Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
6a572a19
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6a572a19
编写于
10月 20, 2021
作者:
R
ronnywang
提交者:
GitHub
10月 20, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] Add kldiv_loss_op for npu (#36494)
上级
fc5db55a
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
317 addition
and
0 deletion
+317
-0
paddle/fluid/operators/kldiv_loss_op_npu.cc
paddle/fluid/operators/kldiv_loss_op_npu.cc
+163
-0
python/paddle/fluid/tests/unittests/npu/test_kldiv_loss_op_npu.py
...addle/fluid/tests/unittests/npu/test_kldiv_loss_op_npu.py
+154
-0
未找到文件。
paddle/fluid/operators/kldiv_loss_op_npu.cc
0 → 100644
浏览文件 @
6a572a19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#include "paddle/fluid/operators/kldiv_loss_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
KLDivLossNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
target
=
ctx
.
Input
<
Tensor
>
(
"Target"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
reduction
=
ctx
.
Attr
<
std
::
string
>
(
"reduction"
);
loss
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
NPUDeviceContext
>();
auto
stream
=
dev_ctx
.
stream
();
if
(
"none"
==
reduction
)
{
// log(label)
auto
ones_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
NPUDeviceContext
>
(
target
->
dims
(),
dev_ctx
);
const
auto
&
ones_runner
=
NpuOpRunner
(
"OnesLike"
,
{
*
target
},
{
ones_tensor
},
{});
ones_runner
.
Run
(
stream
);
auto
sub_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
NPUDeviceContext
>
(
target
->
dims
(),
dev_ctx
);
const
auto
&
sub_runner
=
NpuOpRunner
(
"Sub"
,
{
*
target
,
ones_tensor
},
{
sub_tensor
},
{});
sub_runner
.
Run
(
stream
);
auto
log_target
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
NPUDeviceContext
>
(
target
->
dims
(),
dev_ctx
);
const
auto
&
log_runner
=
NpuOpRunner
(
"Log1p"
,
{
sub_tensor
},
{
log_target
},
{});
log_runner
.
Run
(
stream
);
// log(label) - input
const
auto
&
sub_runner2
=
NpuOpRunner
(
"Sub"
,
{
log_target
,
*
input
},
{
*
loss
},
{});
sub_runner2
.
Run
(
stream
);
// label * (log(label) - input)
auto
min_value
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
NPUDeviceContext
>
({
1
},
dev_ctx
);
auto
max_value
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
NPUDeviceContext
>
({
1
},
dev_ctx
);
FillNpuTensorWithConstant
(
&
min_value
,
static_cast
<
T
>
(
0
));
FillNpuTensorWithConstant
(
&
max_value
,
std
::
numeric_limits
<
T
>::
max
());
auto
cliped_target
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
NPUDeviceContext
>
(
target
->
dims
(),
dev_ctx
);
const
auto
&
clip_runner
=
NpuOpRunner
(
"ClipByValue"
,
{
*
target
,
min_value
,
max_value
},
{
cliped_target
},
{});
clip_runner
.
Run
(
stream
);
const
auto
&
mul_runner
=
NpuOpRunner
(
"Mul"
,
{
*
loss
,
cliped_target
},
{
*
loss
},
{});
mul_runner
.
Run
(
stream
);
}
else
if
(
"batchmean"
==
reduction
||
"sum"
==
reduction
)
{
const
auto
&
runner
=
NpuOpRunner
(
"KLDiv"
,
{
*
input
,
*
target
},
{
*
loss
},
{{
"reduction"
,
reduction
}});
runner
.
Run
(
stream
);
}
else
if
(
"mean"
==
reduction
)
{
const
auto
&
runner
=
NpuOpRunner
(
"KLDiv"
,
{
*
input
,
*
target
},
{
*
loss
},
{{
"reduction"
,
std
::
string
(
"sum"
)}});
runner
.
Run
(
stream
);
const
int
numel
=
input
->
numel
();
const
auto
&
muls_runner
=
NpuOpRunner
(
"Muls"
,
{
*
loss
},
{
*
loss
},
{{
"value"
,
static_cast
<
float
>
(
1.0
/
numel
)}});
muls_runner
.
