Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
64c5ecbe
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
64c5ecbe
编写于
10月 20, 2017
作者:
Z
zchen0211
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
deconv
上级
502e7259
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
92 addition
and
85 deletion
+92
-85
paddle/operators/deconv2d_op.cc
paddle/operators/deconv2d_op.cc
+29
-23
paddle/operators/deconv2d_op.cu
paddle/operators/deconv2d_op.cu
+4
-3
paddle/operators/deconv2d_op.h
paddle/operators/deconv2d_op.h
+59
-59
未找到文件。
paddle/operators/deconv2d_op.cc
浏览文件 @
64c5ecbe
...
...
@@ -18,13 +18,13 @@
namespace
paddle
{
namespace
operators
{
void
Deconv2D
Op
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
void
Conv2DTranspose
Op
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(Input) of
Deconv2D
Op should not be null."
);
"Input(Input) of
Conv2DTranspose
Op should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Filter"
),
"Input(Filter) of
Deconv2D
Op should not be null."
);
"Input(Filter) of
Conv2DTranspose
Op should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Output"
),
"Output(Output) of
Deconv2D
Op should not be null."
);
"Output(Output) of
Conv2DTranspose
Op should not be null."
);
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
filter_dims
=
ctx
->
GetInputDim
(
"Filter"
);
...
...
@@ -32,13 +32,14 @@ void Deconv2DOp::InferShape(framework::InferShapeContext* ctx) const {
std
::
vector
<
int
>
paddings
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"paddings"
);
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
paddings
[
i
],
0
,
"No Padding allowed in deconv op."
);
PADDLE_ENFORCE_EQ
(
paddings
[
i
],
0
,
"No Padding allowed in conv transpose op."
);
}
PADDLE_ENFORCE_EQ
(
in_dims
.
size
(),
4
,
"
Deconv2D
Op input should be 4-D tensor."
);
"
Conv2DTranspose
Op input should be 4-D tensor."
);
PADDLE_ENFORCE_EQ
(
filter_dims
.
size
(),
4
,
"
Deconv2D
Op filter should be 4-D tensor."
);
"
Conv2DTranspose
Op filter should be 4-D tensor."
);
PADDLE_ENFORCE_EQ
(
in_dims
[
1
],
filter_dims
[
0
],
"input and kernel input dimension should be equal."
);
...
...
@@ -48,36 +49,39 @@ void Deconv2DOp::InferShape(framework::InferShapeContext* ctx) const {
{
in_dims
[
0
],
filter_dims
[
1
],
output_height
,
output_width
});
}
Deconv2DOpMaker
::
Deconv2DOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
Conv2DTransposeOpMaker
::
Conv2DTransposeOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Input"
,
"The input tensor of
deconvolution
operator. "
"The input tensor of
convolution transpose
operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of input channels, H and W is the height and width of image."
);
AddInput
(
"Filter"
,
"The filter tensor of
deconvolution
operator."
"The format of the filter tensor is
MC
HW, where C is the number of "
"The filter tensor of
convolution transpose
operator."
"The format of the filter tensor is
CM
HW, where C is the number of "
"output image channels, M is the number of input image channels, "
"H and W is height and width of filter. "
"We enforce groups number == 1 and padding == 0 in "
"
deconvolution
Scenario."
);
"
convolution transpose
Scenario."
);
AddOutput
(
"Output"
,
"The output tensor of
deconvolution
operator."
"The output tensor of
convolution transpose
operator."
"The format of output tensor is also NCHW."
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"strides of deconvolution operator."
)
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"strides of convolution transpose operator."
)
.
SetDefault
({
1
,
1
});
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings of deconvolution operator."
)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"paddings of convolution transpose operator."
)
.
SetDefault
({
0
,
0
});
AddComment
(
R"DOC(
The
deconvolution
operation calculates the output based on the input, filter
The
convolution transpose
operation calculates the output based on the input, filter
and strides, paddings, groups parameters. The size of each dimension of the
parameters is checked in the infer-shape.
