(
math
.
ceil
(
origin_param_var
.
shape
[
0
]
/
len
(
self
.
pserver_endpoints
)))
math
.
ceil
(
origin_param_var
.
shape
[
0
]
/
float
(
len
(
self
.
pserver_endpoints
))))
table_shape
=
list
(
origin_param_var
.
shape
)
table_shape
=
list
(
origin_param_var
.
shape
)
table_shape
[
0
]
=
zero_dim
table_shape
[
0
]
=
zero_dim
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录