未验证 提交 689e0999 编写于 作者: Q Qi Li 提交者: GitHub

[Cherry-pick] Fix numpy 1.20+ deprecation warnings (#43513)

* Fix numpy 1.20+ deprecation warnings (#42929)

* Replace np.bool/np.bool8 with np.bool_

* Replace np.object with np.object_

* Replace np.complex with np.complex128

* Replace np.float with np.float64

* Replace np.int with np.int_

* Rerun pre-commit for newer pre-commit configuration

* Use builtin bool instead of np.bool_ based on the context

* fix mode dtype
Co-authored-by: Nzlsh80826 <rewang@nvidia.com>
上级 0cdde0b4
......@@ -1792,8 +1792,8 @@ class Fleet(object):
if (param._grad_ivar() is not None) and (param._grad_ivar(
).dtype == core.VarDesc.VarType.FP32)
]
temp_found_inf_fp16 = to_variable(np.array([0]).astype(np.bool))
temp_found_inf_fp32 = to_variable(np.array([0]).astype(np.bool))
temp_found_inf_fp16 = to_variable(np.array([0]).astype(np.bool_))
temp_found_inf_fp32 = to_variable(np.array([0]).astype(np.bool_))
if len(param_grads_fp16):
_C_ops.check_finite_and_unscale(param_grads_fp16, self._scale,
param_grads_fp16,
......
......@@ -197,8 +197,8 @@ def GroupShardedScaler(scaler):
else:
param_grads_fp32.append(param.grad)
temp_found_inf_fp16 = to_variable(np.array([0]).astype(np.bool))
temp_found_inf_fp32 = to_variable(np.array([0]).astype(np.bool))
temp_found_inf_fp16 = to_variable(np.array([0]).astype(np.bool_))
temp_found_inf_fp32 = to_variable(np.array([0]).astype(np.bool_))
device = "cpu" if optimizer.offload else "gpu"
dev_id = 0 if device == "cpu" else int(paddle.get_device().split(":")[
......
......@@ -197,8 +197,8 @@ def ShardingScaler(scaler):
else:
param_grads_fp32.append(param.grad)
temp_found_inf_fp16 = to_variable(np.array([0]).astype(np.bool))
temp_found_inf_fp32 = to_variable(np.array([0]).astype(np.bool))
temp_found_inf_fp16 = to_variable(np.array([0]).astype(np.bool_))
temp_found_inf_fp32 = to_variable(np.array([0]).astype(np.bool_))
device = "cpu" if optimizer.offload else "gpu"
dev_id = 0 if device == "cpu" else int(paddle.get_device().split(":")[
......
......@@ -48,7 +48,7 @@ def convert_dtype(dtype):
return _PADDLE_DTYPE_2_NUMPY_DTYPE[dtype]
elif isinstance(dtype, type):
if dtype in [
np.bool, np.float16, np.uint16, np.float32, np.float64, np.int8,
bool, np.float16, np.uint16, np.float32, np.float64, np.int8,
np.int16, np.int32, np.int64, np.uint8, np.complex64,
np.complex128
]:
......
......@@ -128,11 +128,11 @@ class AmpScaler(object):
self._decr_count = 0
self._use_dynamic_loss_scaling = use_dynamic_loss_scaling
self._found_inf = to_variable(np.array([0]).astype(np.bool))
self._found_inf = to_variable(np.array([0]).astype(np.bool_))
self._temp_found_inf_fp16 = to_variable(
np.array([0]).astype(np.bool))
np.array([0]).astype(np.bool_))
self._temp_found_inf_fp32 = to_variable(
np.array([0]).astype(np.bool))
np.array([0]).astype(np.bool_))
self._scale = to_variable(
np.array([self._init_loss_scaling]).astype(np.float32))
self._cache_founf_inf = None
......
......@@ -480,7 +480,7 @@ def _as_lodtensor(data, place, dtype=None):
data = np.array([data]).astype(dtype)
elif isinstance(data, (list, tuple)):
data = np.array(data)
if data.dtype == np.object:
if data.dtype == np.object_:
raise TypeError(
"\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
"this means the input data contains nested lists with different lengths. "
......
