Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
67ca9d45
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
67ca9d45
编写于
10月 29, 2022
作者:
R
Roc
提交者:
GitHub
10月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[INCUBATE] Add dist save/load for sharding stage2 (#46908)
上级
c036c5c0
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
998 addition
and
1 deletion
+998
-1
python/paddle/fluid/tests/unittests/collective/fleet/CMakeLists.txt
...dle/fluid/tests/unittests/collective/fleet/CMakeLists.txt
+9
-0
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_dist_save_load.py
...ests/unittests/collective/fleet/dygraph_dist_save_load.py
+419
-0
python/paddle/fluid/tests/unittests/collective/fleet/test_dygraph_dist_save_load.py
...unittests/collective/fleet/test_dygraph_dist_save_load.py
+38
-0
python/paddle/fluid/tests/unittests/collective/fleet/testslist.csv
...ddle/fluid/tests/unittests/collective/fleet/testslist.csv
+2
-1
python/paddle/incubate/distributed/utils/io/__init__.py
python/paddle/incubate/distributed/utils/io/__init__.py
+16
-0
python/paddle/incubate/distributed/utils/io/dist_load.py
python/paddle/incubate/distributed/utils/io/dist_load.py
+120
-0
python/paddle/incubate/distributed/utils/io/dist_save.py
python/paddle/incubate/distributed/utils/io/dist_save.py
+392
-0
python/setup.py.in
python/setup.py.in
+2
-0
未找到文件。
python/paddle/fluid/tests/unittests/collective/fleet/CMakeLists.txt
浏览文件 @
67ca9d45
...
...
@@ -942,4 +942,13 @@ if(LOCAL_ALL_ARCH AND LOCAL_ALL_PLAT)
py_test_modules
(
test_fleet_log MODULES test_fleet_log ENVS
"http_proxy=;https_proxy=;PYTHONPATH=../..:
${
PADDLE_BINARY_DIR
}
/python"
)
set_tests_properties
(
test_fleet_log PROPERTIES TIMEOUT
"200"
LABELS
"RUN_TYPE=DIST"
)
endif
()
if
((
WITH_GPU
)
AND
(
LINUX
))
py_test_modules
(
test_dygraph_dist_save_load MODULES test_dygraph_dist_save_load ENVS
"http_proxy=;https_proxy=;PYTHONPATH=../..:
${
PADDLE_BINARY_DIR
}
/python"
)
set_tests_properties
(
test_dygraph_dist_save_load
PROPERTIES TIMEOUT
"200"
LABELS
"RUN_TYPE=DIST"
)
endif
()
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_dist_save_load.py
0 → 100644
浏览文件 @
67ca9d45
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
shutil
import
numpy
as
np
import
tempfile
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.dygraph.nn
import
Linear
from
paddle.distributed
import
fleet
from
paddle.distributed.fleet.meta_parallel.sharding.group_sharded_optimizer_stage2
import
(
GroupShardedOptimizerStage2
,
)
from
paddle.distributed.fleet.meta_parallel.sharding.group_sharded_stage2
import
(
GroupShardedStage2
,
)
import
sys
import
subprocess
import
argparse
from
paddle
import
distributed
as
dist
from
paddle.incubate.distributed.utils.io
import
save
,
load
print
(
load
)
epoch
=
2
linear_size
=
1000
class
MLP
(
fluid
.
Layer
):
def
__init__
(
self
,
linear_size
=
1000
,
param_attr
=
None
,
bias_attr
=
None
):
super
(
MLP
,
self
).
__init__
()
self
.
_linear1
=
Linear
(
linear_size
,
linear_size
)
self
.
_linear2
=
Linear
(
linear_size
,
linear_size
)
self
.
_linear3
=
Linear
(
linear_size
,
10
)
def
forward
(
self
,
inputs
):
y
=
self
.
_linear1
(
inputs
)
y
=
self
.
_linear2
(
y
)
y
=
self
.
_linear3
(
y
)
return
y
def
reader_decorator
(
linear_size
=
1000
):
def
__reader__
():
for
_
in
range
(
100
):
img
=
np
.
random
.
rand
(
linear_size
).
astype
(
'float32'
)
label
=
np
.
ones
(
1
).
astype
(
'int64'
)
yield
img
,
label
return
__reader__
def
optimizer_setting
(
model
,
use_pure_fp16
,
opt_group
=
False
):
clip
=
paddle
.
nn
.
ClipGradByGlobalNorm
(
clip_norm
=
1.0
)
optimizer
=
paddle
.
optimizer
.
