提交 6b80c2b4 编写于 作者: Q qiaolongfei

add cost test

上级 92f52e3b
...@@ -281,8 +281,6 @@ if __name__ == '__main__': ...@@ -281,8 +281,6 @@ if __name__ == '__main__':
cost10 = sum_cost(input=inference) cost10 = sum_cost(input=inference)
cost11 = huber_cost(input=score, label=label) cost11 = huber_cost(input=score, label=label)
mem = memory(name="rnn_state", size=10)
# print parse_network(cost1) # print parse_network(cost1)
# print parse_network(cost2) # print parse_network(cost2)
# print parse_network(cost1, cost2) # print parse_network(cost1, cost2)
......
...@@ -18,10 +18,45 @@ import paddle.trainer_config_helpers as conf_helps ...@@ -18,10 +18,45 @@ import paddle.trainer_config_helpers as conf_helps
import paddle.v2.activation as activation import paddle.v2.activation as activation
import paddle.v2.data_type as data_type import paddle.v2.data_type as data_type
import paddle.v2.layer as layer import paddle.v2.layer as layer
import paddle.v2.attr as attr
from paddle.trainer_config_helpers.config_parser_utils import \ from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as parse_network parse_network_config as parse_network
class CostLyaerTest(unittest.TestCase):
def test_cost_layer(self):
pixel = layer.data(name='pixel', type=data_type.dense_vector(784))
label = layer.data(name='label', type=data_type.integer_value(10))
weight = layer.data(name='weight', type=data_type.dense_vector(10))
score = layer.data(name='score', type=data_type.dense_vector(1))
hidden = layer.fc(input=pixel,
size=100,
act=activation.Sigmoid(),
param_attr=attr.Param(name='hidden'))
inference = layer.fc(input=hidden, size=10, act=activation.Softmax())
cost1 = layer.classification_cost(input=inference, label=label)
cost2 = layer.classification_cost(
input=inference, label=label, weight=weight)
cost3 = layer.cross_entropy_cost(input=inference, label=label)
cost4 = layer.cross_entropy_with_selfnorm_cost(
input=inference, label=label)
cost5 = layer.regression_cost(input=inference, label=label)
cost6 = layer.regression_cost(
input=inference, label=label, weight=weight)
cost7 = layer.multi_binary_label_cross_entropy_cost(
input=inference, label=label)
cost8 = layer.rank_cost(left=score, right=score, label=score)
cost9 = layer.lambda_cost(input=inference, score=score)
cost10 = layer.sum_cost(input=inference)
cost11 = layer.huber_cost(input=score, label=label)
print layer.parse_network(cost1, cost2)
print layer.parse_network(cost3, cost4)
print layer.parse_network(cost5, cost6)
print layer.parse_network(cost7, cost8, cost9, cost10, cost11)
class RNNTest(unittest.TestCase): class RNNTest(unittest.TestCase):
def test_simple_rnn(self): def test_simple_rnn(self):
dict_dim = 10 dict_dim = 10
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册