......@@ -1101,7 +1101,7 @@ def convert_np_dtype_to_dtype_(np_dtype):
return core.VarDesc.VarType.INT16
elif dtype == np.int64:
return core.VarDesc.VarType.INT64
elif dtype == np.bool:
elif dtype == np.bool_:
return core.VarDesc.VarType.BOOL
elif dtype == np.uint16:
# since there is still no support for bfloat16 in NumPy,
......
......@@ -12679,8 +12679,8 @@ def logical_or(x, y, out=None, name=None):
import paddle
import numpy as np
x_data = np.array([True, False], dtype=np.bool).reshape(2, 1)
y_data = np.array([True, False, True, False], dtype=np.bool).reshape(2, 2)
x_data = np.array([True, False], dtype=np.bool_).reshape(2, 1)
y_data = np.array([True, False, True, False], dtype=np.bool_).reshape(2, 2)
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
res = paddle.logical_or(x, y)
......@@ -12720,8 +12720,8 @@ def logical_xor(x, y, out=None, name=None):
import paddle
import numpy as np
x_data = np.array([True, False], dtype=np.bool).reshape([2, 1])
y_data = np.array([True, False, True, False], dtype=np.bool).reshape([2, 2])
x_data = np.array([True, False], dtype=np.bool_).reshape([2, 1])
y_data = np.array([True, False, True, False], dtype=np.bool_).reshape([2, 2])
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
res = paddle.logical_xor(x, y)
......
......@@ -144,7 +144,7 @@ class DataLoaderBase(object):
@classmethod
def _check_input_array(cls, item):
arr = np.asarray(item)
if arr.dtype == np.object:
if arr.dtype == np.object_:
raise TypeError(
"\n\tFaild to convert input data to a regular ndarray :\n\t* Usually "
"this means the input data contains nested lists with different lengths. "
......
......@@ -483,7 +483,7 @@ class TestIrfft2(unittest.TestCase):
@place(DEVICES)
@parameterize((TEST_CASE_NAME, 'x', 'n', 'axis', 'norm', 'expect_exception'), [(
'test_bool_input',
(np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4)).astype(np.bool8),
(np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4)).astype(np.bool_),
None, -1, 'backward', NotImplementedError), (
'test_n_nagative',
np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4), -1, -1,
......@@ -558,7 +558,7 @@ class TestIrfftException(unittest.TestCase):
(TEST_CASE_NAME, 'x', 'n', 'axis', 'norm', 'expect_exception'),
[('test_bool_input',
(np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4)
).astype(np.bool8), None, (-2, -1), 'backward', NotImplementedError),
).astype(np.bool_), None, (-2, -1), 'backward', NotImplementedError),
('test_n_nagative',
np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4), (-1, -2),
(-2, -1), 'backward', ValueError),
......@@ -640,7 +640,7 @@ class TestIrfft2Exception(unittest.TestCase):
(TEST_CASE_NAME, 'x', 'n', 'axis', 'norm', 'expect_exception'),
[('test_bool_input',
(np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4)
).astype(np.bool8), None, (-2, -1), 'backward', NotImplementedError),
).astype(np.bool_), None, (-2, -1), 'backward', NotImplementedError),
('test_n_nagative',
np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4), (-1, -2),
(-2, -1), 'backward', ValueError),
......