AdamW
(
parameters
=
[
{
"params"
:
model
.
parameters
(),
}
]
if
opt_group
else
model
.
parameters
(),
learning_rate
=
0.001
,
weight_decay
=
0.00001
,
grad_clip
=
clip
,
multi_precision
=
use_pure_fp16
,
)
return
optimizer
def
train_mlp
(
model
,
sharding_stage
,
batch_size
=
100
,
use_pure_fp16
=
False
,
accumulate_grad
=
False
,
opt_group
=
False
,
save_model
=
False
,
test_minimize
=
False
,
opt_state
=
None
,
):
if
sharding_stage
!=
"dp"
:
group
=
paddle
.
distributed
.
new_group
([
0
,
1
],
backend
=
"nccl"
)
if
opt_group
:
optimizer
=
optimizer_setting
(
model
=
model
,
use_pure_fp16
=
use_pure_fp16
,
opt_group
=
opt_group
)
else
:
optimizer
=
optimizer_setting
(
model
=
model
,
use_pure_fp16
=
use_pure_fp16
)
if
sharding_stage
==
2
:
optimizer
=
GroupShardedOptimizerStage2
(
params
=
optimizer
.
_parameter_list
,
optim
=
optimizer
,
group
=
group
)
model
=
GroupShardedStage2
(
model
,
optimizer
,
group
=
group
,
buffer_max_size
=
2
**
21
)
model
.
_set_reduce_overlap
(
True
)
optimizer
.
_set_broadcast_overlap
(
True
,
model
)
else
:
model
=
paddle
.
DataParallel
(
model
)
# check optimizer.minimize() error
if
test_minimize
:
try
:
optimizer
.
minimize
()
except
:
print
(
"====== Find sharding_stage2_optimizer.minimize() error ======"
)
return
train_reader
=
paddle
.
batch
(
reader_decorator
(),
batch_size
=
batch_size
,
drop_last
=
True
)
train_loader
=
paddle
.
io
.
DataLoader
.
from_generator
(
capacity
=
32
,
use_double_buffer
=
True
,
iterable
=
True
,
return_list
=
True
,
use_multiprocess
=
True
,
)
train_loader
.
set_sample_list_generator
(
train_reader
)
if
sharding_stage
==
2
:
model
.
to
(
device
=
"gpu"
)
if
opt_state
is
not
None
:
optimizer
.
set_state_dict
(
opt_state
)
for
eop
in
range
(
epoch
):
model
.
train
()
for
batch_id
,
data
in
enumerate
(
train_loader
()):
img
,
label
=
data
label
.
stop_gradient
=
True
img
.
stop_gradient
=
True
out
=
model
(
img
)
loss
=
paddle
.
nn
.
functional
.
cross_entropy
(
input
=
out
,
label
=
label
)
avg_loss
=
paddle
.
mean
(
x
=
loss
.
cast
(
dtype
=
paddle
.
float32
))
if
batch_size
==
20
:
avg_loss
=
avg_loss
/
5
avg_loss
.
backward
()
if
not
accumulate_grad
:
optimizer
.
step
()
optimizer
.
clear_grad
()
if
accumulate_grad
:
optimizer
.
step
()
optimizer
.
clear_grad
()
paddle
.
device
.
cuda
.
synchronize
()
if
save_model
:
return
model
,
optimizer
return
model
.
parameters
()
def
save_model
(
model
,
output_dir
,
**
configs
):
configs
[
"save_model"
]
=
True
model
,
opt
=
train_mlp
(
model
,
**
configs
)
model_file
=
os
.
path
.
join
(
output_dir
,
f
"rank
{
dist
.
get_rank
()
}
model.pdparams"
)
opt_file
=
os
.
path
.
join
(
output_dir
,
f
"rank
{
dist
.
get_rank
()
}
model.pdopt"
)
g_model_file
=
os
.
path
.
join
(
output_dir
,
f
"rank
{
dist
.
get_rank
()
}
g_model.pdparams"
)
g_opt_file
=
os
.
path
.
join
(
output_dir
,
f
"rank
{
dist
.
get_rank
()
}
g_model.pdopt"
)
paddle
.
save
(
model
.
state_dict
(),
model_file
)
paddle
.
save
(
opt
.
state_dict
(),
opt_file
)
save
(
model
.
state_dict
(),
g_model_file
,
gather_to
=
[
0
,
1
],
state_type
=
"params"
)
save
(
opt
.
state_dict
(),
g_opt_file
,
gather_to
=
[
0
,
1
],
state_type
=
"opt"
)
def
load_mode
(
model
,
model_state_dict
,
output_param_path
,
**
configs
):
configs
[
"save_model"
]
=
False
model
.
set_state_dict
(
model_state_dict
)
params
=
train_mlp
(
model
,
**
configs
)
paddle
.
save
(
params
,
output_param_path
)
def
step_check
(
path1
,
path2
):
m1
=
paddle
.
load
(
path1
)
m2
=
paddle
.
load
(
path2
)
for
v1
,
v2
in
zip
(
m1
,
m2
):
assert
np
.
allclose
(
v1
.
numpy
(),
v2
.
numpy
())
print
(
f
"value same:
{
v1
.
name
}
"
)
def
step_save
(
strategy
,
output_dir
,
seed
):
python_exe
=
sys
.
executable
# save data
os
.
makedirs
(
output_dir
+
"/logs"
,
exist_ok
=
True
)
filename
=
os
.
path
.
basename
(
__file__
)
cmd
=
(
f
"
{
python_exe
}
-m paddle.distributed.launch --log_dir
{
output_dir
}
/logs"
f
" --gpus 0,1
{
filename
}
--cmd save --strategy
{
strategy
}
--output_dir
{
output_dir
}
--seed
{
seed
}
"
)
p
=
subprocess
.
