Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
6dd13152
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6dd13152
编写于
8月 30, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
8月 30, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Move prior_box, softmax and softmax_grad kernel to phi, test=kunlun (#45510)
上级
6fc15986
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
247 addition
and
268 deletion
+247
-268
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+1
-1
paddle/fluid/operators/detection/prior_box_op_xpu.cc
paddle/fluid/operators/detection/prior_box_op_xpu.cc
+0
-117
paddle/fluid/operators/softmax_op_xpu.cc
paddle/fluid/operators/softmax_op_xpu.cc
+0
-150
paddle/phi/kernels/xpu/prior_box_kernel.cc
paddle/phi/kernels/xpu/prior_box_kernel.cc
+112
-0
paddle/phi/kernels/xpu/softmax_grad_kernel.cc
paddle/phi/kernels/xpu/softmax_grad_kernel.cc
+60
-0
paddle/phi/kernels/xpu/softmax_kernel.cc
paddle/phi/kernels/xpu/softmax_kernel.cc
+74
-0
未找到文件。
paddle/fluid/operators/detection/CMakeLists.txt
浏览文件 @
6dd13152
...
@@ -41,7 +41,7 @@ endif()
...
@@ -41,7 +41,7 @@ endif()
if
(
WITH_XPU
)
if
(
WITH_XPU
)
detection_library
(
iou_similarity_op SRCS iou_similarity_op.cc
detection_library
(
iou_similarity_op SRCS iou_similarity_op.cc
iou_similarity_op_xpu.cc
)
iou_similarity_op_xpu.cc
)
detection_library
(
prior_box_op SRCS prior_box_op.cc
prior_box_op_xpu.cc
)
detection_library
(
prior_box_op SRCS prior_box_op.cc
)
detection_library
(
generate_proposals_v2_op SRCS generate_proposals_v2_op.cc
)
detection_library
(
generate_proposals_v2_op SRCS generate_proposals_v2_op.cc
)
elseif
(
WITH_MLU
)
elseif
(
WITH_MLU
)
detection_library
(
iou_similarity_op SRCS iou_similarity_op.cc
detection_library
(
iou_similarity_op SRCS iou_similarity_op.cc
...
...
paddle/fluid/operators/detection/prior_box_op_xpu.cc
已删除
100644 → 0
浏览文件 @
6fc15986
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/detection/prior_box_op.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
,
typename
K
>
class
PriorBoxOpXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
paddle
::
framework
::
Tensor
>
(
"Input"
);
auto
*
image
=
ctx
.
Input
<
paddle
::
framework
::
Tensor
>
(
"Image"
);
auto
*
boxes
=
ctx
.
Output
<
paddle
::
framework
::
Tensor
>
(
"Boxes"
);
auto
*
vars
=
ctx
.
Output
<
paddle
::
framework
::
Tensor
>
(
"Variances"
);
auto
min_sizes
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"min_sizes"
);
auto
max_sizes
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"max_sizes"
);
auto
input_aspect_ratio
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"aspect_ratios"
);
auto
variances
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"variances"
);
auto
flip
=
ctx
.
Attr
<
bool
>
(
"flip"
);
auto
clip
=
ctx
.
Attr
<
bool
>
(
"clip"
);
auto
min_max_aspect_ratios_order
=
ctx
.
Attr
<
bool
>
(
"min_max_aspect_ratios_order"
);
std
::
vector
<
float
>
aspect_ratios
;
ExpandAspectRatios
(
input_aspect_ratio
,
flip
,
&
aspect_ratios
);
K
step_w
=
static_cast
<
K
>
(
ctx
.
Attr
<
float
>
(
"step_w"
));
K
step_h
=
static_cast
<
K
>
(
ctx
.
Attr
<
float
>
(
"step_h"
));
K
offset
=
static_cast
<
K
>
(
ctx
.