)DOC"
);
}
void
Deconv2DOpGrad
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
void
Conv2DTransposeOpGrad
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
auto
in_dims
=
ctx
->
GetInputDim
(
"Input"
);
auto
filter_dims
=
ctx
->
GetInputDim
(
"Filter"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Input"
)))
{
...
...
@@ -92,11 +96,13 @@ void Deconv2DOpGrad::InferShape(framework::InferShapeContext* ctx) const {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
deconv2d
,
ops
::
Deconv2DOp
,
ops
::
Deconv2DOpMaker
,
deconv2d_grad
,
ops
::
Deconv2DOpGrad
);
REGISTER_OP
(
conv2dtranspose
,
ops
::
Conv2DTransposeOp
,
ops
::
Conv2DTransposeOpMaker
,
conv2dtranspose_grad
,
ops
::
Conv2DTransposeOpGrad
);
REGISTER_OP_CPU_KERNEL
(
deconv2d
,
ops
::
GemmDeconv2DKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
conv2dtranspose
,
ops
::
GemmConv2DTransposeKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
deconv2d
_grad
,
ops
::
Gemm
DeconvGrad2D
Kernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
conv2dtranspose
_grad
,
ops
::
Gemm
Conv2DTransposeGrad
Kernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/deconv2d_op.cu
浏览文件 @
64c5ecbe
...
...
@@ -17,7 +17,8 @@
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
deconv2d
,
ops
::
GemmDeconv2DKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
conv2dtranspose
,
ops
::
GemmConv2DTransposeKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
deconv2d
_grad
,
ops
::
Gemm
DeconvGrad2D
Kernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
conv2dtranspose
_grad
,
ops
::
Gemm
Conv2DTransposeGrad
Kernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/deconv2d_op.h
浏览文件 @
64c5ecbe
...
...
@@ -26,15 +26,15 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
DDim
=
framework
::
DDim
;
// Define Op classes in .h file so that other
deconv
// Define Op classes in .h file so that other
conv transpose
// operator implementations can reuse the code.
class
Deconv2D
OpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
Conv2DTranspose
OpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
Deconv2D
OpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
);
Conv2DTranspose
OpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
);
};
class
Deconv2D
Op
:
public
framework
::
OperatorWithKernel
{
class
Conv2DTranspose
Op
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -42,7 +42,7 @@ class Deconv2DOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
;
};
class
Deconv2D
OpGrad
:
public
framework
::
OperatorWithKernel
{
class
Conv2DTranspose
OpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -51,7 +51,7 @@ class Deconv2DOpGrad : public framework::OperatorWithKernel {
};
template
<
typename
Place
,
typename
T
>
class
Gemm
Deconv2D
Kernel
:
public
framework
::
OpKernel
<
T
>
{
class
Gemm
Conv2DTranspose
Kernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
...
...
@@ -64,27 +64,27 @@ class GemmDeconv2DKernel : public framework::OpKernel<T> {
// no paddings and groups allowed in deconv
int
N
=
input
->
dims
()[
0
];
int
M
=
input
->
dims
()[
1
];
int
H
=
input
->
dims
()[
2
];
int
W
=
input
->
dims
()[
3
];
const
int
batch_size
=
input
->
dims
()[
0
];
const
int
m
=
input
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
int
K_H
=
filter
.
dims
()[
2
];
int
K_W
=
filter
.
dims
()[
3
];
const
int
k_h
=
filter
.
dims
()[
2
];
const
int
k_w
=
filter
.