......@@ -389,7 +389,7 @@ class TestIrfft2(unittest.TestCase):
[('test_input_dtype', np.random.randn(4, 4, 4), None, -1, 'backward',
TypeError), ('test_bool_input',
(np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4)
).astype(np.bool8), None, -1, 'backward', TypeError),
).astype(np.bool_), None, -1, 'backward', TypeError),
('test_n_nagative',
np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4), -1, -1,
'backward', ValueError),
......@@ -426,7 +426,7 @@ class TestHfftException(unittest.TestCase):
[('test_input_dtype', np.random.randn(4, 4, 4), None, -1, 'backward',
TypeError), ('test_bool_input',
(np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4)
).astype(np.bool8), None, -1, 'backward', TypeError),
).astype(np.bool_), None, -1, 'backward', TypeError),
('test_n_nagative',
np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4), -1, -1,
'backward', ValueError),
......@@ -464,7 +464,7 @@ class TestIrfftException(unittest.TestCase):
[('test_input_dtype', np.random.randn(4, 4, 4), None, None, 'backward',
TypeError), ('test_bool_input',
(np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4)
).astype(np.bool8), None, (-2, -1), 'backward', TypeError),
).astype(np.bool_), None, (-2, -1), 'backward', TypeError),
('test_n_nagative',
np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4), (-1, -2),
(-2, -1), 'backward', ValueError),
......@@ -505,7 +505,7 @@ class TestHfft2Exception(unittest.TestCase):
[('test_input_dtype', np.random.randn(4, 4, 4), None, None, 'backward',
TypeError), ('test_bool_input',
(np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4)
).astype(np.bool8), None, (-2, -1), 'backward', TypeError),
).astype(np.bool_), None, (-2, -1), 'backward', TypeError),
('test_n_nagative',
np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4), (-1, -2),
(-2, -1), 'backward', ValueError),
......@@ -546,7 +546,7 @@ class TestIrfft2Exception(unittest.TestCase):
[('test_input_dtype', np.random.randn(4, 4, 4), None, None, 'backward',
TypeError), ('test_bool_input',
(np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4)
).astype(np.bool8), None, (-2, -1), 'backward', TypeError),
).astype(np.bool_), None, (-2, -1), 'backward', TypeError),
('test_n_nagative',
np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4), (-1, -2),
(-2, -1), 'backward', ValueError),
......@@ -589,7 +589,7 @@ class TestHfftnException(unittest.TestCase):
TypeError),
# ('test_bool_input',
# (np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4)
# ).astype(np.bool8), None, (-2, -1), 'backward', ValueError),
# ).astype(np.bool_), None, (-2, -1), 'backward', ValueError),
('test_n_nagative',
np.random.randn(4, 4, 4) + 1j * np.random.randn(4, 4, 4), (-1, -2),
(-2, -1), 'backward', ValueError),
......
......@@ -160,7 +160,7 @@ class TestAssignBoolValue(TestBase):
self.feed_fp32 = {'in_0': data.astype(np.float32)}
self.feed_fp16 = {'in_0': data.astype(np.float16)}
data = np.random.choice([True, False], size=(2, 3, 1))
self.assign_bool = data.astype(np.bool)
self.assign_bool = data.astype(np.bool_)
def _test_base(self, exec_mode):
scope = paddle.static.Scope()
......
......@@ -62,7 +62,7 @@ class TestMKLDNNMulOpS8S8(OpTest):
B_data = np.random.uniform(-127, 127, (5, 20)).astype(np.float32)
quant_B = np.round(B_data * self.scale_y[0]).astype(np.int)
quant_B = np.round(B_data * self.scale_y[0]).astype(np.int_)
output = np.dot(A_data, quant_B)
scale_output_shift = (self.scale_out) / \
......@@ -131,7 +131,7 @@ class TestMKLDNNMulOpS8S8WithFlatten(TestMKLDNNMulOpS8S8):
A_data_reshape = A_data.reshape(3 * 4, 4 * 3)
B_data_reshape = B_data.reshape(2 * 6, 1 * 2 * 3)
quant_B = np.round(B_data_reshape * self.scale_y[0]).astype(np.int)
quant_B = np.round(B_data_reshape * self.scale_y[0]).astype(np.int_)
output = np.dot(A_data_reshape, quant_B)
scale_output_shift = (self.scale_out) / \
......
......@@ -46,7 +46,7 @@ class TestSoftmaxMKLDNNOp(TestSoftmaxOp):
self.shape = self.get_x_shape()
self.axis = self.get_axis()
x = np.random.uniform(0.1, 1, self.shape).astype(np.float)
x = np.random.uniform(0.1, 1, self.shape).astype(np.float64)
out = convert_float_to_uint16(
np.apply_along_axis(stable_softmax, self.axis, x))
......
