Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
6d5e582d
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6d5e582d
编写于
5月 02, 2018
作者:
H
Helin Wang
提交者:
GitHub
5月 02, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #10343 from reyoung/feature/new_api_train_impl
A naive implement trainer.train by executor
上级
753ea15d
1bb579a3
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
325 addition
and
22 deletion
+325
-22
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+1
-2
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+3
-3
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+2
-1
python/paddle/fluid/tests/book/word2vec/no_test_word2vec_new_api.py
...dle/fluid/tests/book/word2vec/no_test_word2vec_new_api.py
+147
-0
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+172
-16
未找到文件。
python/paddle/fluid/__init__.py
浏览文件 @
6d5e582d
...
@@ -21,8 +21,7 @@ import executor
...
@@ -21,8 +21,7 @@ import executor
from
executor
import
*
from
executor
import
*
import
trainer
import
trainer
from
trainer
import
Trainer
from
trainer
import
*
from
trainer
import
Event
import
inferencer
import
inferencer
from
inferencer
import
Inferencer
from
inferencer
import
Inferencer
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
6d5e582d
...
@@ -50,8 +50,6 @@ def data(name,
...
@@ -50,8 +50,6 @@ def data(name,
dtype(int|float): The type of data : float32, float_16, int etc
dtype(int|float): The type of data : float32, float_16, int etc
type(VarType): The output type. By default it is LOD_TENSOR.
type(VarType): The output type. By default it is LOD_TENSOR.
lod_level(int): The LoD Level. 0 means the input data is not a sequence.
lod_level(int): The LoD Level. 0 means the input data is not a sequence.
main_program(Program): Name of the main program that calls this
startup_program(Program): Name of the startup program
stop_gradient(bool): A boolean that mentions whether gradient should flow.
stop_gradient(bool): A boolean that mentions whether gradient should flow.
Returns:
Returns:
...
@@ -74,13 +72,15 @@ def data(name,
...
@@ -74,13 +72,15 @@ def data(name,
if
append_batch_size
:
if
append_batch_size
:
shape
=
[
-
1
]
+
shape
# append batch size as -1
shape
=
[
-
1
]
+
shape
# append batch size as -1
return
helper
.
create_global_variable
(
data_var
=
helper
.
create_global_variable
(
name
=
name
,
name
=
name
,
shape
=
shape
,
shape
=
shape
,
dtype
=
dtype
,
dtype
=
dtype
,
type
=
type
,
type
=
type
,
stop_gradient
=
stop_gradient
,
stop_gradient
=
stop_gradient
,
lod_level
=
lod_level
)
lod_level
=
lod_level
)
data_var
.
is_data
=
True
return
data_var
class
BlockGuardServ
(
BlockGuard
):
class
BlockGuardServ
(
BlockGuard
):
...
...
python/paddle/fluid/optimizer.py
浏览文件 @
6d5e582d
...
@@ -28,7 +28,8 @@ from contextlib import contextmanager
...
@@ -28,7 +28,8 @@ from contextlib import contextmanager
__all__
=
[
__all__
=
[
'SGD'
,
'Momentum'
,
'Adagrad'
,
'Adam'
,
'Adamax'
,
'DecayedAdagrad'
,
'SGD'
,
'Momentum'
,
'Adagrad'
,
'Adam'
,
'Adamax'
,
'DecayedAdagrad'
,
'SGDOptimizer'
,
'MomentumOptimizer'
,
'AdagradOptimizer'
,
'AdamOptimizer'
,
'SGDOptimizer'
,
'MomentumOptimizer'
,
'AdagradOptimizer'
,
'AdamOptimizer'
,
'AdamaxOptimizer'
,
'DecayedAdagradOptimizer'
,
'Adadelta'
,
'ModelAverage'
'AdamaxOptimizer'
,
'DecayedAdagradOptimizer'
,
'Adadelta'
,
'ModelAverage'
,
'Optimizer'
]
]
...