Popen
(
cmd
.
split
())
p
.
communicate
()
assert
p
.
poll
()
==
0
def
step_load
(
saved_strategy
,
curent_strateggy
,
saved_dir
,
load_way
,
output_path
,
seed
):
python_exe
=
sys
.
executable
os
.
makedirs
(
f
"
{
saved_dir
}
/load/logs"
,
exist_ok
=
True
)
filename
=
os
.
path
.
basename
(
__file__
)
# load dp
cmd
=
(
f
"
{
python_exe
}
-m paddle.distributed.launch --log_dir
{
saved_dir
}
/load/logs"
f
" --gpus 0,1
{
filename
}
--cmd load --strategy
{
curent_strateggy
}
--output_dir
{
saved_dir
}
--load_dir
{
saved_dir
}
/
{
saved_strategy
}
/save --load_way
{
load_way
}
"
f
" --output_param_path
{
output_path
}
--seed
{
seed
}
"
)
p
=
subprocess
.
Popen
(
cmd
.
split
())
p
.
communicate
()
assert
p
.
poll
()
==
0
def
test_save_load
(
args
):
np
.
random
.
seed
(
args
.
seed
)
paddle
.
seed
(
args
.
seed
)
if
args
.
cmd
==
"main"
:
run_case
(
args
)
return
paddle
.
distributed
.
init_parallel_env
()
strategy
=
fleet
.
DistributedStrategy
()
if
args
.
strategy
==
"dp"
:
strategy
.
hybrid_configs
=
{
"dp_degree"
:
2
,
"mp_degree"
:
1
,
"pp_degree"
:
1
,
"sharding_degree"
:
1
,
}
elif
args
.
strategy
==
"sharding_stage2"
:
strategy
.
hybrid_configs
=
{
"dp_degree"
:
1
,
"mp_degree"
:
1
,
"pp_degree"
:
1
,
"sharding_degree"
:
2
,
}
else
:
raise
ValueError
(
f
"Not supported strategy:
{
args
.
strategy
}
"
)
fleet
.
init
(
is_collective
=
True
,
strategy
=
strategy
)
fleet
.
set_log_level
(
"DEBUG"
)
mlp1
=
MLP
()
output_dir
=
os
.
path
.
join
(
args
.
output_dir
,
args
.
strategy
,
args
.
cmd
)
os
.
makedirs
(
output_dir
,
exist_ok
=
True
)
if
args
.
cmd
.
lower
()
==
"save"
:
if
args
.
strategy
==
"dp"
:
# DP VS stage2
save_model
(
mlp1
,
output_dir
,
sharding_stage
=
"dp"
,
use_pure_fp16
=
False
,
opt_group
=
False
,
save_model
=
True
,
)
elif
args
.
strategy
==
"sharding_stage2"
:
save_model
(
mlp1
,
output_dir
,
sharding_stage
=
2
,
use_pure_fp16
=
False
,
opt_group
=
False
,
save_model
=
True
,
)
else
:
raise
ValueError
(
f
"Not supported
{
args
.
strategy
}
"
)
elif
args
.
cmd
.
lower
()
==
"load"
:
output_dir
=
args
.
load_dir
model_file
=
os
.
path
.
join
(
output_dir
,
f
"rank
{
dist
.
get_rank
()
}
model.pdparams"
)
opt_file
=
os
.
path
.
join
(
output_dir
,
f
"rank
{
dist
.
get_rank
()
}
model.pdopt"
)
g_model_file
=
os
.
path
.
join
(
output_dir
,
f
"rank
{
args
.
gather_to
}
g_model.pdparams"
)
g_opt_file
=
os
.
path
.
join
(
output_dir
,
f
"rank
{
args
.
gather_to
}
g_model.pdopt"
)
if
args
.
load_way
==
"load"
:
model_file
=
g_model_file
opt_file
=
g_opt_file
load_
=
lambda
x
:
eval
(
args
.
load_way
)(
x
,
place
=
'cpu'
)
else
:
load_
=
eval
(
args
.
load_way
)
model
=
load_
(
model_file
)
opt
=
load_
(
opt_file
)
for
k
in
opt
.
keys
():
print
(
"opt k:"
,
k
)
if
args
.
strategy
==
"dp"
:
load_mode
(
mlp1
,
model
,
args
.
output_param_path
,
sharding_stage
=
"dp"
,
use_pure_fp16
=
False
,
opt_group
=
False
,
save_model
=
False
,
opt_state
=
opt
,
)
elif
args
.