......@@ -190,7 +190,7 @@ class TestBoxCoderOp(OpTest):
}
if self.use_variance:
self.attrs['variance'] = self.prior_box_var.astype(
np.float).flatten()
np.float64).flatten()
if self.axis != 0:
self.attrs['axis'] = self.axis
......
......@@ -82,7 +82,7 @@ class TestNpuDensityPriorBoxOp(OpTest):
self.batch_size = 10
self.variances = [0.1, 0.1, 0.2, 0.2]
self.variances = np.array(self.variances, dtype=np.float).flatten()
self.variances = np.array(self.variances, dtype=np.float64).flatten()
self.clip = True
self.num_priors = 0
......
......@@ -138,7 +138,7 @@ class TestFillConstantBool(OpTest):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.BOOL
self.dtype = np.bool_
def test_check_output(self):
self.check_output_with_place(self.place)
......
......@@ -45,7 +45,7 @@ class TestFillZerosLikeOp(OpTest):
class TestFillZerosLikeOpBool(TestFillZerosLikeOp):
def init_dtype(self):
self.dtype = np.bool
self.dtype = np.bool_
class TestFillZerosLikeOpFp16(TestFillZerosLikeOp):
......
......@@ -94,9 +94,9 @@ class TestNPUPriorBox(OpTest):
self.set_min_max_aspect_ratios_order()
self.real_aspect_ratios = [1, 2.0, 1.0 / 2.0, 3.0, 1.0 / 3.0]
self.aspect_ratios = np.array(
self.aspect_ratios, dtype=np.float).flatten()
self.aspect_ratios, dtype=np.float64).flatten()
self.variances = [0.1, 0.1, 0.2, 0.2]
self.variances = np.array(self.variances, dtype=np.float).flatten()
self.variances = np.array(self.variances, dtype=np.float64).flatten()
self.clip = True
self.num_priors = len(self.real_aspect_ratios) * len(self.min_sizes)
......
......@@ -106,7 +106,7 @@ class TestReduceMaxOpWithOutDtype_bool(TestNPUReduceMaxOp):
}
self.outputs = {
'Out':
self.inputs['X'].max(axis=tuple(self.attrs['dim'])).astype(np.bool)
self.inputs['X'].max(axis=tuple(self.attrs['dim'])).astype(np.bool_)
}
......
......@@ -106,7 +106,7 @@ class TestReduceMinOpWithOutDtype_bool(TestNPUReduceMinOp):
}
self.outputs = {
'Out':
self.inputs['X'].min(axis=tuple(self.attrs['dim'])).astype(np.bool)
self.inputs['X'].min(axis=tuple(self.attrs['dim'])).astype(np.bool_)
}
......
......@@ -121,8 +121,8 @@ class TestNPUReduceProdWithOutDtype_bool(TestNPUReduceProd):
self.inputs = {'X': np.random.random((5, 6, 10)).astype(self.dtype)}
self.attrs = {'dim': [0], 'out_dtype': int(core.VarDesc.VarType.BOOL)}
self.outputs = {
'Out':
self.inputs['X'].prod(axis=tuple(self.attrs['dim'])).astype(np.bool)
'Out': self.inputs['X'].prod(
axis=tuple(self.attrs['dim'])).astype(np.bool_)
}
......
......@@ -66,7 +66,7 @@ class TestSizeOp3(TestSizeOp):
class TestSizeOp4(TestSizeOp):
def config(self):
self.shape = [2**10]
self.dtype = np.bool
self.dtype = np.bool_
class TestSizeOp5(TestSizeOp):
......
......@@ -193,7 +193,7 @@ class TestNPUTrilTriu_bool(TestNPUTrilTriu):
self.check_output_with_place(self.place)
def init_dtype(self):
self.dtype = np.bool
self.dtype = np.bool_
def initTestCase(self):
self.real_op_type = np.random.choice(['triu', 'tril'])
......