...
python/paddle/fluid/tests/book/word2vec/no_test_word2vec_new_api.py
0 → 100644
浏览文件 @
6d5e582d
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.fluid
as
fluid
import
numpy
as
np
import
math
import
sys
from
functools
import
partial
PASS_NUM
=
100
EMBED_SIZE
=
32
HIDDEN_SIZE
=
256
N
=
5
BATCH_SIZE
=
32
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
# The range of data elements is [low, high]
data
=
np
.
random
.
random_integers
(
low
,
high
,
[
lod
[
-
1
],
1
]).
astype
(
"int64"
)
res
=
fluid
.
LoDTensor
()
res
.
set
(
data
,
place
)
res
.
set_lod
([
lod
])
return
res
word_dict
=
paddle
.
dataset
.
imikolov
.
build_dict
()
dict_size
=
len
(
word_dict
)
def
inference_network
(
is_sparse
):
first_word
=
fluid
.
layers
.
data
(
name
=
'firstw'
,
shape
=
[
1
],
dtype
=
'int64'
)
second_word
=
fluid
.
layers
.
data
(
name
=
'secondw'
,
shape
=
[
1
],
dtype
=
'int64'
)
third_word
=
fluid
.
layers
.
data
(
name
=
'thirdw'
,
shape
=
[
1
],
dtype
=
'int64'
)
forth_word
=
fluid
.
layers
.
data
(
name
=
'forthw'
,
shape
=
[
1
],
dtype
=
'int64'
)
embed_first
=
fluid
.
layers
.
embedding
(
input
=
first_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
'shared_w'
)
embed_second
=
fluid
.
layers
.
embedding
(
input
=
second_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
'shared_w'
)
embed_third
=
fluid
.
layers
.
embedding
(
input
=
third_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
'shared_w'
)
embed_forth
=
fluid
.
layers
.
embedding
(
input
=
forth_word
,
size
=
[
dict_size
,
EMBED_SIZE
],
dtype
=
'float32'
,
is_sparse
=
is_sparse
,
param_attr
=
'shared_w'
)
concat_embed
=
fluid
.
layers
.
concat
(
input
=
[
embed_first
,
embed_second
,
embed_third
,
embed_forth
],
axis
=
1
)
hidden1
=
fluid
.
layers
.
fc
(
input
=
concat_embed
,
size
=
HIDDEN_SIZE
,
act
=
'sigmoid'
)
predict_word
=
fluid
.
layers
.
fc
(
input
=
hidden1
,
size
=
dict_size
,
act
=
'softmax'
)
return
predict_word
def
train_network
(
is_sparse
):
next_word
=
fluid
.
layers
.
data
(
name
=
'nextw'
,
shape
=
[
1
],
dtype
=
'int64'
)
predict_word
=
inference_network
(
is_sparse
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict_word
,
label
=
next_word
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
return
avg_cost
def
train
(
use_cuda
,
is_sparse
,
save_path
):
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imikolov
.
train
(
word_dict
,
N
),
BATCH_SIZE
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
def
event_handler
(
event
):
print
type
(
event
)
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
avg_cost
=
trainer
.
test
(
reader
=
paddle
.
dataset
.
imikolov
.
test
(
word_dict
,
N
))
if
avg_cost
<
5.0
:
trainer
.
params
.
save
(
save_path
)
return
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
trainer
=
fluid
.
Trainer
(
partial
(
train_network
,
is_sparse
),
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
),
place
=
place
)
trainer
.
train
(
reader
=
train_reader
,
num_epochs
=
100
,
event_handler
=
event_handler
)
def
infer
(
use_cuda
,
save_path
):
params
=
fluid
.
