提交 628c8d51 编写于 作者: Q qiaolongfei

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into add-boost-to-inference

......@@ -25,7 +25,6 @@ message(STATUS "CXX compiler: ${CMAKE_CXX_COMPILER}, version: "
message(STATUS "C compiler: ${CMAKE_C_COMPILER}, version: "
"${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
find_package(Sphinx)
if(NOT CMAKE_CROSSCOMPILING)
find_package(CUDA QUIET)
endif(NOT CMAKE_CROSSCOMPILING)
......@@ -226,5 +225,7 @@ if(WITH_PYTHON)
endif()
if(WITH_DOC)
find_package(Sphinx REQUIRED)
find_python_module(recommonmark REQUIRED)
add_subdirectory(doc)
endif()
......@@ -4,34 +4,37 @@
For the typical synchronous distributed training, some significant steps are as follows:
1. A Trainer will compute the gradients and SEND them to the Parameter Server(PServer) nodes.
1. After the PServer node received gradients came from all the Trainers, It will aggregate the
1. A trainer process will compute the gradients and **send** them to the parameter server (PS) nodes.
1. After the PS node received gradients came from all the Trainers, It will aggregate the
gradient variables for the same parameter into one gradient variable and then apply the aggregated
gradient to the respective parameter, finally using an optimize algorithms(SGD, Monument...)
to update the parameters.
1. The Trainer would wait for the PServers finished the optimize stage, and GET the parameters from PServer,
1. The Trainer would wait for the PS finished the optimize stage, and GET the parameters from PS,
so all the Trainers would get the same parameters.
In the synchronously distributed training, there should be a `Barrier` to synchronise the
parameters after the optimizing stage. The performance of a distributed training job would
depend on the slowest node if there were hundreds or thousands of training nodes in a
Job, the performance of synchronously distributed training might be very poor because of
the slow node. So this design doc would introduce an approach to implement
*asynchronously* distributed training in PaddlePaddle Fluid.
In Synchronous Distributed Training, there is a **barrier** on each PS to wait until all trainers processes
have completed running current mini-batch. After that, all trainers can continue to run the next
mini-batch. So, we can find that the overall performance of Synchronous Distributed Training depends
on the slowest node.
In Asynchronous Distributed Training, we don't need to wait for a global mini-bach, the optimizer on
the PS will run immediately when the gradient is uploaded to the PS from one trainer. This mode would
train such models that achieve scaling, better throughput. In this design doc, we will introduce how to
implement the Asynchronous Distributed Training base on PaddlePaddle Fluid.
## Design
<img src="./src/async_update.png" width="600"/>
As the figure above, we describe a global view of asynchronously update process and use
As the figure above, we describe a global view of the asynchronous update process and use
the parameter `w1` as an example to introduce the steps:
1. For each gradient variables, they may distribute on different GPU card and aggregate
them while they are all calculated.
1. Split the gradient variable into multiple blocks according to the number of PServer
1. Split the gradient variable into multiple blocks according to the number of PS
instances and then send them.
1. PServer would run an `Optimize Block` using a specified optimize algorithm to update
1. PS would run an `Optimize Block` using a specified optimize algorithm to update
the specified parameter.
1. The trainer will fetch latest parameter from PServer before running forward Op which depends
1. The trainer will fetch the latest parameter from PS before running forward Op which depends
on the specified parameter.
1. Broadcast the received variable into multiple GPU cards and continue to run the next
mini-batch.
......@@ -40,8 +43,8 @@ mini-batch.
- For the multiple devices distributed training, we need to aggregate the gradient
variables which placed on different devices firstly and then schedule a `SendVars` Operator to
send the gradient variables to the multiple PServer instances.
- Schedule `FetchVars` operator to fetch the latest parameter from PServer before running
send the gradient variables to the multiple PS instances.
- Schedule `FetchVars` operator to fetch the latest parameter from PS before running
the forward ops.
- There could be a large number of gradient variables to be sent, so we need to use another
thread pool(IO Threadpool) whose a number of the schedulable threads is larger than the
......