Run
(
stream
);
}
}
};
template
<
typename
T
>
class
KLDivLossGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
target
=
ctx
.
Input
<
Tensor
>
(
"Target"
);
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
reduction
=
ctx
.
Attr
<
std
::
string
>
(
"reduction"
);
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
NPUDeviceContext
>();
auto
stream
=
dev_ctx
.
stream
();
Tensor
loss_grad_transformed
;
if
(
"none"
==
reduction
)
{
loss_grad_transformed
.
ShareDataWith
(
*
loss_grad
);
}
else
{
loss_grad_transformed
.
mutable_data
<
T
>
(
input_grad
->
dims
(),
ctx
.
GetPlace
());
NpuOpRunner
broadcast_runner
;
broadcast_runner
.
SetType
(
"BroadcastTo"
);
broadcast_runner
.
AddInput
(
*
loss_grad
);
broadcast_runner
.
AddInput
(
framework
::
vectorize
<
int
>
(
input_grad
->
dims
()));
broadcast_runner
.
AddOutput
(
loss_grad_transformed
);
broadcast_runner
.
Run
(
stream
);
}
auto
min_value
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
NPUDeviceContext
>
({
1
},
dev_ctx
);
auto
max_value
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
NPUDeviceContext
>
({
1
},
dev_ctx
);
FillNpuTensorWithConstant
(
&
min_value
,
static_cast
<
T
>
(
0
));
FillNpuTensorWithConstant
(
&
max_value
,
std
::
numeric_limits
<
T
>::
max
());
auto
cliped_target
=
ctx
.
AllocateTmpTensor
<
T
,
platform
::
NPUDeviceContext
>
(
target
->
dims
(),
dev_ctx
);
const
auto
&
clip_runner
=
NpuOpRunner
(
"ClipByValue"
,
{
*
target
,
min_value
,
max_value
},
{
cliped_target
},
{});
clip_runner
.
Run
(
stream
);
const
auto
&
mul_runner
=
NpuOpRunner
(
"Mul"
,
{
cliped_target
,
loss_grad_transformed
},
{
*
input_grad
},
{});
mul_runner
.
Run
(
stream
);
float
k
=
-
1.0
f
;
if
(
"mean"
==
reduction
)
{
k
=
static_cast
<
float
>
(
-
1.0
/
input_grad
->
numel
());
}
else
if
(
"batchmean"
==
reduction
)
{
k
=
static_cast
<
float
>
(
-
1.0
/
input_grad
->
dims
()[
0
]);
}
const
auto
&
muls_runner
=
NpuOpRunner
(
"Muls"
,
{
*
input_grad
},
{
*
input_grad
},
{{
"value"
,
k
}});
muls_runner
.
Run
(
stream
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
kldiv_loss
,
ops
::
KLDivLossNPUKernel
<
float
>
,
ops
::
KLDivLossNPUKernel
<
plat
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
kldiv_loss_grad
,
ops
::
KLDivLossGradNPUKernel
<
float
>
,
ops
::
KLDivLossGradNPUKernel
<
plat
::
float16
>
);
python/paddle/fluid/tests/unittests/npu/test_kldiv_loss_op_npu.py
0 → 100644
浏览文件 @
6a572a19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
,
division
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
from
test_kldiv_loss_op
import
kldiv_loss
paddle
.
enable_static
()
class
TestKLDivLossOp
(
OpTest
):
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
def
init_dtype
(
self
):
self
.
dtype
=
'float32'
def
setUp
(
self
):
self
.
set_npu
()
self
.
init_dtype
()
self
.
initTestCase
()
self
.
op_type
=
'kldiv_loss'
x
=
np
.
random
.
uniform
(
-
10
,
10
,
self
.
x_shape
).
astype
(
self
.
dtype
)
target
=
np
.
random
.
uniform
(
-
10
,
10
,
self
.
x_shape
).
astype
(
self
.
dtype
)
self
.
attrs
=
{
"reduction"
:
self
.
reduction
}
self
.
inputs
=
{
'X'
:
x
,
'Target'
:
target
,
}
loss
=
kldiv_loss
(
x
,
target
,
self
.
