未验证 提交 69a3339a 编写于 作者: L Leo Chen 提交者: GitHub

Move dygraph amp api to paddle-2.0 (#27681)

* move dygraph amp api to paddle

* refine code and add unit test
上级 a0f1dba3
......@@ -272,6 +272,7 @@ from .fluid.dygraph.base import no_grad_ as no_grad #DEFINE_ALIAS
from . import jit
from . import static
from . import amp
# high-level api
from .hapi import Model
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .auto_cast import auto_cast
from .grad_scaler import GradScaler
__all__ = ['auto_cast', 'GradScaler']
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.fluid.dygraph.amp import amp_guard
__all__ = ['auto_cast']
def auto_cast(enable=True, custom_white_list=None, custom_black_list=None):
"""
Create a context which enables auto-mixed-precision(AMP) of operators executed in dynamic graph mode.
If enabled, the input data type (float32 or float16) of each operator is decided
by autocast algorithm for better performance.
Commonly, it is used together with `AmpScaler` to achieve Auto-Mixed-Precision in
imperative mode.
Args:
enable(bool, optional): Enable auto-mixed-precision or not. Default is True.
custom_white_list(set|list, optional): The custom white_list.
custom_black_list(set|list, optional): The custom black_list.
Examples:
.. code-block:: python
import paddle
conv2d = paddle.nn.Conv2d(3, 2, 3, bias_attr=False)
data = paddle.rand([10, 3, 32, 32])
with paddle.amp.auto_cast():
conv = conv2d(data)
print(conv.dtype) # FP16
with paddle.amp.auto_cast(enable=False):
conv = conv2d(data)
print(conv.dtype) # FP32
"""
return amp_guard(enable, custom_white_list, custom_black_list)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.fluid.dygraph.amp import AmpScaler
__all__ = ['GradScaler']
class GradScaler(AmpScaler):
"""
GradScaler is used for Auto-Mixed-Precision training/inferring in dynamic graph
mode. It controls the scaling of loss, helps avoiding numerical overflow.
The object of this class has two methods `scale()`, `minimize()`.
`scale()` is used to multiply the loss by a scale ratio.
`minimize()` is similar as `Optimizer.minimize()`, performs parameters updating.
Commonly, it is used together with `paddle.amp.auto_cast` to achieve Auto-Mixed-Precision in
dynamic graph mode.
Args:
enable(bool, optional): Enable loss scaling or not. Default is True.
init_loss_scaling (float, optional): The initial loss scaling factor. Default is 2**15.
incr_ratio(float, optional): The multiplier to use when increasing the loss
scaling. Default is 2.0.
decr_ratio(float, optional): The less-than-one-multiplier to use when decreasing
the loss scaling. Default is 0.5.
incr_every_n_steps(int, optional): Increases loss scaling every n consecutive
steps with finite gradients. Default is 1000.
decr_every_n_nan_or_inf(int, optional): Decreases loss scaling every n
accumulated steps with nan or inf gradients. Default is 2.
use_dynamic_loss_scaling(bool, optional): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
Returns:
An AmpScaler object.
Examples:
.. code-block:: python
import paddle
model = paddle.nn.Conv2d(3, 2, 3, bias_attr=True)
optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
data = paddle.rand([10, 3, 32, 32])
with paddle.amp.auto_cast():
conv = model(data)
loss = paddle.reduce_mean(conv)
scaled = scaler.scale(loss) # scale the loss
scaled.backward() # do backward
scaler.minimize(optimizer, scaled) # update parameters
"""
def __init__(self,
enable=True,
init_loss_scaling=2.**15,
incr_ratio=2.0,
decr_ratio=0.5,
incr_every_n_steps=1000,
decr_every_n_nan_or_inf=1,
use_dynamic_loss_scaling=True):
super(GradScaler, self).__init__(enable, init_loss_scaling, incr_ratio,
decr_ratio, incr_every_n_steps,
decr_every_n_nan_or_inf,
use_dynamic_loss_scaling)
def scale(self, var):
"""
Multiplies a Tensor by the scale factor and returns scaled outputs.
If this instance of :class:`GradScaler` is not enabled, output are returned unmodified.
Args:
var (Tensor): The tensor to scale.
Returns:
The scaled tensor or original tensor.