strategy
==
"sharding_stage2"
:
load_mode
(
mlp1
,
model
,
args
.
output_param_path
,
sharding_stage
=
2
,
use_pure_fp16
=
False
,
opt_group
=
False
,
save_model
=
False
,
opt_state
=
opt
,
)
else
:
raise
ValueError
(
f
"Not supported strategy
{
args
.
strategy
}
"
)
else
:
raise
ValueError
(
f
"Not supported cmd:
{
args
.
cmd
}
"
)
def
run_case
(
args
):
saving_strategy
=
args
.
test_case
.
split
(
":"
)[
0
]
loading_strategy
=
args
.
test_case
.
split
(
":"
)[
1
]
output_dir
=
tempfile
.
mkdtemp
()
print
(
"output dir:"
,
output_dir
)
os
.
makedirs
(
output_dir
+
"/load_save"
,
exist_ok
=
True
)
# save dp
step_save
(
saving_strategy
,
output_dir
,
args
.
seed
)
# return
# load dp
p1
=
os
.
path
.
join
(
output_dir
,
"m1.pdparams"
)
p2
=
os
.
path
.
join
(
output_dir
,
"m2.pdparams"
)
step_load
(
saving_strategy
,
saving_strategy
,
output_dir
,
"paddle.load"
,
p1
,
args
.
seed
+
1
,
)
step_load
(
saving_strategy
,
loading_strategy
,
output_dir
,
"load"
,
p2
,
args
.
seed
+
2
)
# check
step_check
(
p1
,
p2
)
shutil
.
rmtree
(
output_dir
)
if
__name__
==
'__main__'
:
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--cmd"
,
default
=
"main"
,
choices
=
[
"main"
,
"save"
,
"load"
]
)
parser
.
add_argument
(
"--strategy"
,
required
=
False
,
choices
=
[
"dp"
,
"sharding_stage2"
]
)
parser
.
add_argument
(
"--load_way"
,
choices
=
[
"paddle.load"
,
"load"
],
required
=
False
)
parser
.
add_argument
(
"--load_dir"
,
required
=
False
)
parser
.
add_argument
(
"--output_dir"
,
required
=
False
)
parser
.
add_argument
(
"--output_param_path"
,
required
=
False
)
parser
.
add_argument
(
"--test_case"
,
required
=
False
,
choices
=
[
"dp:dp"
,
"dp:sharding_stage2"
,
"sharding_stage2:dp"
,
"sharding_stage2:sharding_stage2"
,
],
)
parser
.
add_argument
(
"--gather_to"
,
required
=
False
,
default
=
0
)
parser
.
add_argument
(
"--seed"
,
type
=
int
,
default
=
2022
)
args
=
parser
.
parse_args
()
test_save_load
(
args
)
python/paddle/fluid/tests/unittests/collective/fleet/test_dygraph_dist_save_load.py
0 → 100644
浏览文件 @
67ca9d45
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
unittest
import
subprocess
import
sys
def
strategy_test
(
saving
,
loading
,
gather_to
):
cmd
=
f
"
{
sys
.
executable
}
dygraph_dist_save_load.py --test_case
{
saving
}
:
{
loading
}
--gather_to
{
gather_to
}
"
p
=
subprocess
.
Popen
(
cmd
.
split
())
p
.
communicate
()
assert
p
.
poll
()
==
0
class
TestDistSaveLoad
(
unittest
.
TestCase
):
def
test_dygraph_save_load_dp_sharding_stage2
(
self
):
strategy_test
(
"dp"
,
"sharding_stage2"
,
0
)
strategy_test
(
"dp"
,
"sharding_stage2"
,
1
)
strategy_test
(
"sharding_stage2"
,
"dp"
,
1
)
if
__name__
==
"__main__"
:
os
.
environ
[
"FLAGS_enable_eager_mode"
]
=
"1"
os
.
environ
[
"CUDA_VISIBLE_DEVICES"
]
=
"0,1"
unittest
.
main
()
python/paddle/fluid/tests/unittests/collective/fleet/testslist.csv
浏览文件 @
67ca9d45
...
...
@@ -82,4 +82,5 @@ test_hdfs1,LINUX,,200,EXCLUSIVE:NIGHTLY,../../dist_test.sh,2,,http_proxy=;https_
test_hdfs2,LINUX,,200,EXCLUSIVE:NIGHTLY,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_hdfs3,LINUX,,200,EXCLUSIVE:NIGHTLY,../../dist_test.sh,2,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_fleet_checkpoint,LINUX,GPU;ROCM,200,EXCLUSIVE:NIGHTLY,test_runner.py,,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_fleet_log,,,,DIST,test_runner.py,,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_fleet_log,,,200,DIST,test_runner.py,,,http_proxy=;https_proxy=;PYTHONPATH=../..,
test_dygraph_dist_save_load,LINUX,GPU,200,DIST,test_runner.py,,,http_proxy=;https_proxy=;PYTHONPATH=../..,
python/paddle/incubate/distributed/utils/io/__init__.py
0 → 100644
浏览文件 @
67ca9d45
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.dist_save
import
save
from
.dist_load
import
load
python/paddle/incubate/distributed/utils/io/dist_load.py
0 → 100644
浏览文件 @
67ca9d45
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.fluid.framework
import
dygraph_only
import
paddle
import
paddle.distributed
as
dist
from
paddle.distributed
import
fleet
import
re
import
copy
@
dygraph_only
def
load
(
path
,
**
configs
):
"""
Load an object can be used in paddle from specified path.