......@@ -19,8 +19,9 @@
----------------
PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安装编译依赖的步骤,可选的不同编译环境Docker镜像
可以在 `这里 <https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/>`_ 找到。或者
参考下述可选步骤,从源码中构建用于编译PaddlePaddle的Docker镜像。
可以在 `这里 <https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/>`_ 找到,您也可以
在 `这里 <https://github.com/PaddlePaddle/Paddle/tree/develop/tools/manylinux1/>`_ 找到 paddle_manylinux_devel
镜像的编译以及使用方法。或者参考下述可选步骤,从源码中构建用于编译PaddlePaddle的Docker镜像。
如果您选择不使用Docker镜像,则需要在本机安装下面章节列出的 `编译依赖`_ 之后才能开始编译的步骤。
......
......@@ -22,6 +22,8 @@ How To Build
You need to use Docker to build PaddlePaddle
to avoid installing dependencies by yourself. We have several pre-built
Docker images `here <https://hub.docker.com/r/paddlepaddle/paddle_manylinux_devel/tags/>`_ ,
you can also find how to build and use paddle_manylinux_devel Docker image from
`here <https://github.com/PaddlePaddle/Paddle/tree/develop/tools/manylinux1/>`_
Or you can build your own image from source as the optional step below:
.. code-block:: bash
......
......@@ -5,11 +5,11 @@ proto_library(framework_proto SRCS framework.proto)
cc_library(ddim SRCS ddim.cc DEPS eigen3 boost)
cc_test(ddim_test SRCS ddim_test.cc DEPS ddim)
nv_test(dim_test SRCS dim_test.cu DEPS ddim)
cc_library(data_type SRCS data_type.cc DEPS framework_proto ddim device_context)
if(WITH_GPU)
nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS ddim place memory device_context framework_proto)
nv_library(tensor SRCS tensor.cc tensor_util.cu DEPS place memory data_type)
else()
cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS ddim place memory device_context framework_proto)
cc_library(tensor SRCS tensor.cc tensor_util.cc DEPS place memory data_type)
endif()
cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/data_type.h"
#include <stdint.h>
#include <string>
#include <unordered_map>
namespace paddle {
namespace framework {
struct DataTypeMap {
std::unordered_map<std::type_index, proto::VarType::Type> cpp_to_proto_;
std::unordered_map<int, std::type_index> proto_to_cpp_;
std::unordered_map<int, std::string> proto_to_str_;
std::unordered_map<std::type_index, size_t> cpp_to_size_;
};
static DataTypeMap* InitDataTypeMap();
static DataTypeMap& gDataTypeMap() {
static DataTypeMap* g_data_type_map_ = InitDataTypeMap();
return *g_data_type_map_;
}
template <typename T>
static inline void RegisterType(DataTypeMap* map,
proto::VarType::Type proto_type,
const std::string& name) {
map->proto_to_cpp_.emplace(static_cast<int>(proto_type), typeid(T));
map->cpp_to_proto_.emplace(typeid(T), proto_type);
map->proto_to_str_.emplace(static_cast<int>(proto_type), name);
map->cpp_to_size_.emplace(typeid(T), sizeof(T));
}
static DataTypeMap* InitDataTypeMap() {
auto retv = new DataTypeMap();
#define RegType(cc_type, proto_type) \
RegisterType<cc_type>(retv, proto_type, #cc_type)
// NOTE: Add your customize type here.