......@@ -35,7 +35,7 @@ class TestUpdateLossScalingOpMinLossScalingBad(TestUpdateLossScalingOpBad):
self.init()
fluid.core.globals()['FLAGS_min_loss_scaling'] = 1639
found_inf = np.array([True], dtype=np.bool)
found_inf = np.array([True], dtype=np.bool_)
x = np.random.random((1024, 1024)).astype(self.dtype)
i = np.random.randint(0, 1024, 1)
j = np.random.randint(0, 1024, 1)
......
......@@ -32,7 +32,7 @@ class TestUpdateLossScalingOp(OpTest):
self.place = paddle.NPUPlace(0)
self.init()
found_inf = np.array([False], dtype=np.bool)
found_inf = np.array([False], dtype=np.bool_)
x = np.random.random((1024, 1024)).astype(self.dtype)
self.inputs = {
......@@ -79,7 +79,7 @@ class TestUpdateLossScalingOpBad(TestUpdateLossScalingOp):
self.place = paddle.NPUPlace(0)
self.init()
found_inf = np.array([True], dtype=np.bool)
found_inf = np.array([True], dtype=np.bool_)
x = np.random.random((1024, 1024)).astype(self.dtype)
i = np.random.randint(0, 1024, 1)
j = np.random.randint(0, 1024, 1)
......
......@@ -439,7 +439,7 @@ class OpTest(unittest.TestCase):
np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
np.dtype(np.bool)
np.dtype(np.bool_)
]
# check the dtype in dtype_list in order, select the first dtype that in dtype_set
for dtype in dtype_list:
......
......@@ -128,7 +128,7 @@ class TestAssignOApi(unittest.TestCase):
def test_assign_NumpyArray(self):
with fluid.dygraph.guard():
array = np.random.random(size=(100, 10)).astype(np.bool)
array = np.random.random(size=(100, 10)).astype(np.bool_)
result1 = paddle.zeros(shape=[3, 3], dtype='float32')
paddle.assign(array, result1)
self.assertTrue(np.allclose(result1.numpy(), array))
......
......@@ -35,7 +35,7 @@ def bipartite_match(distance, match_indices, match_dist):
match_sorted = sorted(match_pair, key=lambda tup: tup[2], reverse=True)
row_indices = -1 * np.ones((row, ), dtype=np.int)
row_indices = -1 * np.ones((row, ), dtype=np.int_)
idx = 0
for i, j, dist in match_sorted:
......@@ -69,7 +69,7 @@ def batch_bipartite_match(distance, lod, match_type=None, dist_threshold=None):
"""
n = len(lod)
m = distance.shape[1]
match_indices = -1 * np.ones((n, m), dtype=np.int)
match_indices = -1 * np.ones((n, m), dtype=np.int_)
match_dist = np.zeros((n, m), dtype=np.float32)
cur_offset = 0
for i in range(n):
......
......@@ -229,7 +229,7 @@ class TestBoxCoderOpWithVariance(OpTest):
self.attrs = {
'code_type': 'decode_center_size',
'box_normalized': False,
'variance': prior_box_var.astype(np.float).flatten(),
'variance': prior_box_var.astype(np.float64).flatten(),
'axis': axis
}
self.outputs = {'OutputBox': output_box}
......
......@@ -233,8 +233,8 @@ def create_paddle_case(op_type, callback):
op = eval("paddle.%s" % (self.op_type))
out = op(x, y)
exe = paddle.static.Executor(self.place)
input_x = np.array([True, False, True]).astype(np.bool)
input_y = np.array([True, True, False]).astype(np.bool)
input_x = np.array([True, False, True]).astype(np.bool_)
input_y = np.array([True, True, False]).astype(np.bool_)
real_result = callback(input_x, input_y)
res, = exe.run(feed={"x": input_x,
"y": input_y},
......@@ -249,8 +249,8 @@ def create_paddle_case(op_type, callback):
op = eval("paddle.%s" % (self.op_type))
out = op(x, y)
exe = paddle.static.Executor(self.place)
input_x = np.array([True, False, True]).astype(np.bool)
input_y = np.array([True]).astype(np.bool)
input_x = np.array([True, False, True]).astype(np.bool_)
input_y = np.array([True]).astype(np.bool_)
real_result = callback(input_x, input_y)
res, = exe.run(feed={"x": input_x,
"y": input_y},
......
