未验证 提交 6bdf1261 编写于 作者: Z zhaoyingli 提交者: GitHub

[AutoParallel] dist_scale (#48295)

上级 4f975b41
......@@ -35,3 +35,4 @@ from . import dist_fused_attention
from . import dist_reduce_sum_p
from . import dist_shape
from . import dist_assign
from . import dist_scale
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .common import DistributedOperatorImplContainer
from .common import DistributedOperatorImpl
from .common import register_distributed_operator_impl_container
from .common import register_distributed_operator_impl
from .dist_default import DistributedDefaultImpl0
from ..utils import compute_compatible_and_update_dim_mapping
class DistributedScale(DistributedOperatorImplContainer):
def __init__(self, op_type):
super().__init__(op_type)
register_distributed_operator_impl_container(DistributedScale("scale"))
class DistributedScaleImpl(DistributedOperatorImpl):
def __init__(self, name):
super().__init__(name)
self._forward_implemented = True
self._backward_implemented = True
def is_input_compatible(self, dist_op):
return True
def is_output_compatible(self, dist_op):
return True
def is_auto_compatible(self, dist_op):
if (not self.is_input_compatible(dist_op)) or (
not self.is_output_compatible(dist_op)
):
return False
op_desc = dist_op.serial_op.desc
op_dist_attr = dist_op.dist_attr
x_name = op_desc.input('X')[0]
out_name = op_desc.output('Out')[0]
x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
if x_dims_mapping != out_dims_mapping:
return False
return True
def update_dims_mapping(self, dist_op):
changed = False
op_desc = dist_op.serial_op.desc
op_dist_attr = dist_op.dist_attr
x_name = op_desc.input('X')[0]
out_name = op_desc.output('Out')[0]
x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
for i in range(len(x_dims_mapping)):
dim_changed = compute_compatible_and_update_dim_mapping(
[x_dims_mapping, out_dims_mapping], [i, i]
)
if dim_changed:
changed = True
return changed
@staticmethod
def forward(ctx, *args, **kwargs):
DistributedDefaultImpl0.forward(ctx, *args, **kwargs)
@staticmethod
def backward(ctx, *args, **kwargs):
DistributedDefaultImpl0.backward(ctx, *args, **kwargs)
register_distributed_operator_impl("scale", DistributedScaleImpl("scale"))
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle
from paddle.distributed.fleet import auto
paddle.enable_static()
def make_program():
main_program = paddle.fluid.Program()
start_program = paddle.fluid.Program()
with paddle.static.program_guard(main_program, start_program):
x = paddle.static.data(name='x', shape=[4, 4, 8], dtype='float32')
x.stop_gradient = False
auto.shard_tensor(
x, auto.ProcessMesh([0, 1], dim_names=["x"]), [None, "x", None]
)
res = paddle.scale(x, scale=2.0, bias=1.0)
return main_program, start_program
def parallelizer(program_func, rank):
from paddle.distributed.auto_parallel.completion import Completer
from paddle.distributed.auto_parallel.partitioner import Partitioner
from paddle.distributed.auto_parallel.dist_context import DistributedContext
main_program, start_program = program_func()
dist_context = DistributedContext()
completer = Completer(dist_context)
completer.complete_forward_annotation(main_program)
dist_context.block_state.parse_forward_blocks(main_program)
partitioner = Partitioner(dist_context, rank)
dist_main_prog, _, _ = partitioner.partition(
main_program, start_program, []
)
return dist_main_prog, dist_context
class TestDistScale(unittest.TestCase):
def test_dist_scale(self):
dist_main_prog, dist_context = parallelizer(make_program, 0)
ops = dist_main_prog.global_block().ops
scale_op = ops[0]
dist_op = dist_context.get_dist_op_for_program(scale_op)
dist_op.dist_attr.impl_type == "scale"
dist_op.dist_attr.impl_idx == 0
in_name = scale_op.input_arg_names[0]
out_name = scale_op.output_arg_names[0]
in_dims_mapping = dist_op.dist_attr.get_input_dims_mapping(in_name)
out_dims_mapping = dist_op.dist_attr.get_output_dims_mapping(out_name)
assert in_dims_mapping == out_dims_mapping
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册