reduction
)
self
.
outputs
=
{
'Loss'
:
loss
.
astype
(
self
.
dtype
)}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Loss'
,
no_grad_set
=
set
([
"Target"
]),
max_relative_error
=
0.15
)
def
initTestCase
(
self
):
self
.
x_shape
=
(
4
,
5
,
5
)
self
.
reduction
=
'batchmean'
class
TestKLDivLossOp2
(
TestKLDivLossOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
3
,
2
,
7
,
7
)
self
.
reduction
=
'none'
class
TestKLDivLossOp3
(
TestKLDivLossOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
5
,
7
,
9
)
self
.
reduction
=
'mean'
class
TestKLDivLossOp4
(
TestKLDivLossOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
5
,
20
)
self
.
reduction
=
'sum'
class
TestKLDivLossOp_fp16
(
TestKLDivLossOp
):
def
init_dtype
(
self
):
self
.
dtype
=
'float16'
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
atol
=
3e-1
)
def
test_check_grad
(
self
):
input_grad
=
-
self
.
inputs
[
'Target'
]
*
(
self
.
inputs
[
'Target'
]
>
0
)
/
self
.
inputs
[
'Target'
].
shape
[
0
]
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Loss'
,
no_grad_set
=
set
([
"Target"
]),
max_relative_error
=
0.2
,
user_defined_grads
=
[
input_grad
])
class
TestKLDivLossDygraph
(
unittest
.
TestCase
):
def
run_kl_loss
(
self
,
reduction
,
shape
=
(
5
,
20
)):
x
=
np
.
random
.
uniform
(
-
10
,
10
,
shape
).
astype
(
'float32'
)
target
=
np
.
random
.
uniform
(
-
10
,
10
,
shape
).
astype
(
'float32'
)
gt_loss
=
kldiv_loss
(
x
,
target
,
reduction
)
with
paddle
.
fluid
.
dygraph
.
guard
(
paddle
.
NPUPlace
(
0
)):
kldiv_criterion
=
paddle
.
nn
.
KLDivLoss
(
reduction
)
pred_loss
=
kldiv_criterion
(
paddle
.
to_tensor
(
x
),
paddle
.
to_tensor
(
target
))
self
.
assertTrue
(
np
.
allclose
(
pred_loss
.
numpy
(),
gt_loss
))
def
test_kl_loss_batchmean
(
self
):
self
.
run_kl_loss
(
'batchmean'
)
def
test_kl_loss_batchmean_shape
(
self
):
self
.
run_kl_loss
(
'batchmean'
,
())
def
test_kl_loss_mean
(
self
):
self
.
run_kl_loss
(
'mean'
)
def
test_kl_loss_sum
(
self
):
self
.
run_kl_loss
(
'sum'
)
def
test_kl_loss_none
(
self
):
self
.
run_kl_loss
(
'none'
)
def
test_kl_loss_static_api
(
self
):
input
=
paddle
.
fluid
.
data
(
name
=
'input'
,
shape
=
[
5
,
20
])
label
=
paddle
.
fluid
.
data
(
name
=
'label'
,
shape
=
[
5
,
20
])
pred_loss
=
paddle
.
nn
.
functional
.
kl_div
(
input
,
label
)
class
TestKLDivLossTypePromotion
(
unittest
.
TestCase
):
def
test_kl_div_promotion
(
self
):
with
paddle
.
fluid
.
dygraph
.
guard
(
paddle
.
NPUPlace
(
0
)):
x1
=
paddle
.
rand
([
5
,
20
],
dtype
=
'float32'
)
target1
=
paddle
.
rand
([
5
,
20
],
dtype
=
'float32'
)
kldiv_criterion
=
paddle
.
nn
.
KLDivLoss
()
pred_loss1
=
kldiv_criterion
(
x1
,
target1
)
x2
=
paddle
.
rand
([
5
,
20
],
dtype
=
'float32'
)
target2
=
paddle
.
rand
([
5
,
20
],
dtype
=
'float32'
)
pred_loss2
=
paddle
.
nn
.
functional
.
kl_div
(
x2
,
target2
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录