......@@ -69,7 +69,7 @@ class TestDensityPriorBoxOp(OpTest):
self.batch_size = 10
self.variances = [0.1, 0.1, 0.2, 0.2]
self.variances = np.array(self.variances, dtype=np.float).flatten()
self.variances = np.array(self.variances, dtype=np.float64).flatten()
self.clip = True
self.num_priors = 0
......
......@@ -27,7 +27,7 @@ def compare(ref, res, atol, rtol):
ref = np.array(ref).flatten()
res = np.array(res).flatten()
tmp_ref = ref.astype(np.float)
tmp_ref = ref.astype(np.float64)
tol = atol + rtol * abs(tmp_ref)
diff = abs(res - ref)
......
......@@ -79,8 +79,8 @@ def poly2mask(xy, k, h, w):
u.extend([int(xs + s * t + .5) for t in ts])
k = len(u)
x = np.zeros((k), np.int)
y = np.zeros((k), np.int)
x = np.zeros((k), np.int_)
y = np.zeros((k), np.int_)
m = 0
for j in six.moves.xrange(1, k):
if u[j] != u[j - 1]:
......@@ -116,7 +116,7 @@ def poly2mask(xy, k, h, w):
b[m - 1] += a[j]
j += 1
mask = decode(b, m)
mask = np.array(mask, dtype=np.int).reshape((w, h))
mask = np.array(mask, dtype=np.int_).reshape((w, h))
mask = mask.transpose((1, 0))
return mask
......
......@@ -146,7 +146,7 @@ class TestComplexKronOp(OpTest):
self.grad_y = self.get_grad_y_by_numpy()
def get_grad_x_by_numpy(self):
grad_x = np.zeros(self.x_shape, np.complex)
grad_x = np.zeros(self.x_shape, np.complex128)
for x_i in range(self.x_shape[0]):
for x_j in range(self.x_shape[1]):
for i in range(self.y_shape[0]):
......@@ -158,7 +158,7 @@ class TestComplexKronOp(OpTest):
return grad_x
def get_grad_y_by_numpy(self):
grad_y = np.zeros(self.y_shape, np.complex)
grad_y = np.zeros(self.y_shape, np.complex128)
for y_i in range(self.y_shape[0]):
for y_j in range(self.y_shape[1]):
for x_i in range(self.x_shape[0]):
......
......@@ -39,7 +39,7 @@ class TestOnesLikeAPI(unittest.TestCase):
# 'bool', 'float32', 'float64', 'int32', 'int64'
out1 = ones_like(x)
out2 = ones_like(x, np.bool)
out2 = ones_like(x, np.bool_)
out3 = ones_like(x, 'float64')
out4 = ones_like(x, 'int32')
out5 = ones_like(x, 'int64')
......@@ -52,7 +52,7 @@ class TestOnesLikeAPI(unittest.TestCase):
fetch_list=[out1, out2, out3, out4, out5])
for i, dtype in enumerate(
[np.float32, np.bool, np.float64, np.int32, np.int64]):
[np.float32, np.bool_, np.float64, np.int32, np.int64]):
self.assertEqual(outs[i].dtype, dtype)
self.assertEqual((outs[i] == np.ones(shape, dtype)).all(), True)
......@@ -64,7 +64,7 @@ class TestOnesLikeImpeartive(unittest.TestCase):
) else fluid.CPUPlace()
paddle.disable_static(place)
x = paddle.to_tensor(np.ones(shape))
for dtype in [np.bool, np.float32, np.float64, np.int32, np.int64]:
for dtype in [np.bool_, np.float32, np.float64, np.int32, np.int64]:
out = ones_like(x, dtype)
self.assertEqual((out.numpy() == np.ones(shape, dtype)).all(), True)
......