Attr
<
float
>
(
"offset"
));
auto
img_width
=
image
->
dims
()[
3
];
auto
img_height
=
image
->
dims
()[
2
];
auto
feature_width
=
input
->
dims
()[
3
];
auto
feature_height
=
input
->
dims
()[
2
];
K
step_width
,
step_height
;
if
(
step_w
==
0
||
step_h
==
0
)
{
step_width
=
static_cast
<
K
>
(
img_width
)
/
feature_width
;
step_height
=
static_cast
<
K
>
(
img_height
)
/
feature_height
;
}
else
{
step_width
=
step_w
;
step_height
=
step_h
;
}
int
num_priors
=
aspect_ratios
.
size
()
*
min_sizes
.
size
();
if
(
max_sizes
.
size
()
>
0
)
{
num_priors
+=
max_sizes
.
size
();
}
boxes
->
mutable_data
<
K
>
(
ctx
.
GetPlace
());
vars
->
mutable_data
<
K
>
(
ctx
.
GetPlace
());
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
XPUDeviceContext
>();
auto
boxes_data
=
boxes
->
data
<
K
>
();
auto
vars_data
=
vars
->
data
<
K
>
();
xpu
::
VectorParam
<
float
>
aspect_ratios_param
{
aspect_ratios
.
data
(),
static_cast
<
int
>
(
aspect_ratios
.
size
()),
nullptr
};
xpu
::
VectorParam
<
float
>
min_sizes_param
{
min_sizes
.
data
(),
static_cast
<
int
>
(
min_sizes
.
size
()),
nullptr
};
xpu
::
VectorParam
<
float
>
max_sizes_param
{
max_sizes
.
data
(),
static_cast
<
int
>
(
max_sizes
.
size
()),
nullptr
};
int
ret
=
xpu
::
gen_prior_box
(
dev_ctx
.
x_context
(),
boxes_data
,
aspect_ratios_param
,
min_sizes_param
,
max_sizes_param
,
feature_height
,
feature_width
,
img_height
,
img_width
,
offset
,
step_height
,
step_width
,
clip
,
min_max_aspect_ratios_order
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"gen_prior_box"
);
int
box_num
=
feature_height
*
feature_width
*
num_priors
;
int
vlen
=
variances
.
size
();
std
::
vector
<
K
>
var_cpu
(
vlen
*
box_num
);
for
(
int
i
=
0
;
i
<
box_num
;
++
i
)
{
std
::
copy
(
variances
.
begin
(),
variances
.
end
(),
var_cpu
.
begin
()
+
i
*
vlen
);
}
ret
=
xpu_memcpy
(
vars_data
,
var_cpu
.
data
(),
var_cpu
.
size
()
*
sizeof
(
K
),
XPUMemcpyKind
::
XPU_HOST_TO_DEVICE
);
PADDLE_ENFORCE_XPU_SUCCESS
(
ret
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
prior_box
,
ops
::
PriorBoxOpXPUKernel
<
float
,
float
>
);
#endif
paddle/fluid/operators/softmax_op_xpu.cc
已删除
100644 → 0
浏览文件 @
6fc15986
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
DDim
=
framework
::
DDim
;
template
<
typename
DeviceContext
,
typename
T
>
class
SoftmaxXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
const
int
rank
=
x
->
dims
().
size
();
int
axis
=
phi
::
funcs
::
CanonicalAxis
(
context
.
Attr
<
int
>
(
"axis"
),
rank
);
// allocate memory on device.
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
int
>
x_dims
;
for
(
int
i
=
0
;
i
<
rank
;
i
++
)
{
x_dims
.
push_back
(
x
->
dims
()[
i
]);
}
if
(
axis
<
0
)
{
axis
+=
rank
;
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
XPU_SUCCESS
;
auto
version
=
platform
::
get_xpu_version
(
context
.
GetPlace
().
GetDeviceId
());
if
(
version
==
phi
::
backends
::
xpu
::
XPUVersion
::
XPU1
)
{
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
XPUType
*
clip_x_data_l3
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
x
->
numel
());
r
=
xpu
::
clip_v2
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x
->
data
<
T
>
()),
clip_x_data_l3
,
x
->
numel
(),
static_cast
<
XPUType
>
(
-
1e20
),
static_cast
<
XPUType
>
(
1e20
));
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(clip_v2) return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
softmax
<
XPUType
>
(
dev_ctx
.
x_context
(),
clip_x_data_l3
,
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
x_dims
,
axis
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(softmax2d_forward) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
else
{
r
=
xpu
::
softmax
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
x_dims
,
axis
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(softmax2d_forward) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SoftmaxGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
dout
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
const
int
rank
=
dx
->
dims
().
size
();
int
axis
=
phi
::
funcs
::
CanonicalAxis
(
context
.
