Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
63f6ce7b
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
63f6ce7b
编写于
7月 23, 2021
作者:
R
ronnywang
提交者:
GitHub
7月 23, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add index_sample_op_npu and tests (#34239)
* add index_sample_op_npu and tests * update
上级
b436e5fa
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
323 addition
and
0 deletion
+323
-0
paddle/fluid/operators/index_sample_op_npu.cc
paddle/fluid/operators/index_sample_op_npu.cc
+130
-0
python/paddle/fluid/tests/unittests/npu/test_index_sample_op_npu.py
...dle/fluid/tests/unittests/npu/test_index_sample_op_npu.py
+193
-0
未找到文件。
paddle/fluid/operators/index_sample_op_npu.cc
0 → 100644
浏览文件 @
63f6ce7b
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/index_sample_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
IndexSampleNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>();
auto
*
input
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
index
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Index"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
transformed_index
;
const
auto
&
index_type
=
index
->
type
();
bool
index_type_match
=
index_type
==
framework
::
proto
::
VarType
::
INT32
||
index_type
==
framework
::
proto
::
VarType
::
INT64
;
PADDLE_ENFORCE_EQ
(
index_type_match
,
true
,
platform
::
errors
::
InvalidArgument
(
"Input(Index) holds the wrong type, it holds %s, but "
"desires to be %s or %s"
,
paddle
::
framework
::
DataTypeToString
(
index_type
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
framework
::
proto
::
VarType
::
INT64
)));
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
transformed_index
.
mutable_data
<
int64_t
>
(
index
->
dims
(),
dev_ctx
.
GetPlace
());
const
auto
&
cast_runner
=
NpuOpRunner
(
"Cast"
,
{
*
index
},
{
transformed_index
},
{{
"dst_type"
,
ACL_INT64
}});
cast_runner
.
Run
(
dev_ctx
.
stream
());
}
else
{
transformed_index
.
ShareDataWith
(
*
index
);
}
const
auto
&
runner
=
NpuOpRunner
(
"GatherElements"
,
{
*
input
,
transformed_index
},
{
*
out
},
{{
"dim"
,
1
}});
runner
.
Run
(
dev_ctx
.
stream
());
}
};
template
<
typename
IndexT
>
void
IndexSampleGradScatter
(
const
paddle
::
platform
::
NPUDeviceContext
&
dev_ctx
,
const
Tensor
*
index
,
const
Tensor
*
out_grad
,
Tensor
*
x_grad
)
{
auto
index_dims
=
index
->
dims
();
auto
input_dims
=
x_grad
->
dims
();
auto
batch_size
=
input_dims
[
0
];
auto
index_length
=
index_dims
[
1
];
std
::
vector
<
IndexT
>
scatter_index_vec
;
std
::
vector
<
IndexT
>
index_vec
;
framework
::
TensorToVector
(
*
index
,
dev_ctx
,
&
index_vec
);
for
(
auto
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
auto
j
=
0
;
j
<
index_length
;
j
++
)
{
scatter_index_vec
.
push_back
(
i
);
scatter_index_vec
.
push_back
(
index_vec
[
i
*
index_length
+
j
]);
}
}
Tensor
scatter_index
;
framework
::
TensorFromVector
(
scatter_index_vec
,
dev_ctx
,
&
scatter_index
);
scatter_index
.
Resize
({
batch_size
,
index_length
,
2
});
NpuOpRunner
runner
;
runner
.
SetType
(
"ScatterNd"
)
.
AddInput
(
scatter_index
)
.
AddInput
(
*
out_grad
)
.
AddInput
(
framework
::
vectorize
<
IndexT
>
(
x_grad
->
dims
()))
.
AddOutput
(
*
x_grad
);
runner
.
Run
(
dev_ctx
.
stream
());
}
template
<
typename
T
>
class
IndexSampleGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
dev_ctx
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>();
auto
*
index
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Index"
);
auto
*
out_grad
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
x_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
x_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
auto
&
index_type
=
index
->
type
();
if
(
index_type
==
framework
::
proto
::
VarType
::
INT32
)
{
IndexSampleGradScatter
<
int32_t
>
(
dev_ctx
,
index
,
out_grad
,
x_grad
);
}
else
{
IndexSampleGradScatter
<
int64_t
>
(
dev_ctx
,
index
,
out_grad
,
x_grad
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_NPU_KERNEL
(
index_sample
,
ops
::
IndexSampleNPUKernel
<
plat
::
float16
>
,
ops
::
IndexSampleNPUKernel
<
float
>
,
ops
::
IndexSampleNPUKernel
<
int32_t
>
,
ops
::
IndexSampleNPUKernel
<
int64_t
>
);
REGISTER_OP_NPU_KERNEL
(
index_sample_grad
,
ops
::
IndexSampleGradNPUKernel
<
plat
::
float16
>
,
ops
::
IndexSampleGradNPUKernel
<
float
>
,
ops
::
IndexSampleGradNPUKernel
<
int32_t
>
,
ops
::
IndexSampleGradNPUKernel
<
int64_t
>
);
python/paddle/fluid/tests/unittests/npu/test_index_sample_op_npu.py
0 → 100644
浏览文件 @
63f6ce7b
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
sys
import
unittest
import
numpy
as
np
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
class
TestIndexSampleOp
(
OpTest
):
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
def
setUp
(
self
):
self
.
set_npu
()
self
.
op_type
=
"index_sample"
self
.
config
()
xnp
=
np
.
random
.
random
(
self
.
x_shape
).
astype
(
self
.
dtype
)
indexnp
=
np
.
random
.
randint
(
low
=
0
,
high
=
self
.
x_shape
[
1
],
size
=
self
.
index_shape
).
astype
(
self
.
index_type
)
self
.
inputs
=
{
'X'
:
xnp
,
'Index'
:
indexnp
}
index_array
=
[]
for
i
in
range
(
self
.
index_shape
[
0
]):
for
j
in
indexnp
[
i
]:
index_array
.
append
(
xnp
[
i
,
j
])
index_array
=
np
.
array
(
index_array
).
astype
(
self
.
dtype
)
out
=
np
.
reshape
(
index_array
,
self
.
index_shape
)
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
paddle
.