dims
()[
3
];
int
C
=
output
->
dims
()[
1
];
// output channels
int
O_H
=
output
->
dims
()[
2
];
int
O_W
=
output
->
dims
()[
3
];
const
int
c
=
output
->
dims
()[
1
];
// output channels
const
int
o_h
=
output
->
dims
()[
2
];
const
int
o_w
=
output
->
dims
()[
3
];
paddle
::
operators
::
math
::
Col2ImFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
Place
,
T
>
col2im
;
// use col_shape in the im2col and col2im calculation
DDim
col_shape
=
{
C
,
K_H
,
K_W
,
H
,
W
};
DDim
col_shape
=
{
c
,
k_h
,
k_w
,
h
,
w
};
// use col_matrix_shape in the gemm calculation
DDim
col_matrix_shape
=
{
C
*
K_H
*
K_W
,
H
*
W
};
DDim
col_matrix_shape
=
{
c
*
k_h
*
k_w
,
h
*
w
};
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
...
...
@@ -94,10 +94,10 @@ class GemmDeconv2DKernel : public framework::OpKernel<T> {
Tensor
col_matrix
=
col
;
col_matrix
.
Resize
(
col_matrix_shape
);
DDim
output_shape
=
{
C
,
O_H
,
O_W
};
DDim
input_matrix_shape
=
{
M
,
H
*
W
};
DDim
output_shape
=
{
c
,
o_h
,
o_w
};
DDim
input_matrix_shape
=
{
m
,
h
*
w
};
DDim
filter_matrix_shape
=
{
M
,
C
*
K_H
*
K_W
};
DDim
filter_matrix_shape
=
{
m
,
c
*
k_h
*
k_w
};
filter
.
Resize
(
filter_matrix_shape
);
// deconvolution: gemm + col2im (similar to conv-backward on input)
...
...
@@ -106,16 +106,16 @@ class GemmDeconv2DKernel : public framework::OpKernel<T> {
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
output
);
t
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
// batch with size (M,
H * W
)
Tensor
input_batch
=
input
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// filter size: (M,
C * K_H * K_W
)
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// batch with size (M,
h * w
)
Tensor
input_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// filter size: (M,
c * k_h * k_w
)
// output size: (
C, O_H, O_W
)
Tensor
output_batch
=
output
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
output_shape
);
// output size: (
c, o_h, o_w
)
Tensor
output_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// col_matrix = filter * input_batch
// of shape (
C * K_H * K_W, H * W
)
// of shape (
c * k_h * k_w, h * w
)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
true
,
input_batch
,
false
,
T
(
1.0
),
&
col_matrix
,
T
(
0.0
));
col2im
(
context
.
device_context
(),
output_batch
,
col
,
strides
[
0
],
...
...
@@ -125,7 +125,7 @@ class GemmDeconv2DKernel : public framework::OpKernel<T> {
};
template
<
typename
Place
,
typename
T
>
class
Gemm
DeconvGrad2D
Kernel
:
public
framework
::
OpKernel
<
T
>
{
class
Gemm
Conv2DTransposeGrad
Kernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
...
...
@@ -145,17 +145,17 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
// Actually, no paddings and groups allowed in deconv.
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
int
N
=
input
->
dims
()[
0
];
int
M
=
input
->
dims
()[
1
];
int
H
=
input
->
dims
()[
2
];
int
W
=
input
->
dims
()[
3
];
const
int
batch_size
=
input
->
dims
()[
0
];
const
int
m
=
input
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
int
K_H
=
filter
.
dims
()[
2
];
int
K_W
=
filter
.
dims
()[
3
];
const
int
k_h
=
filter
.
dims
()[
2
];
const
int
k_w
=
filter
.
dims
()[
3
];
int
C
=
output_grad
->
dims
()[
1
];
// output channels
int
O_H
=
output_grad
->
dims
()[
2
];
int
O_W
=
output_grad
->
dims
()[
3
];
const
int
c
=
output_grad
->
dims
()[
1
];
// output channels
const
int
o_h
=
output_grad
->
dims
()[
2
];
const
int
o_w
=
output_grad
->
dims
()[
3
];
// Only im2col functor required for bp to get to the right shape
paddle
::
operators
::
math
::
Im2ColFunctor
<
...
...