The file is saved by distributed.save
Note:
The file to load must be saved bu the API paddle.incubate.distributed.utils.io.save
Args:
path(str|BytesIO) : The path/buffer to load the target object. Generally, the path is the target
file path. When loading state_dict from the saved result of the API used to save
the inference model, the path may be a file prefix or directory.
**configs (dict, optional): other load configuration options for compatibility. We do not
recommend using these configurations, they may be removed in the future. If not necessary,
DO NOT use them. Default None.
The following options are currently supported:
(1) place: where to place the loaded state dict.
If the state dict is too large, the palce should be set 'cpu'.
Note:
Other config value may cause some error.Please don't use any more config options.
Returns:
Object(Object): a target object can be used in paddle
Examples:
import paddle
paddle.distributed.init_process_group(backend='nccl')
paddle.distributed.fleet.init(is_collective=True)
model = build_model()
optimizer = build_optimizer(model)
dist_model = paddle.distributed_optimizer(model)
dist_optimizer = paddle.distributed_optimizer(optimizer)
# load model state dict
model_state_dict = paddle.incubate.distributed.utils.io.load(path="path/to/load.pdparams")
dist_model.set_state_dict(model_state_dict)
# load optimizer satte dict
optimizer_state_dict = paddle.incubate.distributed.utils.io.load(path="path/to/load.pdopt")
dist_optimizer.set_state_dict(optimizer_state_dict)
"""
if
dist
.
get_world_size
()
==
1
:
return
paddle
.
load
(
path
,
**
configs
)
hcg
=
fleet
.
get_hybrid_communicate_group
()
assert
(
hcg
.
get_model_parallel_world_size
()
==
1
and
hcg
.
get_pipe_parallel_world_size
()
==
1
),
"Sharding and DP are supported only now"
# assert (
# "place" in configs
# ), "the arg place ('cpu' or 'gpu:0', 'gpus:1' ...)must be passed"
if
"place"
not
in
configs
:
configs
[
"place"
]
=
"cpu"
place
=
configs
[
"place"
]
assert
isinstance
(
place
,
str
),
f
"configs[place] must be a str, but this is a
{
type
(
place
)
}
"
assert
re
.
search
(
"^(cpu|gpu:[0-9]*)$"
,
place
),
"configs[place] must be cpu, gpu:0, gpu:1 ..."
return
load_with_place
(
path
,
**
configs
)
def
load_with_place
(
path
,
**
configs
):
place
=
configs
[
"place"
]
if
place
is
None
:
return
paddle
.
load
(
path
)
origin_place
=
paddle
.
get_device
()
paddle
.
set_device
(
place
)
configs
=
_remove_not_supported_itmes
(
configs
)
state_dict
=
paddle
.
load
(
path
,
**
configs
)
paddle
.
set_device
(
origin_place
)
return
state_dict
def
_remove_not_supported_itmes
(
configs
):
__supported_by_load__
=
[
"model_filename"
,
"params_filename"
,
"return_numpy"
,
]
_configs
=
copy
.
copy
(
configs
)
for
k
in
configs
.
keys
():
if
k
not
in
__supported_by_load__
:
_configs
.
pop
(
k
,
None
)
return
_configs
python/paddle/incubate/distributed/utils/io/dist_save.py
0 → 100644
浏览文件 @
67ca9d45
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle.distributed
as
dist
import
paddle.distributed.fleet
as
fleet
import
re
import
paddle
from
paddle.distributed.fleet.utils.log_util
import
logger
from
paddle.fluid.framework
import
dygraph_only
import
copy
import
sys
from
paddle.distributed.fleet.utils.log_util
import
logger
__all__
=
[
"save"
]
@
dygraph_only
def
save
(
state_dict
,
path
,
**
configs
):
'''
Save a state dict to the specified path in both distributed and single-card environment.
Note:
Now supports saving ``state_dict`` of Layer/Optimizer, Tensor and nested structure containing Tensor, Program.
Note:
Different from ``paddle.jit.save``, since the save result of ``paddle.save`` is a single file,
there is no need to distinguish multiple saved files by adding a suffix. The argument ``path``
of ``paddle.save`` will be directly used as the saved file name instead of a prefix.