......@@ -80,9 +80,9 @@ class TestPriorBoxOp(OpTest):
self.set_min_max_aspect_ratios_order()
self.real_aspect_ratios = [1, 2.0, 1.0 / 2.0, 3.0, 1.0 / 3.0]
self.aspect_ratios = np.array(
self.aspect_ratios, dtype=np.float).flatten()
self.aspect_ratios, dtype=np.float64).flatten()
self.variances = [0.1, 0.1, 0.2, 0.2]
self.variances = np.array(self.variances, dtype=np.float).flatten()
self.variances = np.array(self.variances, dtype=np.float64).flatten()
self.clip = True
self.num_priors = len(self.real_aspect_ratios) * len(self.min_sizes)
......
......@@ -905,7 +905,7 @@ class TestAllAPI(unittest.TestCase):
paddle.disable_static()
for place in self.places:
with fluid.dygraph.guard(place):
np_x = np.random.randint(0, 2, (12, 10)).astype(np.bool)
np_x = np.random.randint(0, 2, (12, 10)).astype(np.bool_)
x = fluid.layers.assign(np_x)
x = fluid.layers.cast(x, 'bool')
......@@ -960,7 +960,7 @@ class TestAnyAPI(unittest.TestCase):
paddle.disable_static()
for place in self.places:
with fluid.dygraph.guard(place):
np_x = np.random.randint(0, 2, (12, 10)).astype(np.bool)
np_x = np.random.randint(0, 2, (12, 10)).astype(np.bool_)
x = fluid.layers.assign(np_x)
x = fluid.layers.cast(x, 'bool')
......
......@@ -81,7 +81,7 @@ def normalize(S, norm=np.inf, axis=0, threshold=None, fill=None):
raise Exception("Input must be finite")
# All norms only depend on magnitude, let's do that first
mag = np.abs(S).astype(np.float)
mag = np.abs(S).astype(np.float64)
# For max/min norms, filling with 1 works
fill_norm = 1
......
......@@ -23,7 +23,7 @@ class TestUpdateLossScalingOp(OpTest):
def setUp(self):
self.op_type = "update_loss_scaling"
self.init()
found_inf = np.array([False], dtype=np.bool)
found_inf = np.array([False], dtype=np.bool_)
x = np.random.random((1024, 1024)).astype(self.dtype)
self.inputs = {
......@@ -64,7 +64,7 @@ class TestUpdateLossScalingOpBad(TestUpdateLossScalingOp):
def setUp(self):
self.op_type = "update_loss_scaling"
self.init()
found_inf = np.array([True], dtype=np.bool)
found_inf = np.array([True], dtype=np.bool_)
x = np.random.random((1024, 1024)).astype(self.dtype)
i = np.random.randint(0, 1024, 1)
j = np.random.randint(0, 1024, 1)
......
......@@ -41,7 +41,7 @@ class TestZerosLikeAPI(unittest.TestCase):
with program_guard(train_program, startup_program):
x = paddle.fluid.data('X', shape)
out1 = zeros_like(x)
out2 = zeros_like(x, np.bool)
out2 = zeros_like(x, np.bool_)
out3 = zeros_like(x, 'float64')
out4 = zeros_like(x, 'int32')
out5 = zeros_like(x, 'int64')
......@@ -52,7 +52,7 @@ class TestZerosLikeAPI(unittest.TestCase):
feed={'X': np.ones(shape).astype('float32')},
fetch_list=[out1, out2, out3, out4, out5])
for (i, dtype) in enumerate(
[np.float32, np.bool, np.float64, np.int32, np.int64]):
[np.float32, np.bool_, np.float64, np.int32, np.int64]):
self.assertEqual(outs[i].dtype, dtype)
self.assertEqual((outs[i] == np.zeros(shape, dtype)).all(), True)
......@@ -68,7 +68,7 @@ class TestZerosLikeImpeartive(unittest.TestCase):
if core.is_compiled_with_cuda() else fluid.CPUPlace())
paddle.disable_static(place)
x = paddle.to_tensor(np.ones(shape))
for dtype in [np.bool, np.float32, np.float64, np.int32, np.int64]:
for dtype in [np.bool_, np.float32, np.float64, np.int32, np.int64]:
out = zeros_like(x, dtype)
self.assertEqual((out.numpy() == np.zeros(shape, dtype)).all(),
True)
......
