Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
65b641bf
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
65b641bf
编写于
12月 11, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add detection_output op
上级
b41894d1
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
133 addition
and
126 deletion
+133
-126
paddle/operators/detection_output_op.cc
paddle/operators/detection_output_op.cc
+29
-34
paddle/operators/detection_output_op.h
paddle/operators/detection_output_op.h
+50
-52
paddle/operators/math/detection_util.h
paddle/operators/math/detection_util.h
+41
-29
python/paddle/v2/fluid/tests/test_detection_output_op.py
python/paddle/v2/fluid/tests/test_detection_output_op.py
+13
-11
未找到文件。
paddle/operators/detection_output_op.cc
浏览文件 @
65b641bf
...
@@ -21,42 +21,37 @@ class Detection_output_OpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -21,42 +21,37 @@ class Detection_output_OpMaker : public framework::OpProtoAndCheckerMaker {
Detection_output_OpMaker
(
framework
::
OpProto
*
proto
,
Detection_output_OpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
AddInput
(
"Loc"
,
"Loc"
,
"(Tensor) The input tensor of detection_output operator. "
"(Tensor) The input tensor of detection_output operator. "
"The format of input tensor is kNCHW. Where K is priorbox point "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"numbers,"
"number of channels, H and W is the height and width of feature."
);
"N is How many boxes are there on each point, "
AddInput
(
"C is 4, H and W both are 1."
);
"Conf"
,
AddInput
(
"Conf"
,
"(Tensor) The input tensor of detection_output operator. "
"(Tensor) The input tensor of detection_output operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"The format of input tensor is kNCHW. Where K is priorbox point "
"number of channels, H and W is the height and width of feature."
);
"numbers,"
AddInput
(
"N is How many boxes are there on each point, "
"PriorBox"
,
"C is the number of classes, H and W both are 1."
);
"(Tensor) The input tensor of detection_output operator. "
AddInput
(
"PriorBox"
,
"The format of input tensor is NCHW. Where N is batch size, C is the "
"(Tensor) The input tensor of detection_output operator. "
"number of channels, H and W is the height and width of feature."
);
"The format of input tensor is the position and variance "
"of the boxes"
);
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"(Tensor) The output tensor of detection_output operator."
"(Tensor) The output tensor of detection_output operator."
);
"N * M."
AddAttr
<
int
>
(
"background_label_id"
,
"M = C * H * W"
);
"(int), the attr of detection_output operator"
);
AddAttr
<
int
>
(
"background_label_id"
,
"(int), multi level pooling"
);
AddAttr
<
int
>
(
"num_classes"
,
AddAttr
<
int
>
(
"num_classes"
,
"(int), multi level pooling"
);
"(int), the attr of detection_output operator"
);
AddAttr
<
float
>
(
"nms_threshold"
,
"(int), multi level pooling"
);
AddAttr
<
float
>
(
"nms_threshold"
,
AddAttr
<
float
>
(
"confidence_threshold"
,
"(int), multi level pooling"
);
"(float), the attr of detection_output operator"
);
AddAttr
<
int
>
(
"top_k"
,
"(int), multi level pooling"
);
AddAttr
<
float
>
(
"confidence_threshold"
,
AddAttr
<
int
>
(
"nms_top_k"
,
"(int), multi level pooling"
);
"(float), the attr of detection_output operator"
);
AddAttr
<
int
>
(
"top_k"
,
"(int), the attr of detection_output operator"
);
AddAttr
<
int
>
(
"nms_top_k"
,
"(int), the attr of detection_output operator"
);
AddComment
(
R"DOC(
AddComment
(
R"DOC(
"Does spatial pyramid pooling on the input image by taking the max,
detection output for SSD(single shot multibox detector)
etc. within regions so that the result vector of different sized
images are of the same size
Input shape: $(N, C_{in}, H_{in}, W_{in})$
Output shape: $(H_{out}, W_{out})$
Where
$$
H_{out} = N \\
W_{out} = (((4^pyramid_height) - 1) / (4 - 1))$ * C_{in}
$$
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/operators/detection_output_op.h
浏览文件 @
65b641bf
...
@@ -18,10 +18,34 @@ limitations under the License. */
...