In order to unify the saved file name format, we recommend using the paddle standard suffix:
1. for ``Layer.state_dict`` , recommend to use ``.pdparams`` ;
2. for ``Optimizer.state_dict`` , recommend to use ``.pdopt`` .
For specific examples, please refer to API code examples.
Args:
obj(Object) : The object to be saved.
path(str|BytesIO) : The path/buffer of the object to be saved.
If saved in the current directory, the input path string will be used as the file name.
protocol(int, optional): The protocol version of pickle module must be greater than 1 and less than 5.
Default: 4
**configs(dict, optional): optional keyword arguments. The following options are currently supported:
(1)use_binary_format(bool):
To be used in paddle.save. When the saved object is static graph variable, you can specify ``use_binary_for_var``.
If True, save the file in the c++ binary format when saving a single static graph variable; otherwise, save it in pickle format.
Default: False
(2)gather_to(int|list|tuple|None):
To specify which global rank to save in.Defalut is None.
None value means distributed saving with no gathering to a single card.
(3)state_type(str):
Value can be 'params' or 'opt', specifying to save parametres or optimizer state.
(4)max_grouped_size(str|int):
To limit the max size(how many bits) a object group to be transfered a time.
If str, the format must be as num+'G/M/K', for example, 3G, 2K, 10M, etc. Default is 3G.
Returns:
None
Examples:
import paddle
paddle.distributed.init_process_group(backend='nccl')
paddle.distributed.fleet.init(is_collective=True)
model = build_model()
optimizer = build_optimizer(model)
dist_optimizer = paddle.distributed_optimizer(optimizer)
dist_model = paddle.distributed_optimizer(model)
# gather params to rank 0 and then save
paddle.incubate.distributed.utils.io.save(model.state_dict(), path="path/to/save.pdparams", gather_to=[0], state_type="params")
# save whoe params on all ranks
paddle.incubate.distributed.utils.io.save(model.state_dict(), path="path/to/save.pdparams", gather_to=[0,1], state_type="params")
# save optimizer state dict on rank 0
paddle.incubate.distributed.utils.io.save(optimizer.state_dict(), path="path/to/save.pdopt", gather=0, state_type="opt")
'''
gather_to
=
configs
.
get
(
"gather_to"
,
None
)
if
dist
.
get_world_size
()
==
1
or
gather_to
is
None
:
configs
=
_remove_not_supported_conf
(
configs
)
return
paddle
.
save
(
state_dict
,
path
,
**
configs
)
# gather_to is not None and world size > 1
state_type
=
configs
.
get
(
"state_type"
,
None
)
assert
isinstance
(
state_type
,
str
),
"must pass an arg state_type='params' or state_type='opt' to specify whether to save model state_dict or optimizer state_dict"
assert
state_type
in
[
"params"
,
"opt"
,
],
"must pass an arg state_type='params' or state_type='opt'"
if
re
.
search
(
f
"
{
state_type
}
$"
,
path
)
is
None
:
logger
.
warning
(
f
"You are saving
{
state_type
}
, while the path(
{
path
}
does not end with
{
state_type
}
)"
)
hcg
=
fleet
.
get_hybrid_communicate_group
()
assert
(
hcg
.
get_model_parallel_world_size
()
==
1
and
hcg
.
get_pipe_parallel_world_size
()
==
1
),
f
"Only DP and Sharding is supported now. However, current MP=
{
hcg
.
get_model_parallel_world_size
()
}
, PP=
{
hcg
.
get_pipe_parallel_world_size
()
}
"
sharding_group
=
hcg
.
get_sharding_parallel_group
()
dp_group
=
hcg
.
get_data_parallel_group
()
if
state_type
==
"params"
:
if
dp_group
.
nranks
>
1
:
assert
_same_keys
(
state_dict
,
dp_group
),
"only sharding stage 1/2 and DP are supported now"
if
sharding_group
.
nranks
>
1
:
assert
_same_keys
(
state_dict
,
sharding_group
),
"only sharding stage 1/2 and DP are supported now"
configs
=
_remove_not_supported_conf
(
configs
)
return
paddle
.
save
(
state_dict
,
path
,
**
configs
)
# state_type == "opt"
if
sharding_group
.
nranks
==
1
:
configs
=
_remove_not_supported_conf
(
configs
)
return
paddle
.
save
(
state_dict
,
path
,
**
configs
)
if
_same_keys
(
state_dict
,
sharding_group
):
return
paddle
.
save
(
state_dict
,
path
,
**
configs
)
assert
isinstance
(
gather_to
,
(
list
,
tuple
,
int
))
if
isinstance
(
gather_to
,
int
):
gather_to
=
[
gather_to
]
max_size
=
configs
.
get
(
"max_grouped_size"
,
"3G"
)
try
:
logger
.
info
(
"state_dict_keys:"
+
str
(
state_dict
.
keys
()))
gathered_state_dict
=
_gather_state_dict
(
state_dict
,
gather_to
,
sharding_group
,
max_size
=
max_size
)
logger
.