@@ -163,10 +163,10 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
im2col
;
// use col_shape in the im2col and col2im calculation
DDim
col_shape
=
{
C
,
K_H
,
K_W
,
H
,
W
};
DDim
col_shape
=
{
c
,
k_h
,
k_w
,
h
,
w
};
// use col_matrix_shape in the gemm calculation
DDim
col_matrix_shape_f
=
{
C
*
H
*
W
,
K_H
*
K_W
};
DDim
col_matrix_shape_f
=
{
c
*
h
*
w
,
k_h
*
k_w
};
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
...
...
@@ -174,10 +174,10 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
DDim
output_shape
=
{
C
,
O_H
,
O_W
};
DDim
input_matrix_shape
=
{
M
,
H
*
W
};
DDim
output_shape
=
{
c
,
o_h
,
o_w
};
DDim
input_matrix_shape
=
{
m
,
h
*
w
};
DDim
filter_matrix_shape
=
{
M
,
C
*
K_H
*
K_W
};
DDim
filter_matrix_shape
=
{
m
,
c
*
k_h
*
k_w
};
filter
.
Resize
(
filter_matrix_shape
);
// deconvolution grad on input:
...
...
@@ -185,29 +185,29 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
// input need to compute gradient
if
(
input_grad
)
{
Tensor
col_matrix
=
col
;
DDim
col_matrix_shape
=
{
C
*
K_H
*
K_W
,
H
*
W
};
DDim
col_matrix_shape
=
{
c
*
k_h
*
k_w
,
h
*
w
};
col_matrix
.
Resize
(
col_matrix_shape
);
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
input_grad
);
t
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
// batch with size (
C, O_H * O_W
)
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// batch with size (
c, o_h * o_w
)
Tensor
output_grad_batch
=
output_grad
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
output_shape
);
// filter of size (
M, C * K_H * K_W
)
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// filter of size (
m, c * k_h * k_w
)
// batch with size (
M, H, W
)
// batch with size (
m, h, w
)
Tensor
input_grad_batch
=
input_grad
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
input_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// im2col: dy from (
C, O_H, O_W) -> (C * K_H * K_W, H * W
)
// im2col: dy from (
c, o_h, o_w) -> (c * k_h * k_w, h * w
)
im2col
(
context
.
device_context
(),
output_grad_batch
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
]);
// gemm: dx = filter * dy
// (
M, C * K_H * K_W) * (C * K_H * K_W, H * W) -> (M, C, H
)
// (
m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, c, h
)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
input_grad_batch
,
T
(
0.0
));
...
...
@@ -217,7 +217,7 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
// filter gradient required
if
(
filter_grad
)
{
Tensor
col_matrix_f
=
col
;
DDim
col_matrix_shape_f
=
{
C
*
H
*
W
,
K_H
*
K_W
};
DDim
col_matrix_shape_f
=
{
c
*
h
*
w
,
k_h
*
k_w
};
col_matrix_f
.
Resize
(
col_matrix_shape_f
);
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
...
...
@@ -226,19 +226,19 @@ class GemmDeconvGrad2DKernel : public framework::OpKernel<T> {
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
filter_grad_
);
t
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
// batch with size (
C, O_H, O_W
)
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
// batch with size (
c, o_h, o_w
)
Tensor
output_grad_batch
=
output_grad
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
output_shape
);
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// input batch
Tensor
in_batch
=
input
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// im2col: (
C * H * W, K_H * K_W
)
// im2col: (
c * h * w, k_h * k_w
)
im2col
(
context
.
device_context
(),
output_grad_batch
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
1
]);
// gemm: d_filter = x * y_grad^T
// (
M, C * H * W) * (K_H * K_W, C * H * W) -> (M, C, H
)
// (
m, c * h * w) * (k_h * k_w, c * h * w) -> (m, c, h
)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
in_batch
,
false
,
col_matrix_f
,
true
,
T
(
1.0
),
&
filter_grad_
,
T
(
1.0
));
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录