@@ -18,10 +18,34 @@ limitations under the License. */
#include "paddle/operators/math/detection_util.h"
#include "paddle/operators/math/detection_util.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/softmax.h"
#include "paddle/operators/math/softmax.h"
#include "paddle/operators/strided_memcpy.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
>
void
transpose_fun
(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
src
,
framework
::
Tensor
*
dst
)
{
int
input_nums
=
src
.
dims
()[
0
];
int
offset
=
0
;
for
(
int
j
=
0
;
j
<
input_nums
;
++
j
)
{
framework
::
Tensor
in_p_tensor
=
src
.
Slice
(
j
,
j
+
1
);
std
::
vector
<
int64_t
>
shape_vec
(
{
in_p_tensor
.
dims
()[
0
],
in_p_tensor
.
dims
()[
1
],
in_p_tensor
.
dims
()[
3
],
in_p_tensor
.
dims
()[
4
],
in_p_tensor
.
dims
()[
2
]});
framework
::
DDim
shape
(
framework
::
make_ddim
(
shape_vec
));
framework
::
Tensor
in_p_tensor_transpose
;
in_p_tensor_transpose
.
mutable_data
<
T
>
(
shape
,
context
.
GetPlace
());
std
::
vector
<
int
>
shape_axis
({
0
,
1
,
3
,
4
,
2
});
math
::
Transpose
<
Place
,
T
,
5
>
trans5
;
trans5
(
context
,
in_p_tensor
,
&
in_p_tensor_transpose
,
shape_axis
);
auto
dst_stride
=
framework
::
stride
(
dst
->
dims
());
auto
src_stride
=
framework
::
stride
(
in_p_tensor_transpose
.
dims
());
StridedMemcpy
<
T
>
(
context
,
in_p_tensor_transpose
.
data
<
T
>
(),
src_stride
,
in_p_tensor_transpose
.
dims
(),
dst_stride
,
dst
->
data
<
T
>
()
+
offset
);
offset
+=
in_p_tensor_transpose
.
dims
()[
4
]
*
src_stride
[
4
];
}
}
template
<
typename
Place
,
typename
T
>
class
Detection_output_Kernel
:
public
framework
::
OpKernel
<
T
>
{
class
Detection_output_Kernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
...
@@ -37,77 +61,51 @@ class Detection_output_Kernel : public framework::OpKernel<T> {
...
@@ -37,77 +61,51 @@ class Detection_output_Kernel : public framework::OpKernel<T> {
float
nms_threshold
=
context
.
template
Attr
<
float
>(
"nms_threshold"
);
float
nms_threshold
=
context
.
template
Attr
<
float
>(
"nms_threshold"
);
float
confidence_threshold
=
float
confidence_threshold
=
context
.
template
Attr
<
float
>(
"confidence_threshold"
);
context
.
template
Attr
<
float
>(
"confidence_threshold"
);
int
batch_size
=
in_conf
->
dims
()[
1
];
int
input_num
=
in_loc
->
dims
()[
0
];
int
batch_size
=
in_loc
->
dims
()[
1
];
int
channels
=
in_loc
->
dims
()[
2
];
int
height
=
in_loc
->
dims
()[
3
];
int
weight
=
in_loc
->
dims
()[
4
];
int
loc_sum_size
=
in_loc
->
numel
();
int
conf_sum_size
=
in_conf
->
numel
();
int
conf_sum_size
=
in_conf
->
numel
();
std
::
vector
<
int64_t
>
loc_shape_vec
({
1
,
loc_sum_size
});
// for softmax
std
::
vector
<
int64_t
>
conf_shape_vec
(
std
::
vector
<
int64_t
>
conf_shape_
softmax_
vec
(
{
conf_sum_size
/
num_classes
,
num_classes
});
{
conf_sum_size
/
num_classes
,
num_classes
});
framework
::
DDim
conf_shape_softmax
(
framework
::
make_ddim
(
conf_shape_softmax_vec
));
// for knchw => nhwc
std
::
vector
<
int64_t
>
loc_shape_vec
({
1
,
in_loc
->
dims
()[
1
],
in_loc
->
dims
()[
3
],
in_loc
->
dims
()[
4
],
in_loc
->
dims
()[
2
]});
std
::
vector
<
int64_t
>
conf_shape_vec
({
1
,
in_conf
->
dims
()[
1
],
in_conf
->
dims
()[
3
],
in_conf
->
dims
()[
4
],
in_conf
->
dims
()[
2
]});
framework
::
DDim
loc_shape
(
framework
::
make_ddim
(
loc_shape_vec
));
framework
::
DDim
loc_shape
(
framework
::
make_ddim
(
loc_shape_vec
));
framework
::
DDim
conf_shape
(
framework
::
make_ddim
(
conf_shape_vec
));
framework
::
DDim
conf_shape
(
framework
::
make_ddim
(
conf_shape_vec
));
framework
::
Tensor
loc_tensor
;
framework
::
Tensor
loc_tensor
;
framework
::
Tensor
conf_tensor
;
framework
::
Tensor
conf_tensor
;
loc_tensor
.