Params
(
save_path
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
inference_network
,
params
,
place
=
place
)
lod
=
[
0
,
1
]
first_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
second_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
third_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
fourth_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
result
=
inferencer
.
infer
({
'firstw'
:
first_word
,
'secondw'
:
second_word
,
'thirdw'
:
third_word
,
'forthw'
:
fourth_word
})
print
(
result
)
def
main
(
use_cuda
,
is_sparse
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
save_path
=
"word2vec.inference.model"
train
(
use_cuda
,
is_sparse
,
save_path
)
infer
(
use_cuda
,
save_path
)
if
__name__
==
'__main__'
:
for
use_cuda
in
(
False
,
True
):
for
is_sparse
in
(
False
,
True
):
main
(
use_cuda
=
use_cuda
,
is_sparse
=
is_sparse
)
python/paddle/fluid/trainer.py
浏览文件 @
6d5e582d
...
@@ -12,44 +12,200 @@
...
@@ -12,44 +12,200 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
core
import
framework
import
executor
import
data_feeder
import
contextlib
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import
optimizer
as
opt_module
__all__
=
[
__all__
=
[
'Event'
,
'Trainer'
,
'Trainer'
,
'BeginEpochEvent'
,
'EndEpochEvent'
,
'BeginStepEvent'
,
'EndStepEvent'
,
]
]
class
Event
(
object
):
class
BeginEpochEvent
(
object
):
BEGIN_EPOCH
=
0
def
__init__
(
self
,
epoch_id
):
END_EPOCH
=
1
self
.
epoch
=
epoch_id
BEGIN_STEP
=
2
END_STEP
=
3
class
EndEpochEvent
(
object
):
def
__init__
(
self
,
epoch_id
):
self
.
epoch
=
epoch_id
def
__init__
(
self
):
self
.
step
=
0
class
BeginStepEvent
(
object
):
self
.
epoch
=
0
def
__init__
(
self
,
epoch_id
,
step_id
):
self
.
type
=
Event
.
BEGIN_EPOCH
self
.
epoch
=
epoch_id
self
.
step
=
step_id
class
EndStepEvent
(
object
):
def
__init__
(
self
,
epoch_id
,
step_id
):
self
.
epoch
=
epoch_id
self
.
step
=
step_id
class
Trainer
(
object
):
class
Trainer
(
object
):
"""
Args:
network_func(callable): A function which will return loss. The loss must be a scaler.
optimizer(optimizer.Optimizer): The optimizer should be an instance of Optimizer
params:
place: The device place of this trainer.
"""
def
__init__
(
self
,
network_func
,
optimizer
,
params
=
None
,
place
=
None
):
def
__init__
(
self
,
network_func
,
optimizer
,
params
=
None
,
place
=
None
):
# 1. we need to generate a framework.Program by calling
# 1. we need to generate a framework.Program by calling
# network_func. Reference: fluid.program_guard in
# network_func. Reference: fluid.program_guard in
# test_word2vec.py
# test_word2vec.py
self
.
scope
=
self
.
_get_scope_from_params
(
params
)
self
.
startup_program
=
framework
.
Program
()
self
.
train_program
=
framework
.
Program
()
with
framework
.
program_guard
(
self
.
train_program
,
self
.
startup_program
):
loss
=
network_func
()
if
not
isinstance
(
optimizer
,
opt_module
.
Optimizer
):
raise
TypeError
(
"The optimizer should be an instance of Optimizer"
)
optimizer
.
minimize
(
loss
)
self
.
place
=
Trainer
.
_check_and_get_place
(
place
)
# 2. move the default_main_program to self.program and run the
# 2. move the default_main_program to self.program and run the
# default_startup program on an empty core.Scope()
# default_startup program on an empty core.Scope()
# Run startup program
if
params
is
None
:
exe
=
executor
.
