未验证 提交 658dbe6c 编写于 作者: T Tao Luo 提交者: GitHub

Merge pull request #6852 from tensor-tang/alexnet

enable alexnet benchmark
...@@ -6,8 +6,18 @@ height = 227 ...@@ -6,8 +6,18 @@ height = 227
width = 227 width = 227
num_class = 1000 num_class = 1000
batch_size = get_config_arg('batch_size', int, 128) batch_size = get_config_arg('batch_size', int, 128)
gp = get_config_arg('layer_num', int, 1)
is_infer = get_config_arg("is_infer", bool, False)
num_samples = get_config_arg('num_samples', int, 2560)
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class} args = {
'height': height,
'width': width,
'color': True,
'num_class': num_class,
'is_infer': is_infer,
'num_samples': num_samples
}
define_py_data_sources2( define_py_data_sources2(
"train.list", None, module="provider", obj="process", args=args) "train.list", None, module="provider", obj="process", args=args)
...@@ -31,7 +41,7 @@ net = img_pool_layer(input=net, pool_size=3, stride=2) ...@@ -31,7 +41,7 @@ net = img_pool_layer(input=net, pool_size=3, stride=2)
# conv2 # conv2
net = img_conv_layer( net = img_conv_layer(
input=net, filter_size=5, num_filters=256, stride=1, padding=2, groups=1) input=net, filter_size=5, num_filters=256, stride=1, padding=2, groups=gp)
net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75) net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75)
net = img_pool_layer(input=net, pool_size=3, stride=2) net = img_pool_layer(input=net, pool_size=3, stride=2)
...@@ -40,11 +50,11 @@ net = img_conv_layer( ...@@ -40,11 +50,11 @@ net = img_conv_layer(
input=net, filter_size=3, num_filters=384, stride=1, padding=1) input=net, filter_size=3, num_filters=384, stride=1, padding=1)
# conv4 # conv4
net = img_conv_layer( net = img_conv_layer(
input=net, filter_size=3, num_filters=384, stride=1, padding=1, groups=1) input=net, filter_size=3, num_filters=384, stride=1, padding=1, groups=gp)
# conv5 # conv5
net = img_conv_layer( net = img_conv_layer(
input=net, filter_size=3, num_filters=256, stride=1, padding=1, groups=1) input=net, filter_size=3, num_filters=256, stride=1, padding=1, groups=gp)
net = img_pool_layer(input=net, pool_size=3, stride=2) net = img_pool_layer(input=net, pool_size=3, stride=2)
net = fc_layer( net = fc_layer(
...@@ -59,6 +69,9 @@ net = fc_layer( ...@@ -59,6 +69,9 @@ net = fc_layer(
layer_attr=ExtraAttr(drop_rate=0.5)) layer_attr=ExtraAttr(drop_rate=0.5))
net = fc_layer(input=net, size=1000, act=SoftmaxActivation()) net = fc_layer(input=net, size=1000, act=SoftmaxActivation())
lab = data_layer('label', num_class) if is_infer:
loss = cross_entropy(input=net, label=lab) outputs(net)
outputs(loss) else:
lab = data_layer('label', num_class)
loss = cross_entropy(input=net, label=lab)
outputs(loss)
...@@ -79,8 +79,9 @@ fi ...@@ -79,8 +79,9 @@ fi
# inference benchmark # inference benchmark
for use_mkldnn in True False; do for use_mkldnn in True False; do
for batchsize in 1 2 4 8 16; do for batchsize in 1 2 4 8 16; do
infer googlenet v1 $batchsize $use_mkldnn
infer resnet 50 $batchsize $use_mkldnn
infer vgg 19 $batchsize $use_mkldnn infer vgg 19 $batchsize $use_mkldnn
infer resnet 50 $batchsize $use_mkldnn
infer googlenet v1 $batchsize $use_mkldnn
infer alexnet 2 $batchsize $use_mkldnn
done done
done done
...@@ -47,5 +47,6 @@ for use_mkldnn in True False; do ...@@ -47,5 +47,6 @@ for use_mkldnn in True False; do
train vgg 19 $batchsize $use_mkldnn train vgg 19 $batchsize $use_mkldnn
train resnet 50 $batchsize $use_mkldnn train resnet 50 $batchsize $use_mkldnn
train googlenet v1 $batchsize $use_mkldnn train googlenet v1 $batchsize $use_mkldnn
train alexnet 2 $batchsize $use_mkldnn
done done
done done
...@@ -57,7 +57,8 @@ fi ...@@ -57,7 +57,8 @@ fi
# inference benchmark # inference benchmark
for batchsize in 1 2 4 8 16; do for batchsize in 1 2 4 8 16; do
infer googlenet v1 $batchsize
infer resnet 50 $batchsize
infer vgg 19 $batchsize infer vgg 19 $batchsize
infer resnet 50 $batchsize
infer googlenet v1 $batchsize
infer alexnet 2 $batchsize
done done
...@@ -37,4 +37,5 @@ for batchsize in 64 128 256; do ...@@ -37,4 +37,5 @@ for batchsize in 64 128 256; do
train vgg 19 $batchsize train vgg 19 $batchsize
train resnet 50 $batchsize train resnet 50 $batchsize
train googlenet v1 $batchsize train googlenet v1 $batchsize
train alexnet 2 $batchsize
done done
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册