......@@ -223,8 +223,8 @@ def create_paddle_case(op_type, callback):
op = eval("paddle.%s" % (self.op_type))
out = op(x, y)
exe = paddle.static.Executor(self.place)
input_x = np.array([True, False, True]).astype(np.bool)
input_y = np.array([True, True, False]).astype(np.bool)
input_x = np.array([True, False, True]).astype(np.bool_)
input_y = np.array([True, True, False]).astype(np.bool_)
real_result = callback(input_x, input_y)
res, = exe.run(feed={"x": input_x,
"y": input_y},
......@@ -239,8 +239,8 @@ def create_paddle_case(op_type, callback):
op = eval("paddle.%s" % (self.op_type))
out = op(x, y)
exe = paddle.static.Executor(self.place)
input_x = np.array([True, False, True]).astype(np.bool)
input_y = np.array([True]).astype(np.bool)
input_x = np.array([True, False, True]).astype(np.bool_)
input_y = np.array([True]).astype(np.bool_)
real_result = callback(input_x, input_y)
res, = exe.run(feed={"x": input_x,
"y": input_y},
......
......@@ -95,9 +95,10 @@ class XPUTestPriorBoxOp(XPUOpTestWrapper):
self.set_min_max_aspect_ratios_order()
self.real_aspect_ratios = [1, 2.0, 1.0 / 2.0, 3.0, 1.0 / 3.0]
self.aspect_ratios = np.array(
self.aspect_ratios, dtype=np.float).flatten()
self.aspect_ratios, dtype=np.float64).flatten()
self.variances = [0.1, 0.1, 0.2, 0.2]
self.variances = np.array(self.variances, dtype=np.float).flatten()
self.variances = np.array(
self.variances, dtype=np.float64).flatten()
self.clip = True
self.num_priors = len(self.real_aspect_ratios) * len(self.min_sizes)
......
......@@ -29,7 +29,7 @@ class TestUpdateLossScalingOp(XPUOpTest):
def setUp(self):
self.op_type = "update_loss_scaling"
self.init()
found_inf = np.array([False], dtype=np.bool)
found_inf = np.array([False], dtype=np.bool_)
x = np.random.random((1024, 1024)).astype(self.dtype)
self.inputs = {
......@@ -72,7 +72,7 @@ class TestUpdateLossScalingOpBad(TestUpdateLossScalingOp):
def setUp(self):
self.op_type = "update_loss_scaling"
self.init()
found_inf = np.array([True], dtype=np.bool)
found_inf = np.array([True], dtype=np.bool_)
x = np.random.random((1024, 1024)).astype(self.dtype)
i = np.random.randint(0, 1024, 1)
j = np.random.randint(0, 1024, 1)
......
......@@ -75,7 +75,7 @@ class _ConvNd(Layer):
format(valid_padding_modes, padding_mode))
if padding_mode in {'reflect', 'replicate', 'circular'
} and not isinstance(padding, np.int):
} and not isinstance(padding, int):
raise TypeError(
"when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
)
......
......@@ -122,7 +122,7 @@ def to_tensor(data, dtype=None, place=None, stop_gradient=True):
data = np.array([data])
elif isinstance(data, (list, tuple)):
data = np.array(data)
if data.dtype == np.object:
if data.dtype == np.object_:
raise ValueError(
"\n\tFaild to convert input data to a regular ndarray :\n\t - Usually "
"this means the input data contains nested lists with different lengths. "
......
......@@ -348,7 +348,7 @@ def norm(x, p='fro', axis=None, keepdim=False, name=None):
reduce_all = True if axis == None or axis == [] or asvector == True else False
axis = axis if axis != None and axis != [] else [0]
reduce_type = 'reduce_max' if porder == np.float(
reduce_type = 'reduce_max' if porder == np.float64(
'inf') else 'reduce_min'
helper.append_op(
type=reduce_type,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册