Attr
<
int
>
(
"axis"
),
rank
);
// allocate memory on device.
dx
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
vector
<
int
>
x_dims
;
for
(
int
i
=
0
;
i
<
rank
;
i
++
)
{
x_dims
.
push_back
(
dx
->
dims
()[
i
]);
}
if
(
axis
<
0
)
{
axis
+=
rank
;
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
softmax_grad
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
dout
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
dx
->
data
<
T
>
()),
x_dims
,
axis
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(softmax2d_backward) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
softmax
,
ops
::
SoftmaxXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
SoftmaxXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
softmax_grad
,
ops
::
SoftmaxGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
SoftmaxGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif // PADDLE_WITH_XPU
paddle/phi/kernels/xpu/prior_box_kernel.cc
0 → 100644
浏览文件 @
6dd13152
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/prior_box_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
PriorBoxKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
image
,
const
std
::
vector
<
float
>&
min_sizes
,
const
std
::
vector
<
float
>&
aspect_ratios
,
const
std
::
vector
<
float
>&
variances
,
const
std
::
vector
<
float
>&
max_sizes
,
bool
flip
,
bool
clip
,
float
step_w
,
float
step_h
,
float
offset
,
bool
min_max_aspect_ratios_order
,
DenseTensor
*
out
,
DenseTensor
*
var
)
{
std
::
vector
<
float
>
new_aspect_ratios
;
ExpandAspectRatios
(
aspect_ratios
,
flip
,
&
new_aspect_ratios
);
T
new_step_w
=
static_cast
<
T
>
(
step_w
);
T
new_step_h
=
static_cast
<
T
>
(
step_h
);
T
new_offset
=
static_cast
<
T
>
(
offset
);
auto
img_width
=
image
.
dims
()[
3
];
auto
img_height
=
image
.
dims
()[
2
];
auto
feature_width
=
input
.
dims
()[
3
];
auto
feature_height
=
input
.
dims
()[
2
];
T
step_width
,
step_height
;
if
(
new_step_w
==
0
||
new_step_h
==
0
)
{
step_width
=
static_cast
<
T
>
(
img_width
)
/
feature_width
;
step_height
=
static_cast
<
T
>
(
img_height
)
/
feature_height
;
}
else
{
step_width
=
new_step_w
;
step_height
=
new_step_h
;
}
int
num_priors
=
new_aspect_ratios
.
size
()
*
min_sizes
.
size
();
if
(
max_sizes
.
size
()
>
0
)
{
num_priors
+=
max_sizes
.
size
();
}
ctx
.
template
Alloc
<
T
>(
out
);
ctx
.
template
Alloc
<
T
>(
var
);
auto
boxes_data
=
out
->
data
<
T
>
();
auto
var_data
=
var
->
data
<
T
>
();
xpu
::
VectorParam
<
float
>
aspect_ratios_param
{
new_aspect_ratios
.
data
(),
static_cast
<
int
>
(
new_aspect_ratios
.
size
()),
nullptr
};
xpu
::
VectorParam
<
float
>
min_sizes_param
{
min_sizes
.
data
(),
static_cast
<
int
>
(
min_sizes
.
size
()),
nullptr
};
xpu
::
VectorParam
<
float
>
max_sizes_param
{
max_sizes
.
data
(),
static_cast
<
int
>
(
max_sizes
.
size
()),
nullptr
};
int
ret
=
xpu
::
gen_prior_box
(
ctx
.
x_context
(),
boxes_data
,
aspect_ratios_param
,
min_sizes_param
,
max_sizes_param
,
feature_height
,
feature_width
,
img_height
,
img_width
,
new_offset
,
step_height
,
step_width
,
clip
,
min_max_aspect_ratios_order
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"gen_prior_box"
);
int
box_num
=
feature_height
*
feature_width
*
num_priors
;
int
vlen
=
variances
.
size
();
std
::
vector
<
T
>
var_cpu
(
vlen
*
box_num
);
for
(
int
i
=
0
;
i
<
box_num
;
++
i
)
{
std
::
copy
(
variances
.
begin
(),
variances
.
end
(),
var_cpu
.
begin
()
+
i
*
vlen
);
}
ctx
.
