未验证 提交 683f152a 编写于 作者: A Aurelius84 提交者: GitHub

[OP]Fix adamw not registered into AllKernels (#42391)

上级 e66d91b3
...@@ -12,168 +12,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,168 +12,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/framework/op_version_registry.h" #include "paddle/fluid/operators/optimizers/adam_op.h"
#include "paddle/fluid/framework/infershape_utils.h" #include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/core/infermeta_utils.h" #include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h" #include "paddle/phi/infermeta/multiary.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
class AdamOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const {
auto input_data_type =
OperatorWithKernel::IndicateVarDataType(ctx, "Param");
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name, const framework::Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const {
if (var_name == "Beta1Pow" || var_name == "Beta2Pow" ||
var_name == "SkipUpdate") {
return expected_kernel_type;
} else {
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
}
};
class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
AddInput("LearningRate", "(Tensor) Learning rate");
AddInput("Moment1", "(Tensor) Input first moment");
AddInput("Moment2", "(Tensor) Input second moment");
AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator");
AddInput("Beta1Tensor",
"(Tensor<float32>, optional) If provided, Adam will use this "
"as beta1, this has a higher priority than attr(beta1), the "
"shape of this tensor MUST BE [1].")
.AsDispensable();
AddInput("Beta2Tensor",
"(Tensor<float32>, optional) If provided, Adam will use this "
"as beta2, this has a higher priority than attr(beta2), the "
"shape of this tensor MUST BE [1].")
.AsDispensable();
AddInput("EpsilonTensor",
"(Tensor<float32>, optional) If provided, Adam will use this "
"as epsilon, this has a higher priority than attr(epsilon), the "
"shape of this tensor MUST BE [1].")
.AsDispensable();
AddInput("MasterParam", "FP32 master weight for AMP.").AsDispensable();
AddInput("SkipUpdate", "(Tensor<bool>, optional), Skip the update or not.")
.AsDispensable();
AddOutput("ParamOut", "(Tensor) Output parameter");
AddOutput("Moment1Out", "(Tensor) Output first moment");
AddOutput("Moment2Out", "(Tensor) Output second moment");
AddOutput("Beta1PowOut", "(Tensor) Output beta1 power accumulator");
AddOutput("Beta2PowOut", "(Tensor) Output beta2 power accumulator");
AddOutput("MasterParamOut",
"The updated FP32 master weight for AMP. "
"It shared memory with Input(MasterParam).")
.AsDispensable();
AddAttr<float>("beta1",
"(float, default 0.9) "
"Exponential decay rate for the "
"first moment estimates.")
.SetDefault(0.9f);
AddAttr<float>("beta2",
"(float, default 0.999) "
"exponential decay rate for the "
"second moment estimates.")
.SetDefault(0.999f);
AddAttr<float>("epsilon",
"(float, default 1.0e-8) "
"Constant for numerical stability")
.SetDefault(1.0e-8f);
AddAttr<bool>(
"lazy_mode",
"(bool, default false) "
"only update the parameter that has gradient in sparse update")
.SetDefault(false);
AddAttr<int64_t>("min_row_size_to_use_multithread",
"(int64_t, default 0) "
"when not zero, if param row size is larger then "
"min_row_size_to_use_multithread and "
"inner_op_parallelism is larger then 0, sparse update "
"will run in multithread mode")
.SetDefault(1000);
AddAttr<bool>("multi_precision",
"(bool, default false) "
"Whether to use multi-precision during weight updating.")
.SetDefault(false);
// TODO(zhiqiu): We could set Beta1PowOut and Beta2PowOut
// as dispensable since they are not used when use_global_beta_pow is true.
AddAttr<bool>("use_global_beta_pow",
"(bool, default false) "
"Whether to use global beta_pow for whole model instead of "
"creating beta_pow for each parameter.")
.SetDefault(false);
AddComment(R"DOC(
Adam Optimizer.