RegType(platform::float16, proto::VarType::FP16);
RegType(float, proto::VarType::FP32);
RegType(double, proto::VarType::FP64);
RegType(int, proto::VarType::INT32);
RegType(int64_t, proto::VarType::INT64);
RegType(bool, proto::VarType::BOOL);
RegType(size_t, proto::VarType::SIZE_T);
RegType(int16_t, proto::VarType::INT16);
#undef RegType
return retv;
}
proto::VarType::Type ToDataType(std::type_index type) {
auto it = gDataTypeMap().cpp_to_proto_.find(type);
if (it != gDataTypeMap().cpp_to_proto_.end()) {
return it->second;
}
PADDLE_THROW("Not support %s as tensor type", type.name());
}
std::type_index ToTypeIndex(proto::VarType::Type type) {
auto it = gDataTypeMap().proto_to_cpp_.find(static_cast<int>(type));
if (it != gDataTypeMap().proto_to_cpp_.end()) {
return it->second;
}
PADDLE_THROW("Not support proto::VarType::Type(%d) as tensor type",
static_cast<int>(type));
}
std::string DataTypeToString(const proto::VarType::Type type) {
auto it = gDataTypeMap().proto_to_str_.find(static_cast<int>(type));
if (it != gDataTypeMap().proto_to_str_.end()) {
return it->second;
}
PADDLE_THROW("Not support proto::VarType::Type(%d) as tensor type",
static_cast<int>(type));
}
size_t SizeOfType(std::type_index type) {
auto it = gDataTypeMap().cpp_to_size_.find(type);
if (it != gDataTypeMap().cpp_to_size_.end()) {
return it->second;
}
PADDLE_THROW("Not support %s as tensor type", type.name());
}
} // namespace framework
} // namespace paddle
......@@ -17,51 +17,14 @@ limitations under the License. */
#include <typeindex>
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace framework {
inline proto::VarType::Type ToDataType(std::type_index type) {
if (typeid(platform::float16).hash_code() == type.hash_code()) {
return proto::VarType::FP16;
} else if (typeid(const float).hash_code() == type.hash_code()) {
// CPPLint complains Using C-style cast. Use static_cast<float>() instead
// One fix to this is to replace float with const float because
// typeid(T) == typeid(const T)
// http://en.cppreference.com/w/cpp/language/typeid
return proto::VarType::FP32;
} else if (typeid(const double).hash_code() == type.hash_code()) {
return proto::VarType::FP64;
} else if (typeid(const int).hash_code() == type.hash_code()) {
return proto::VarType::INT32;
} else if (typeid(const int64_t).hash_code() == type.hash_code()) {
return proto::VarType::INT64;
} else if (typeid(const bool).hash_code() == type.hash_code()) {
return proto::VarType::BOOL;
} else {
PADDLE_THROW("Not supported");
}
}
inline std::type_index ToTypeIndex(proto::VarType::Type type) {
switch (type) {
case proto::VarType::FP16:
return typeid(platform::float16);
case proto::VarType::FP32:
return typeid(float);
case proto::VarType::FP64:
return typeid(double);
case proto::VarType::INT32:
return typeid(int);
case proto::VarType::INT64:
return typeid(int64_t);
case proto::VarType::BOOL:
return typeid(bool);
default:
PADDLE_THROW("Not support type %d", type);
}
}
extern proto::VarType::Type ToDataType(std::type_index type);
extern std::type_index ToTypeIndex(proto::VarType::Type type);
template <typename Visitor>
inline void VisitDataType(proto::VarType::Type type, Visitor visitor) {
......@@ -89,32 +52,12 @@ inline void VisitDataType(proto::VarType::Type type, Visitor visitor) {
}
}
inline std::string DataTypeToString(const proto::VarType::Type type) {
switch (type) {
case proto::VarType::FP16:
return "float16";
case proto::VarType::FP32:
return "float32";
case proto::VarType::FP64:
return "float64";
case proto::VarType::INT16:
return "int16";
case proto::VarType::INT32:
return "int32";
case proto::VarType::INT64:
return "int64";
case proto::VarType::BOOL:
return "bool";
default:
PADDLE_THROW("Not support type %d", type);
}
}
extern std::string DataTypeToString(const proto::VarType::Type type);
extern size_t SizeOfType(std::type_index type);
inline std::ostream& operator<<(std::ostream& out,
const proto::VarType::Type& type) {
out << DataTypeToString(type);
return out;
}
} // namespace framework
} // namespace paddle
......@@ -101,6 +101,8 @@ message VarType {
FP16 = 4;
FP32 = 5;
FP64 = 6;
// Tensor<size_t> is used in C++.
SIZE_T = 19;
// Other types that may need additional descriptions
LOD_TENSOR = 7;
......