Resize
(
loc_shape
);
conf_tensor
.
Resize
(
conf_shape
);
loc_tensor
.
mutable_data
<
T
>
(
loc_shape
,
context
.
GetPlace
());
loc_tensor
.
mutable_data
<
T
>
(
loc_shape
,
context
.
GetPlace
());
conf_tensor
.
mutable_data
<
T
>
(
conf_shape
,
context
.
GetPlace
());
conf_tensor
.
mutable_data
<
T
>
(
conf_shape
,
context
.
GetPlace
());
// for cpu
framework
::
Tensor
loc_cpu
;
framework
::
Tensor
loc_cpu
;
framework
::
Tensor
conf_cpu
;
framework
::
Tensor
conf_cpu
;
framework
::
Tensor
priorbox_cpu
;
framework
::
Tensor
priorbox_cpu
;
const
T
*
in_loc_data
=
in_loc
->
data
<
T
>
();
const
T
*
in_conf_data
=
in_conf
->
data
<
T
>
();
T
*
loc_data
;
T
*
conf_data
;
const
T
*
priorbox_data
=
in_priorbox
->
data
<
T
>
();
const
T
*
priorbox_data
=
in_priorbox
->
data
<
T
>
();
transpose_fun
<
Place
,
T
>
(
context
.
device_context
(),
*
in_loc
,
&
loc_tensor
);
transpose_fun
<
Place
,
T
>
(
context
.
device_context
(),
*
in_conf
,
&
conf_tensor
);
conf_tensor
.
Resize
(
conf_shape_softmax
);
math
::
SoftmaxFunctor
<
Place
,
T
>
()(
context
.
device_context
(),
&
conf_tensor
,
&
conf_tensor
);
T
*
loc_data
=
loc_tensor
.
data
<
T
>
();
T
*
conf_data
=
conf_tensor
.
data
<
T
>
();
if
(
platform
::
is_gpu_place
(
context
.
GetPlace
()))
{
if
(
platform
::
is_gpu_place
(
context
.
GetPlace
()))
{
loc_cpu
.
mutable_data
<
T
>
(
in_loc
->
dims
(),
platform
::
CPUPlace
());
loc_cpu
.
mutable_data
<
T
>
(
loc_tensor
.
dims
(),
platform
::
CPUPlace
());
framework
::
CopyFrom
(
*
in_loc
,
platform
::
CPUPlace
(),
framework
::
CopyFrom
(
loc_tensor
,
platform
::
CPUPlace
(),
context
.
device_context
(),
&
loc_cpu
);
context
.
device_context
(),
&
loc_cpu
);
in_
loc_data
=
loc_cpu
.
data
<
T
>
();
loc_data
=
loc_cpu
.
data
<
T
>
();
conf_cpu
.
mutable_data
<
T
>
(
in_conf
->
dims
(),
platform
::
CPUPlace
());
conf_cpu
.
mutable_data
<
T
>
(
conf_tensor
.
dims
(),
platform
::
CPUPlace
());
framework
::
CopyFrom
(
*
in_conf
,
platform
::
CPUPlace
(),
framework
::
CopyFrom
(
conf_tensor
,
platform
::
CPUPlace
(),
context
.
device_context
(),
&
conf_cpu
);
context
.
device_context
(),
&
conf_cpu
);
in_
conf_data
=
conf_cpu
.
data
<
T
>
();
conf_data
=
conf_cpu
.
data
<
T
>
();
priorbox_cpu
.
mutable_data
<
T
>
(
in_priorbox
->
dims
(),
platform
::
CPUPlace
());
priorbox_cpu
.
mutable_data
<
T
>
(
in_priorbox
->
dims
(),
platform
::
CPUPlace
());
framework
::
CopyFrom
(
*
in_priorbox
,
platform
::
CPUPlace
(),
framework
::
CopyFrom
(
*
in_priorbox
,
platform
::
CPUPlace
(),
context
.
device_context
(),
&
priorbox_cpu
);
context
.
device_context
(),
&
priorbox_cpu
);
priorbox_data
=
priorbox_cpu
.
data
<
T
>
();
priorbox_data
=
priorbox_cpu
.