Examples:
.. code-block:: python
import paddle
model = paddle.nn.Conv2d(3, 2, 3, bias_attr=True)
optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
data = paddle.rand([10, 3, 32, 32])
with paddle.amp.auto_cast():
conv = model(data)
loss = paddle.reduce_mean(conv)
scaled = scaler.scale(loss) # scale the loss
scaled.backward() # do backward
scaler.minimize(optimizer, scaled) # update parameters
"""
return super(GradScaler, self).scale(var)
def minimize(self, optimizer, *args, **kwargs):
"""
This function is similar as `Optimizer.minimize()`, which performs parameters updating.
If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped.
Otherwise, it first unscales the scaled gradients of parameters, then updates the parameters.
Finally, the loss scaling ratio is updated.
Args:
optimizer(Optimizer): The optimizer used to update parameters.
args: Arguments, which will be forward to `optimizer.minimize()`.
kwargs: Keyword arguments, which will be forward to `Optimizer.minimize()`.
Examples:
.. code-block:: python
import paddle
model = paddle.nn.Conv2d(3, 2, 3, bias_attr=True)
optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
data = paddle.rand([10, 3, 32, 32])
with paddle.amp.auto_cast():
conv = model(data)
loss = paddle.reduce_mean(conv)
scaled = scaler.scale(loss) # scale the loss
scaled.backward() # do backward
scaler.minimize(optimizer, scaled) # update parameters
"""
return super(GradScaler, self).minimize(optimizer, *args, **kwargs)
......@@ -196,6 +196,84 @@ class TestAmpScaler(unittest.TestCase):
np.array_equal(param.numpy(), params_init[param.name]))
class TestResnet2(unittest.TestCase):
def train_resnet(self, enable_amp=True):
seed = 90
batch_size = train_parameters["batch_size"]
batch_num = 1
paddle.disable_static()
paddle.manual_seed(seed)
paddle.framework.random._manual_program_seed(seed)
resnet = ResNet(use_cudnn=True)
optimizer = optimizer_setting(
train_parameters, parameter_list=resnet.parameters())
np.random.seed(seed)
train_reader = paddle.batch(
paddle.dataset.flowers.train(use_xmap=False), batch_size=batch_size)
dy_param_init_value = {}
for param in resnet.parameters():
dy_param_init_value[param.name] = param.numpy()
program = None
scaler = paddle.amp.GradScaler(
enable=enable_amp, init_loss_scaling=2.**10)
for batch_id, data in enumerate(train_reader()):
if batch_id >= batch_num:
break
dy_x_data = np.array(
[x[0].reshape(3, 224, 224) for x in data]).astype('float32')
if len(np.array([x[1]
for x in data]).astype('int64')) != batch_size:
continue
y_data = np.array([x[1] for x in data]).astype('int64').reshape(-1,
1)
img = paddle.to_tensor(dy_x_data)
label = paddle.to_tensor(y_data)
label.stop_gradient = True
with paddle.amp.auto_cast(enable=enable_amp):
out = resnet(img)
loss = paddle.nn.functional.cross_entropy(input=out, label=label)
avg_loss = paddle.mean(x=loss)
dy_out = avg_loss.numpy()
scaled_loss = scaler.scale(avg_loss)
scaled_loss.backward()
scaler.minimize(optimizer, scaled_loss)
dy_grad_value = {}
for param in resnet.parameters():
if param.trainable:
np_array = np.array(param._grad_ivar().value().get_tensor())
dy_grad_value[param.name + fluid.core.grad_var_suffix(
)] = np_array
resnet.clear_gradients()
dy_param_value = {}
for param in resnet.parameters():
dy_param_value[param.name] = param.numpy()
paddle.enable_static()
return dy_out, dy_param_value, dy_grad_value
def test_resnet(self):
out_fp32 = self.train_resnet(enable_amp=False)
out_amp = self.train_resnet(enable_amp=True)
print(out_fp32[0], out_amp[0])
self.assertTrue(np.allclose(out_fp32[0], out_amp[0], atol=1.e-2))
class TestResnet(unittest.TestCase):
def train_resnet(self, enable_amp=True):
seed = 90
......
......@@ -192,6 +192,7 @@ packages=['paddle',
'paddle.fluid.incubate.fleet.parameter_server.ir',
'paddle.fluid.incubate.fleet.collective',
'paddle.fluid.incubate.fleet.utils',
'paddle.amp',
'paddle.hapi',
'paddle.vision',
'paddle.vision.models',
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册