info
(
"gathered_state_dict_keys:"
+
str
(
state_dict
.
keys
()))
if
dist
.
get_rank
()
in
gather_to
:
configs
=
_remove_not_supported_conf
(
configs
)
paddle
.
save
(
gathered_state_dict
,
path
,
**
configs
)
except
:
raise
RuntimeError
(
f
'''Saving failed. Follwing are some suggestions:
1) pass the param max_grouped_size to turn the grouped size smaller (current value of max_grouped_size is
{
max_size
}
)
2) if sharding stage is 1, use paddle.save rather than paddle.distributed.save
3) Concat the developers
'''
)
def
_state_dict_groups
(
state_dict
,
max_size
):
"""
Description:
Generator of state dict groups to transfer.the size of each group is less than max_size.
"""
# find the max size of a whole tensor
# now we only support to transfer at least one whole tensor
max_tensor_size
=
0
for
k
,
v
in
state_dict
.
items
():
if
max_tensor_size
<
sys
.
getsizeof
(
v
)
+
sys
.
getsizeof
(
k
):
max_tensor_size
=
sys
.
getsizeof
(
v
)
+
sys
.
getsizeof
(
k
)
max_size
=
max
(
max_size
,
max_tensor_size
)
logger
.
debug
(
f
"max tensor size:
{
max_size
}
"
)
state_group
=
dict
()
k_list
=
list
(
state_dict
.
keys
())
index
=
0
bits
=
0
# generate groups utils the end
while
index
<
len
(
k_list
):
bsize
=
sys
.
getsizeof
(
state_dict
[
k_list
[
index
]])
+
sys
.
getsizeof
(
k_list
[
index
]
)
if
bits
+
bsize
>=
max_size
:
yield
state_group
state_group
=
dict
()
bits
=
0
state_group
[
k_list
[
index
]]
=
state_dict
[
k_list
[
index
]]
index
+=
1
bits
+=
bsize
if
index
==
len
(
k_list
)
and
bits
>
0
:
yield
state_group
def
all_empty
(
dict_list
):
"""
Check if all items are empty
"""
for
v
in
dict_list
:
if
len
(
v
)
>
0
:
return
False
return
True
def
_parse_mem_size_to_bits
(
max_size
):
"""
Parse an integer or a mem size str to an integer
convert xxxG to xxx * 1024^3
convert xxxM to xxx * 1024^2
convert xxxK to xxx * 1024^1
"""
assert
isinstance
(
max_size
,
(
int
,
str
))
if
isinstance
(
max_size
,
str
):
assert
re
.
search
(
"^[0-9]*[GMK]$"
,
max_size
),
f
"Wrong max_size 's format, the format ust be like 10K, 9M, 200G , etc, or an integer. However this is
{
max_size
}
"
num
=
int
(
max_size
[:
-
1
])
if
max_size
[
-
1
]
==
"G"
:
max_size
=
num
*
1024
**
3
elif
max_size
[
-
1
]
==
"M"
:
max_size
=
num
*
1024
**
2
else
:
max_size
=
num
*
1024
return
max_size
def
_gather_state_dict
(
state_dict
,
dst
,
group
,
max_size
=
"3G"
):
"""
Description:
Gather state dicts across all group ranks to dst, Depiring the same elements. including LR_Scheduler.
Args:
state_dict(dict):
local state dict
dst(int|list|tuple):
ranks the state dicts are gathered to
group(ProcessGroup):
group across which the state dicts are gathered
max_size(int|str):
The max limitation of the gathered tensor group size transformered a time. Default is 3G bits.
Each rank 's max tensor group before gathering is max_size // group.size
Returns:
Gathered state dict
"""
assert
isinstance
(
dst
,
(
list
,
tuple
,
int
)
),
"dst' type must be one of int, list and tuple"
if
isinstance
(
dst
,
int
):
dst
=
[
dst
]
max_size
=
_parse_mem_size_to_bits
(
max_size
)
max_size
//=
dist
.
get_world_size
(
group
)
logger
.
debug
(
"len state_dict: len(state_dict)"
)
state_dict_
=
copy
.
copy
(
state_dict
)
mw
=
None
has_mw
=
False
has_lr
=
False
# Remove master_weights and LR_Scheduler to ensure that all the elements of the state dict are str->Tensor
if
"master_weights"
in
state_dict_
:
mw
=
state_dict_
.
pop
(
"master_weights"
,
None
)
has_mw
=
True
if
"LR_Scheduler"
in
state_dict_
:
lr
=
state_dict_
.
pop
(
"LR_Scheduler"
,
None
)
has_lr
=
True
# Gather optimizer state_dict
output
=
_grouped_gather_data_dict
(
state_dict_
,
dst
,
group
,
max_size
)
# Gather master_weights if it exists
if
isinstance
(
mw
,
dict
):
masters
=
_grouped_gather_data_dict
(
mw
,
dst
,
group
,
max_size
)
else
:
assert
mw
is
None
,
f
"Wrong type of master weights . type:
{
type
(
mw
)
}
"
# assign master_weights and LR_Scheduler
# Because LR_Schedulers are same across group, it just needs to be reset
if
has_mw
:
output
[
"master_weights"
]
=
masters
if
has_lr
:
output
[
"LR_Scheduler"
]
=
lr
return
output
def
_grouped_gather_data_dict
(
state_data_dict
,
dst
,
group
,
max_size
):
"""
Description:
Gather state data dict by groups.