data
<
T
>
();
loc_tensor
.
mutable_data
<
T
>
(
loc_shape
,
platform
::
CPUPlace
());
conf_tensor
.
mutable_data
<
T
>
(
conf_shape
,
platform
::
CPUPlace
());
}
T
*
loc_tensor_data
=
loc_tensor
.
data
<
T
>
();
T
*
conf_tensor_data
=
conf_tensor
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
input_num
;
++
i
)
{
math
::
appendWithPermute
<
T
>
(
in_loc_data
,
input_num
,
batch_size
,
channels
,
height
,
weight
,
loc_tensor_data
);
math
::
appendWithPermute
<
T
>
(
in_conf_data
,
input_num
,
batch_size
,
channels
,
height
,
weight
,
conf_tensor_data
);
}
loc_data
=
loc_tensor
.
data
<
T
>
();
if
(
platform
::
is_gpu_place
(
context
.
GetPlace
()))
{
framework
::
Tensor
conf_gpu
;
conf_gpu
.
Resize
(
conf_shape
);
conf_gpu
.
mutable_data
<
T
>
(
conf_shape
,
context
.
GetPlace
());
framework
::
CopyFrom
(
conf_tensor
,
platform
::
GPUPlace
(),
context
.
device_context
(),
&
conf_gpu
);
// softmax
math
::
SoftmaxFunctor
<
Place
,
T
>
()(
context
.
device_context
(),
&
conf_gpu
,
&
conf_gpu
);
conf_tensor
.
mutable_data
<
T
>
(
conf_gpu
.
dims
(),
platform
::
CPUPlace
());
framework
::
CopyFrom
(
conf_gpu
,
platform
::
CPUPlace
(),
context
.
device_context
(),
&
conf_tensor
);
}
else
{
// softmax
math
::
SoftmaxFunctor
<
Place
,
T
>
()(
context
.
device_context
(),
&
conf_tensor
,
&
conf_tensor
);
}
}
conf_data
=
conf_tensor
.
data
<
T
>
();
// get decode bboxes
// get decode bboxes
size_t
num_priors
=
in_priorbox
->
numel
()
/
8
;
size_t
num_priors
=
in_priorbox
->
numel
()
/
8
;
std
::
vector
<
std
::
vector
<
operators
::
math
::
BBox
<
T
>>>
all_decoded_bboxes
;
std
::
vector
<
std
::
vector
<
operators
::
math
::
BBox
<
T
>>>
all_decoded_bboxes
;
...
...
paddle/operators/math/detection_util.h
浏览文件 @
65b641bf
...
@@ -12,13 +12,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,13 +12,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include <map>
#include "paddle/framework/selected_rows.h"
#include "paddle/framework/selected_rows.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/device_context.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
namespace
math
{
namespace
math
{
template
<
typename
T
>
template
<
typename
T
>
struct
BBox
{
struct
BBox
{
BBox
(
T
x_min
,
T
y_min
,
T
x_max
,
T
y_max
)
BBox
(
T
x_min
,
T
y_min
,
T
x_max
,
T
y_max
)
...
@@ -49,31 +49,47 @@ struct BBox {
...
@@ -49,31 +49,47 @@ struct BBox {
bool
is_difficult
;
bool
is_difficult
;
};
};
// KNCHW ==> NHWC
// KNCHW ==> NHWC
// template <typename T>
template
<
typename
T
>
template
<
typename
T
>
int
appendWithPermute
(
const
T
*
input_data
,
int
input_nums
,
int
batch_size
,
void
getBBoxFromPriorData
(
const
T
*
prior_data
,
const
size_t
num_bboxes
,
int
channels
,
int
height
,
int
weight
,
T
*
output_data
)
{
std
::
vector
<
BBox
<
T
>>&
bbox_vec
);
int
image_size
=
height
*
weight
;
template
<
typename
T
>
int
numel
=
input_nums
*
batch_size
*
channels
*
height
*
weight
;
void
getBBoxVarFromPriorData
(
const
T
*
prior_data
,
const
size_t
num
,
int
offset
=
0
;
std
::
vector
<
std
::
vector
<
T
>>&
var_vec
);
for
(
int
p
=
0
;
p
<
input_nums
;
++
p
)
{
template
<
typename
T
>
int
in_p_offset
=
p
*
batch_size
*
channels
*
image_size
;
BBox
<
T
>
decodeBBoxWithVar
(
BBox
<
T
>&
prior_bbox
,