Executor
(
place
)
exe
.
run
(
self
.
startup_program
,
scope
=
self
.
scope
)
# 3. call self.params.add_vars with the initialized scope, it
# 3. call self.params.add_vars with the initialized scope, it
# will add the new vars of the initialized scope into
# will add the new vars of the initialized scope into
# self.params.
# self.params.
self
.
network_func
=
network_func
# TODO(yuyang): This depends on parameters implementation.
self
.
optimizer
=
optimizer
self
.
params
=
params
self
.
place
=
place
# TODO(helin): support distributed training
# TODO(helin): support distributed training
def
train
(
self
,
reader
,
num_epochs
,
event_handler
):
def
train
(
self
,
pass
num_epochs
,
event_handler
,
reader
=
None
,
parallel
=
False
,
feed_order
=
None
):
"""
Train the model.
Args:
num_epochs: The number of epoch. An epoch will process all data in reader
event_handler: The event handler. A function with type (ev:Event)->void
reader:
parallel: True if use multi-CPUs or multi-GPUs
feed_order: Feeding order of reader. None will following the defining
order in program
Returns:
"""
if
parallel
:
raise
NotImplementedError
(
"Parallel Executor version of trainer is not implemented"
)
self
.
_train_by_executor
(
num_epochs
,
event_handler
,
reader
,
feed_order
)
def
test
(
self
,
reader
):
def
test
(
self
,
reader
):
pass
pass
def
_get_scope_from_params
(
self
,
params
):
"""
Get Scope from parameter object.
Args:
params(Parameter|None): The parameter object instance. Could be None.
Returns: New scope if params is None. Or params.scope()
NOTE: This method is WIP. Not fully implemented.
"""
if
params
is
None
:
return
core
.
Scope
()
# new scope when params is None
else
:
raise
NotImplementedError
(
"Not implemented right now."
)
@
staticmethod
def
_check_and_get_place
(
place
):
"""
Check the type of place or get the default place
Args:
place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.
Raises:
TypeError if the type mismatched.
Returns:
the original place if it is not None.
if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
Otherwise returns CPUPlace by default.
"""
if
place
is
None
:
if
core
.
is_compiled_with_cuda
():
return
core
.
CUDAPlace
(
0
)
else
:
return
core
.
CPUPlace
()
else
:
if
not
isinstance
(
place
,
core
.
CUDAPlace
)
and
not
isinstance
(
place
,
core
.
CPUPlace
):
raise
TypeError
(
"Place should be either CUDAPlace or CPUPlace"
)
return
place
@
contextlib
.
contextmanager
def
_prog_and_scope_guard
(
self
):
with
framework
.
program_guard
(
main_program
=
self
.
train_program
,
startup_program
=
self
.
startup_program
):
with
executor
.
scope_guard
(
self
.
scope
):
yield
def
_train_by_executor
(
self
,
num_epochs
,
event_handler
,
reader
,
feed_order
):
"""
Train by Executor and single device.
Args:
num_epochs:
event_handler:
reader:
feed_order:
Returns:
"""
with
self
.
_prog_and_scope_guard
():
exe
=
executor
.
Executor
(
self
.
place
)
if
feed_order
is
None
:
feed_var_list
=
[
var
for
var
in
self
.
train_program
.
global_block
(
).
vars
.
itervalues
()
if
hasattr
(
var
,
'is_data'
)
and
var
.
is_data
]
else
:
feed_var_list
=
[
self
.
train_program
.
global_block
().
var
(
var_name
)
for
var_name
in
feed_order
]
feeder
=
data_feeder
.
DataFeeder
(
feed_list
=
feed_var_list
,
place
=
self
.
place
)
for
epoch_id
in
range
(
num_epochs
):
event_handler
(
BeginEpochEvent
(
epoch_id
))
for
step_id
,
data
in
enumerate
(
reader
()):
event_handler
(
BeginStepEvent
(
epoch_id
,
step_id
))
exe
.
run
(
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[])
event_handler
(
EndStepEvent
(
epoch_id
,
step_id
))
event_handler
(
EndEpochEvent
(
epoch_id
))
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录