......@@ -27,7 +27,7 @@ TEST(OpKernelType, ToString) {
LibraryType::kCUDNN);
ASSERT_EQ(paddle::framework::KernelTypeToString(op_kernel_type),
"data_type[float32]:data_layout[NCHW]:place[CPUPlace]:library_type["
"data_type[float]:data_layout[NCHW]:place[CPUPlace]:library_type["
"CUDNN]");
}
......
......@@ -192,6 +192,10 @@ class ExecutionContext {
return op_.Attr<T>(name);
}
bool HasInput(const std::string& name) const { return op_.HasInputs(name); }
bool HasOutput(const std::string& name) const { return op_.HasOutputs(name); }
size_t InputSize(const std::string& name) const {
return op_.Inputs(name).size();
}
......
......@@ -58,7 +58,8 @@ ParallelExecutor::ParallelExecutor(
const std::unordered_set<std::string> &bcast_vars,
const ProgramDesc &main_program, const std::string &loss_var_name,
Scope *scope, const std::vector<Scope *> &local_scopes, bool allow_op_delay,
bool use_default_grad_scale, bool balance_parameter_opt_between_cards)
bool use_default_grad_scale, bool balance_parameter_opt_between_cards,
size_t num_trainers, size_t trainer_id)
: member_(new ParallelExecutorPrivate(places)) {
member_->global_scope_ = scope;
......@@ -80,7 +81,13 @@ ParallelExecutor::ParallelExecutor(
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
member_->nccl_ctxs_.reset(new platform::NCCLContextMap(member_->places_));
auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
ncclUniqueId *nccl_id = nullptr;
if (nccl_id_var != nullptr) {
nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
}
member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
member_->places_, nccl_id, num_trainers, trainer_id));
#endif
if (platform::is_gpu_place(places[0]) && member_->local_scopes_.size() != 1 &&
local_scopes.empty()) { // Is CUDA
......
......@@ -41,7 +41,8 @@ class ParallelExecutor {
const std::string& loss_var_name, Scope* scope,
const std::vector<Scope*>& local_scopes,
bool allow_op_delay, bool use_default_grad_scale,
bool balance_parameter_opt_between_cards);
bool balance_parameter_opt_between_cards,
size_t num_trainers = 1, size_t trainer_id = 0);
~ParallelExecutor();
......
......@@ -13,54 +13,14 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
namespace paddle {
namespace framework {
template <typename... T>
struct SizeOfTypeFunctor;
template <typename T>
struct SizeOfTypeFunctor<T> {
size_t operator()(std::type_index type) const {
if (typeid(T).hash_code() == type.hash_code()) {
return sizeof(T);
} else {
return 0UL;
}
}
};
template <>
struct SizeOfTypeFunctor<> {
size_t operator()(std::type_index type) const { return 0UL; }
};
template <typename HEAD, typename... TAIL>
struct SizeOfTypeFunctor<HEAD, TAIL...> {
size_t operator()(std::type_index type) const {
SizeOfTypeFunctor<HEAD> head;
size_t head_size = head(type);
if (head_size != 0) {
return head_size;
}
SizeOfTypeFunctor<TAIL...> tail;
return tail(type);
}
};
static inline size_t SizeOfType(std::type_index type) {
SizeOfTypeFunctor<int, float, double, int16_t, int64_t, bool, size_t,
platform::float16>
functor;
size_t size = functor(type);
PADDLE_ENFORCE(size != 0UL, "Cannot get size of type %s", type.name());
return size;
}
extern size_t SizeOfType(std::type_index type);
inline void Tensor::check_memory_size() const {
PADDLE_ENFORCE_NOT_NULL(
holder_, "Tensor holds no memory. Call Tensor::mutable_data first.");
......
......@@ -21,6 +21,7 @@
#include <glog/logging.h>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/framework.pb.h"
namespace paddle {
......@@ -58,8 +59,8 @@ class EngineBase {
struct Buffer {
void* buffer{nullptr}; // buffer should be allocated only once.
int max_size; // buffer allocated space.
int size; // data size.
size_t max_size; // buffer allocated space.
size_t size; // data size.
DeviceType device{DeviceType::UNK}; // tells which device this buffer is on.