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
const
std
::
vector
<
T
>&
prior_bbox_var
,
int
in_n_offset
=
n
*
channels
*
image_size
;
const
std
::
vector
<
T
>&
loc_pred_data
);
int
out_n_offset
=
n
*
numel
/
batch_size
+
offset
;
template
<
typename
T1
,
typename
T2
>
int
in_stride
=
image_size
;
bool
sortScorePairDescend
(
const
std
::
pair
<
T1
,
T2
>&
pair1
,
int
out_stride
=
channels
;
const
std
::
pair
<
T1
,
T2
>&
pair2
);
const
T
*
in_data
=
input_data
+
in_p_offset
+
in_n_offset
;
template
<
typename
T
>
T
*
out_data
=
output_data
+
out_n_offset
;
bool
sortScorePairDescend
(
const
std
::
pair
<
T
,
BBox
<
T
>>&
pair1
,
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
const
std
::
pair
<
T
,
BBox
<
T
>>&
pair2
);
for
(
int
i
=
0
;
i
<
image_size
;
++
i
)
{
template
<
typename
T
>
out_data
[
out_stride
*
i
+
c
]
=
in_data
[
c
*
in_stride
+
i
];
T
jaccardOverlap
(
const
BBox
<
T
>&
bbox1
,
const
BBox
<
T
>&
bbox2
);
}
}
template
<
typename
T
>
}
void
applyNMSFast
(
const
std
::
vector
<
BBox
<
T
>>&
bboxes
,
const
T
*
conf_score_data
,
offset
+=
image_size
*
channels
;
size_t
class_idx
,
size_t
top_k
,
T
conf_threshold
,
}
T
nms_threshold
,
size_t
num_priors
,
size_t
num_classes
,
return
0
;
std
::
vector
<
size_t
>*
indices
);
}
template
<
typename
T
>
int
getDetectionIndices
(
const
T
*
conf_data
,
const
size_t
num_priors
,
const
size_t
num_classes
,
const
size_t
background_label_id
,
const
size_t
batch_size
,
const
T
conf_threshold
,
const
size_t
nms_top_k
,
const
T
nms_threshold
,
const
size_t
top_k
,
const
std
::
vector
<
std
::
vector
<
BBox
<
T
>>>&
all_decoded_bboxes
,
std
::
vector
<
std
::
map
<
size_t
,
std
::
vector
<
size_t
>>>*
all_detection_indices
);
template
<
typename
T
>
BBox
<
T
>
clipBBox
(
const
BBox
<
T
>&
bbox
);
template
<
typename
T
>
void
getDetectionOutput
(
const
T
*
conf_data
,
const
size_t
num_kept
,
const
size_t
num_priors
,
const
size_t
num_classes
,
const
size_t
batch_size
,
const
std
::
vector
<
std
::
map
<
size_t
,
std
::
vector
<
size_t
>>>&
all_indices
,
const
std
::
vector
<
std
::
vector
<
BBox
<
T
>>>&
all_decoded_bboxes
,
T
*
out_data
);
template
<
typename
T
>
template
<
typename
T
>
void
getBBoxFromPriorData
(
const
T
*
prior_data
,
const
size_t
num_bboxes
,
void
getBBoxFromPriorData
(
const
T
*
prior_data
,
const
size_t
num_bboxes
,
std
::
vector
<
BBox
<
T
>>&
bbox_vec
)
{
std
::
vector
<
BBox
<
T
>>&
bbox_vec
)
{
...
@@ -136,9 +152,6 @@ bool sortScorePairDescend(const std::pair<T1, T2>& pair1,
...
@@ -136,9 +152,6 @@ bool sortScorePairDescend(const std::pair<T1, T2>& pair1,
return
pair1
.
first
>
pair2
.
first
;
return
pair1
.
first
>
pair2
.
first
;
}
}
template
<
typename
T
>
template
<
typename
T
>
bool
sortScorePairDescend
(
const
std
::
pair
<
T
,
BBox
<
T
>>&
pair1
,
const
std
::
pair
<
T
,
BBox
<
T
>>&
pair2
);
template
<
typename
T
>
T
jaccardOverlap
(
const
BBox
<
T
>&
bbox1
,
const
BBox
<
T
>&
bbox2
)
{
T
jaccardOverlap
(
const
BBox
<
T
>&
bbox1
,
const
BBox
<
T
>&
bbox2
)
{
if
(
bbox2
.
x_min
>
bbox1
.
x_max
||
bbox2
.
x_max
<
bbox1
.
x_min
||
if
(
bbox2
.
x_min
>
bbox1
.
x_max
||
bbox2
.
x_max
<
bbox1
.
x_min
||
bbox2
.
y_min
>
bbox1
.
y_max
||
bbox2
.
y_max
<
bbox1
.
y_min
)
{
bbox2
.
y_min
>
bbox1
.
y_max
||
bbox2
.
y_max
<
bbox1
.
y_min
)
{
...