Args:
state__data_dict(dict):
local dict to transfer.The state_data_dict only contains the mapping: str->paddle.Tensor
dst(int|list|tuple):
ranks the state dicts are gathered to
group(ProcessGroup):
group across which the state dicts are gathered
max_size(int|str):
The max limitation of the gathered tensor group size transformered a time. Default is 3G bits.
Each rank 's max tensor group before gathering is max_size // group.size
Returns:
Gatherd state_data_dict
"""
numpy_dict
=
{}
logger
.
debug
(
f
"len state_tict_ :
{
len
(
state_data_dict
)
}
"
)
for
k
,
v
in
state_data_dict
.
items
():
try
:
numpy_dict
[
k
]
=
v
.
numpy
()
except
:
raise
TypeError
(
f
"the object (type of
{
type
(
v
)
}
) of '
{
k
}
' is neither tensor nor parameter"
)
total
=
0
output_state
=
dict
()
logger
.
info
(
"start all gather ..."
)
# gather all state_dict by groups
for
state
in
_state_dict_groups
(
numpy_dict
,
max_size
):
s_list
=
[]
total
+=
len
(
state
)
logger
.
info
(
f
"gen to gather:
{
total
}
/
{
len
(
numpy_dict
)
}
"
)
dist
.
all_gather_object
(
s_list
,
state
,
group
)
if
dist
.
get_rank
()
in
dst
:
for
s
in
s_list
:
for
k
,
v
in
s
.
items
():
logger
.
debug
(
f
"gathered:
{
k
}
,
{
v
.
shape
}
"
)
output_state
.
update
(
s
)
logger
.
debug
(
f
"s list size:
{
sum
(
len
(
s
)
for
s
in
s_list
)
}
output:
{
len
(
output_state
)
}
"
)
# Because each size of groups may be different, here we should wait all objetcs gatherd.
# The while block breaks until all objects from every rank are empty, which means all of the objects transforming is done.
while
True
:
s_list
=
[]
state
=
{}
logger
.
debug
(
"while True"
)
dist
.
all_gather_object
(
s_list
,
state
,
group
)
if
all_empty
(
s_list
):
break
if
dist
.
get_rank
()
in
dst
:
for
s
in
s_list
:
for
k
,
v
in
s
.
items
():
logger
.
debug
(
f
"gathered:
{
k
}
,
{
v
.
shape
}
"
)
output_state
.
update
(
s
)
logger
.
debug
(
f
"s list size:
{
sum
(
len
(
s
)
for
s
in
s_list
)
}
output:
{
len
(
output_state
)
}
"
)
logger
.
debug
(
"all gathered ..."
)
if
dist
.
get_rank
()
in
dst
:
# convert numpy.ndarray to Tensor in cpu palce
place
=
paddle
.
CPUPlace
()
for
k
in
output_state
.
keys
():
output_state
[
k
]
=
paddle
.
to_tensor
(
output_state
[
k
],
place
=
place
)
output_state
[
k
].
name
=
k
return
output_state
return
{}
def
_same_keys
(
state_dict
,
group
):
"""
Check whther all keys in each dict in the group are the same.
Used in sharding strategy to determine whether a dict needs to be gathered.
"""
keys
=
list
(
state_dict
.
keys
())
key_list
=
[]
logger
.
info
(
keys
)
dist
.
all_gather_object
(
key_list
,
keys
,
group
=
group
)
for
k
in
key_list
:
if
not
k
==
keys
:
return
False
return
True
def
_remove_not_supported_conf
(
configs
):
"""
Remove the config values not supported by paddle.save
"""
__supported_by_save__
=
[
"use_binary_format"
]
configs_
=
copy
.
copy
(
configs
)
for
k
in
configs
.
keys
():
if
k
not
in
__supported_by_save__
:
configs_
.
pop
(
k
,
None
)
return
configs_
python/setup.py.in
浏览文件 @
67ca9d45
...
...
@@ -383,6 +383,8 @@ packages=['paddle',
'paddle.incubate.optimizer.functional',
'paddle.incubate.autograd',
'paddle.incubate.distributed',
'paddle.incubate.distributed.utils',
'paddle.incubate.distributed.utils.io',
'paddle.incubate.distributed.fleet',
'paddle.incubate.distributed.models',
'paddle.incubate.distributed.models.moe',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录