This implements the Adam optimizer from Section 2 of the Adam
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
Adam updates:
$$
moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\
moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\
learning\_rate = learning\_rate *
\frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
$$
)DOC");
}
};
class AdamWOp : public AdamOp {
using AdamOp::AdamOp;
};
class AdamWOpMaker : public AdamOpMaker {
public:
void Make() {
AdamOpMaker::Make();
AddAttr<float>("lr_ratio",
"(float, default 1.0) "
"layerwise learning rate decay")
.SetDefault(1.0f);
AddAttr<float>("coeff",
"(float, default 0.01) "
"coeff of the weight decay")
.SetDefault(0.01f);
AddAttr<bool>("with_decay",
"(bool, default false) "
"whether to do weight decay")
.SetDefault(false);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators; namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(adam, AdamInferMetaFunctor, DECLARE_INFER_SHAPE_FUNCTOR(adam, AdamInferMetaFunctor,
...@@ -185,14 +30,6 @@ REGISTER_OPERATOR( ...@@ -185,14 +30,6 @@ REGISTER_OPERATOR(
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>, paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
AdamInferMetaFunctor); AdamInferMetaFunctor);
DECLARE_INFER_SHAPE_FUNCTOR(adamw, AdamwInferMetaFunctor,
PD_INFER_META(phi::AdamwInferMeta));
REGISTER_OPERATOR(
adamw, ops::AdamWOp, ops::AdamWOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
AdamwInferMetaFunctor);
REGISTER_OP_VERSION(adam) REGISTER_OP_VERSION(adam)
.AddCheckpoint( .AddCheckpoint(
R"ROC( R"ROC(
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
class AdamOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const {
auto input_data_type =
OperatorWithKernel::IndicateVarDataType(ctx, "Param");
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name, const framework::Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const {
if (var_name == "Beta1Pow" || var_name == "Beta2Pow" ||
var_name == "SkipUpdate") {
return expected_kernel_type;
} else {
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
}
};
class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Param", "(Tensor) Input parameter");
AddInput("Grad", "(Tensor) Input gradient");
AddInput("LearningRate", "(Tensor) Learning rate");
AddInput("Moment1", "(Tensor) Input first moment");
AddInput("Moment2", "(Tensor) Input second moment");
AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator");
AddInput("Beta1Tensor",
"(Tensor<float32>, optional) If provided, Adam will use this "
"as beta1, this has a higher priority than attr(beta1), the "
"shape of this tensor MUST BE [1].")
.AsDispensable();
AddInput("Beta2Tensor",
"(Tensor<float32>, optional) If provided, Adam will use this "
"as beta2, this has a higher priority than attr(beta2), the "
"shape of this tensor MUST BE [1].")
.AsDispensable();
AddInput("EpsilonTensor",
"(Tensor<float32>, optional) If provided, Adam will use this "
"as epsilon, this has a higher priority than attr(epsilon), the "
"shape of this tensor MUST BE [1].")
.AsDispensable();
AddInput("MasterParam", "FP32 master weight for AMP.").AsDispensable();
AddInput("SkipUpdate", "(Tensor<bool>, optional), Skip the update or not.")
.AsDispensable();
AddOutput("ParamOut", "(Tensor) Output parameter");
AddOutput("Moment1Out", "(Tensor) Output first moment");
AddOutput("Moment2Out", "(Tensor) Output second moment");
AddOutput("Beta1PowOut", "(Tensor) Output beta1 power accumulator");
AddOutput("Beta2PowOut", "(Tensor) Output beta2 power accumulator");
AddOutput("MasterParamOut",
"The updated FP32 master weight for AMP. "
"It shared memory with Input(MasterParam).")
.AsDispensable();
AddAttr<float>("beta1",
"(float, default 0.9) "
"Exponential decay rate for the "
"first moment estimates.")
.SetDefault(0.9f);
AddAttr<float>("beta2",
"(float, default 0.999) "
"exponential decay rate for the "
"second moment estimates.")
.SetDefault(0.999f);
AddAttr<float>("epsilon",
"(float, default 1.0e-8) "
"Constant for numerical stability")
.SetDefault(1.0e-8f);
AddAttr<bool>(
"lazy_mode",
"(bool, default false) "
"only update the parameter that has gradient in sparse update")
.SetDefault(false);
AddAttr<int64_t>("min_row_size_to_use_multithread",
"(int64_t, default 0) "
"when not zero, if param row size is larger then "
"min_row_size_to_use_multithread and "
"inner_op_parallelism is larger then 0, sparse update "
"will run in multithread mode")
.SetDefault(1000);
AddAttr<bool>("multi_precision",
"(bool, default false) "
"Whether to use multi-precision during weight updating.")
.SetDefault(false);
// TODO(zhiqiu): We could set Beta1PowOut and Beta2PowOut
// as dispensable since they are not used when use_global_beta_pow is true.
AddAttr<bool>("use_global_beta_pow",
"(bool, default false) "
"Whether to use global beta_pow for whole model instead of "
"creating beta_pow for each parameter.")
.SetDefault(false);
AddComment(R"DOC(
Adam Optimizer.
This implements the Adam optimizer from Section 2 of the Adam
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
Adam updates:
$$
moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\
moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\
learning\_rate = learning\_rate *
\frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
$$
)DOC");
}
};
} // namespace operators
} // namespace paddle
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/optimizers/adam_op.h"
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"
namespace paddle {
namespace operators {
class AdamWOp : public AdamOp {
using AdamOp::AdamOp;
};
class AdamWOpMaker : public AdamOpMaker {
public:
void Make() {
AdamOpMaker::Make();
AddAttr<float>("lr_ratio",
"(float, default 1.0) "
"layerwise learning rate decay")
.SetDefault(1.0f);
AddAttr<float>("coeff",
"(float, default 0.01) "
"coeff of the weight decay")
.SetDefault(0.01f);
AddAttr<bool>("with_decay",
"(bool, default false) "
"whether to do weight decay")
.SetDefault(false);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(adamw, AdamwInferMetaFunctor,
PD_INFER_META(phi::AdamwInferMeta));
REGISTER_OPERATOR(
adamw, ops::AdamWOp, ops::AdamWOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
AdamwInferMetaFunctor);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册