@@ -281,7 +294,6 @@ void getDetectionOutput(
...
@@ -281,7 +294,6 @@ void getDetectionOutput(
}
}
}
}
}
}
// out.copyFrom(out_data, num_kept * 7);
}
}
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
...
...
python/paddle/v2/fluid/tests/test_detection_output_op.py
浏览文件 @
65b641bf
...
@@ -8,22 +8,24 @@ class TestUnpoolOp(OpTest):
...
@@ -8,22 +8,24 @@ class TestUnpoolOp(OpTest):
self
.
op_type
=
"detection_output"
self
.
op_type
=
"detection_output"
self
.
init_test_case
()
self
.
init_test_case
()
#loc
= np.zeros
((1, 4, 4, 1, 1))
#loc
.shape
((1, 4, 4, 1, 1))
#conf
= np.zero
((1, 4, 2, 1, 1))
#conf
.shape
((1, 4, 2, 1, 1))
loc
=
np
.
array
([[[[[
0.1
]],
[[
0.1
]],
[[
0.1
]],
[[
0.1
]]],
loc
=
np
.
array
([[[[[
0.1
]],
[[
0.1
]],
[[
0.1
]],
[[
0.1
]]],
[[[
0.1
]],
[[
0.1
]],
[[
0.1
]],
[[
0.1
]]],
[[[
0.1
]],
[[
0.1
]],
[[
0.1
]],
[[
0.1
]]],
[[[
0.1
]],
[[
0.1
]],
[[
0.1
]],
[[
0.1
]]],
[[[
0.1
]],
[[
0.1
]],
[[
0.1
]],
[[
0.1
]]],
[[[
0.1
]],
[[
0.1
]],
[[
0.1
]],
[[
0.1
]]]]])
[[[
0.1
]],
[[
0.1
]],
[[
0.1
]],
[[
0.1
]]]]])
conf
=
np
.
array
([[[[[
0.1
]],
[[
0.9
]]],
[[[
0.2
]],
[[
0.8
]]]],
conf
=
np
.
array
([[[[[
0.1
]],
[[
0.9
]]],
[[[
0.2
]],
[[
0.8
]]],
[[[[
0.3
]],
[[
0.7
]]],
[[[
0.4
]],
[[
0.6
]]]]])
[[[
0.3
]],
[[
0.7
]]],
[[[
0.4
]],
[[
0.6
]]]]])
priorbox
=
np
.
array
([
0.1
,
0.1
,
0.5
,
0.5
,
0.1
,
0.1
,
0.2
,
0.2
,
\
priorbox
=
np
.
array
([
0.2
,
0.2
,
0.6
,
0.6
,
0.1
,
0.1
,
0.2
,
0.2
,
\
0.1
,
0.1
,
0.5
,
0.5
,
0.1
,
0.1
,
0.2
,
0.2
,
0.2
,
0.2
,
0.6
,
0.6
,
0.1
,
0.3
,
0.3
,
0.7
,
0.7
,
0.1
,
0.1
,
0.2
,
0.2
,
\
0.1
,
0.2
,
0.2
,
0.3
,
0.3
,
0.7
,
0.7
,
0.1
,
0.1
,
0.2
,
0.2
,
0.4
,
0.4
,
0.4
,
0.4
,
0.8
,
0.8
,
0.1
,
0.1
,
0.2
,
0.2
])
0.8
,
0.8
,
0.1
,
0.1
,
0.2
,
0.2
])
output
=
np
.
array
([
0
,
1
,
0.68997443
,
0.099959746
,
0.099959746
,
\
0.50804031
,
0.50804031
])
output
=
np
.
array
([
0
,
1
,
0.68997443
,
0.099959746
,
0.099959746
,
0.50804031
,
0.50804031
])
self
.
inputs
=
{
self
.
inputs
=
{
'Loc'
:
loc
.
astype
(
'float32'
),
'Loc'
:
loc
.
astype
(
'float32'
),
'Conf'
:
conf
.
astype
(
'float32'
),
'Conf'
:
conf
.
astype
(
'float32'
),
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录