Wait
();
ret
=
xpu_memcpy
(
var_data
,
var_cpu
.
data
(),
var_cpu
.
size
()
*
sizeof
(
T
),
XPUMemcpyKind
::
XPU_HOST_TO_DEVICE
);
PADDLE_ENFORCE_XPU_SUCCESS
(
ret
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
prior_box
,
XPU
,
ALL_LAYOUT
,
phi
::
PriorBoxKernel
,
float
)
{}
paddle/phi/kernels/xpu/softmax_grad_kernel.cc
0 → 100644
浏览文件 @
6dd13152
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/softmax_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SoftmaxGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
out
,
const
DenseTensor
&
out_grad
,
int
axis
,
DenseTensor
*
x_grad
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
const
int
rank
=
x_grad
->
dims
().
size
();
const
int
calc_axis
=
phi
::
funcs
::
CanonicalAxis
(
axis
,
rank
);
// allocate memory on device.
dev_ctx
.
template
Alloc
<
T
>(
x_grad
);
if
(
x_grad
->
numel
()
==
0
)
{
return
;
}
std
::
vector
<
int
>
x_dims
;
for
(
int
i
=
0
;
i
<
rank
;
i
++
)
{
x_dims
.
push_back
(
x_grad
->
dims
()[
i
]);
}
int
r
=
xpu
::
softmax_grad
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out
.
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
out_grad
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
x_grad
->
data
<
T
>
()),
x_dims
,
calc_axis
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"softmax_grad"
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
softmax_grad
,
XPU
,
ALL_LAYOUT
,
phi
::
SoftmaxGradKernel
,
float
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/xpu/softmax_kernel.cc
0 → 100644
浏览文件 @
6dd13152
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/softmax_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SoftmaxKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
int
axis
,
DenseTensor
*
out
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
const
int
rank
=
x
.
dims
().
size
();
const
int
calc_axis
=
phi
::
funcs
::
CanonicalAxis
(
axis
,
rank
);
// allocate memory on device.
dev_ctx
.
template
Alloc
<
T
>(
out
);
if
(
out
->
numel
()
==
0
)
{
return
;
}
std
::
vector
<
int
>
x_dims
;
for
(
int
i
=
0
;
i
<
rank
;
i
++
)
{
x_dims
.
push_back
(
x
.
dims
()[
i
]);
}
int
r
=
XPU_SUCCESS
;
auto
version
=
phi
::
backends
::
xpu
::
get_xpu_version
(
dev_ctx
.
GetPlace
().
GetDeviceId
());
if
(
version
==
phi
::
backends
::
xpu
::
XPUVersion
::
XPU1
)
{
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
XPUType
*
clip_x_data_l3
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
x
.
numel
());
r
=
xpu
::
clip_v2
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x
.
data
<
T
>
()),
clip_x_data_l3
,
x
.
numel
(),
static_cast
<
XPUType
>
(
-
1e20
),
static_cast
<
XPUType
>
(
1e20
));
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"clip_v2"
);
r
=
xpu
::
softmax
<
XPUType
>
(
dev_ctx
.
x_context
(),
clip_x_data_l3
,
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
x_dims
,
calc_axis
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"softmax"
);
}
else
{
r
=
xpu
::
softmax
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
x_dims
,
calc_axis
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"softmax"
);
}
}
}
// namespace phi
PD_REGISTER_KERNEL
(
softmax
,
XPU
,
ALL_LAYOUT
,
phi
::
SoftmaxKernel
,
float
,
phi
::
dtype
::
float16
)
{}
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录