NPUPlace
(
0
))
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
paddle
.
NPUPlace
(
0
),
[
'X'
],
'Out'
)
def
config
(
self
):
"""
For multi-dimension input
"""
self
.
x_shape
=
(
10
,
20
)
self
.
dtype
=
"float32"
self
.
index_shape
=
(
10
,
10
)
self
.
index_type
=
"int32"
class
TestCase1
(
TestIndexSampleOp
):
def
config
(
self
):
"""
For one dimension input
"""
self
.
x_shape
=
(
100
,
1
)
self
.
dtype
=
"float32"
self
.
index_shape
=
(
100
,
1
)
self
.
index_type
=
"int32"
class
TestCase2
(
TestIndexSampleOp
):
def
config
(
self
):
"""
For int64_t index type
"""
self
.
x_shape
=
(
10
,
100
)
self
.
dtype
=
"float32"
self
.
index_shape
=
(
10
,
10
)
self
.
index_type
=
"int64"
class
TestCase3
(
TestIndexSampleOp
):
def
config
(
self
):
"""
For int index type
"""
self
.
x_shape
=
(
10
,
100
)
self
.
dtype
=
"float32"
self
.
index_shape
=
(
10
,
10
)
self
.
index_type
=
"int32"
class
TestCase4
(
TestIndexSampleOp
):
def
config
(
self
):
"""
For int64 index type
"""
self
.
x_shape
=
(
10
,
128
)
self
.
dtype
=
"float32"
self
.
index_shape
=
(
10
,
64
)
self
.
index_type
=
"int64"
class
TestCase5
(
TestIndexSampleOp
):
def
config
(
self
):
"""
For float16 x type
"""
self
.
__class__
.
no_need_check_grad
=
True
self
.
x_shape
=
(
10
,
128
)
self
.
dtype
=
"float16"
self
.
index_shape
=
(
10
,
64
)
self
.
index_type
=
"int64"
def
test_check_grad
(
self
):
pass
class
TestCase6
(
TestCase5
):
def
config
(
self
):
"""
For int32 x type
"""
self
.
__class__
.
no_need_check_grad
=
True
self
.
x_shape
=
(
10
,
128
)
self
.
dtype
=
"int32"
self
.
index_shape
=
(
10
,
64
)
self
.
index_type
=
"int64"
class
TestCase7
(
TestCase5
):
def
config
(
self
):
"""
For int64 x type
"""
self
.
__class__
.
no_need_check_grad
=
True
self
.
x_shape
=
(
10
,
128
)
self
.
dtype
=
"int64"
self
.
index_shape
=
(
10
,
64
)
self
.
index_type
=
"int64"
class
TestIndexSampleShape
(
unittest
.
TestCase
):
def
test_shape
(
self
):
paddle
.
enable_static
()
# create x value
x_shape
=
(
2
,
5
)
x_type
=
"float32"
x_np
=
np
.
random
.
random
(
x_shape
).
astype
(
x_type
)
# create index value
index_shape
=
(
2
,
3
)
index_type
=
"int32"
index_np
=
np
.
random
.
randint
(
low
=
0
,
high
=
x_shape
[
1
],
size
=
index_shape
).
astype
(
index_type
)
x
=
fluid
.
data
(
name
=
'x'
,
shape
=
[
-
1
,
5
],
dtype
=
'float32'
)
index
=
fluid
.
data
(
name
=
'index'
,
shape
=
[
-
1
,
3
],
dtype
=
'int32'
)
output
=
paddle
.
index_sample
(
x
=
x
,
index
=
index
)
place
=
fluid
.
NPUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
feed
=
{
'x'
:
x_np
,
'index'
:
index_np
}
res
=
exe
.
run
(
feed
=
feed
,
fetch_list
=
[
output
])
class
TestIndexSampleDynamic
(
unittest
.
TestCase
):
def
test_result
(
self
):
with
fluid
.
dygraph
.
guard
(
paddle
.
NPUPlace
(
0
)):
x
=
paddle
.
to_tensor
(
[[
1.0
,
2.0
,
3.0
,
4.0
],
[
5.0
,
6.0
,
7.0
,
8.0
],
[
9.0
,
10.0
,
11.0
,
12.0
]],
dtype
=
'float32'
)
index
=
paddle
.
to_tensor
(
[[
0
,
1
,
2
],
[
1
,
2
,
3
],
[
0
,
0
,
0
]],
dtype
=
'int32'
)
out_z1
=
paddle
.
index_sample
(
x
,
index
)
except_output
=
np
.
array
(
[[
1.0
,
2.0
,
3.0
],
[
6.0
,
7.0
,
8.0
],
[
9.0
,
9.0
,
9.0
]])
assert
out_z1
.
numpy
().
all
()
==
except_output
.
all
()
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录