};
......
nv_library(tensorrt_engine SRCS engine.cc DEPS framework_proto)
nv_test(test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader)
nv_test(test_tensorrt_engine SRCS test_engine.cc DEPS dynload_cuda tensorrt_engine)
add_subdirectory(convert)
nv_test(test_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc op_converter.h DEPS ${FLUID_CORE_MODULES})
nv_test(test_trt_activation_op SRCS test_activation_op.cc activation_op.cc
nv_test(test_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS ${FLUID_CORE_MODULES})
nv_test(test_trt_activation_op SRCS test_activation_op.cc activation_op.cc io_converter.cc
DEPS ${FLUID_CORE_MODULES} activation_op tensorrt_engine)
nv_test(test_io_converter SRCS test_io_converter.cc io_converter.cc DEPS dynload_cuda dynamic_loader lod_tensor)
......@@ -23,26 +23,42 @@ namespace tensorrt {
using platform::is_gpu_place;
using platform::is_cpu_place;
class DefaultInputConverter : public EngineInputConverter {
class DefaultIOConverter : public EngineIOConverter {
public:
DefaultInputConverter() {}
DefaultIOConverter() {}
// NOTE out is GPU memory.
virtual void operator()(const LoDTensor& in, void* out,
size_t max_size) override {
PADDLE_ENFORCE(out != nullptr);
PADDLE_ENFORCE_LE(in.memory_size(), max_size);
PADDLE_ENFORCE(stream_ != nullptr);
const auto& place = in.place();
size_t size = in.memory_size();
PADDLE_ENFORCE_LE(size, max_size);
if (is_cpu_place(place)) {
PADDLE_ENFORCE(stream_ != nullptr);
PADDLE_ENFORCE_EQ(0,
cudaMemcpyAsync(out, in.data<float>(), in.memory_size(),
cudaMemcpyHostToDevice, *stream_));
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(out, in.data<float>(), size,
cudaMemcpyHostToDevice, *stream_));
} else if (is_gpu_place(place)) {
PADDLE_ENFORCE_EQ(0,
cudaMemcpyAsync(out, in.data<float>(), in.memory_size(),
cudaMemcpyHostToHost, *stream_));
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(out, in.data<float>(), size,
cudaMemcpyDeviceToDevice, *stream_));
} else {
PADDLE_THROW("Unknown device for converter");
}
cudaStreamSynchronize(*stream_);
}
// NOTE in is GPU memory.
virtual void operator()(const void* in, LoDTensor* out,
size_t max_size) override {
PADDLE_ENFORCE(in != nullptr);
PADDLE_ENFORCE(stream_ != nullptr);
const auto& place = out->place();
size_t size = out->memory_size();
PADDLE_ENFORCE_LE(size, max_size);
if (is_cpu_place(place)) {
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(out->data<float>(), in, size,
cudaMemcpyDeviceToHost, *stream_));
} else if (is_gpu_place(place)) {
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(out->data<float>(), in, size,
cudaMemcpyDeviceToDevice, *stream_));
} else {
PADDLE_THROW("Unknown device for converter");
}
......@@ -50,7 +66,8 @@ class DefaultInputConverter : public EngineInputConverter {
}
};
REGISTER_TENSORRT_INPUT_CONVERTER(default, DefaultInputConverter);
// fluid LodTensor <-> tensorrt ITensor
REGISTER_TENSORRT_IO_CONVERTER(default, DefaultIOConverter);
} // namespace tensorrt
} // namespace inference
......
......@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/utils/singleton.h"
......@@ -25,43 +26,57 @@ namespace tensorrt {
using framework::LoDTensor;
/*
* Convert Input from Fluid to an Engine.
* TensorRT's ITensor follows row major, NCHW. Fluid is also row major, so in
* most cases just need to copy the data.
* Convert Input from Fluid to TensorRT Engine.
* Convert Output from TensorRT Engine to Fluid.
*
* Note that TensorRT's ITensor follows row major, NCHW. Fluid is also row
* major,
* so in the default case just need to copy the data.
*/
class EngineInputConverter {
class EngineIOConverter {
public:
EngineInputConverter() {}
EngineIOConverter() {}
virtual void operator()(const LoDTensor& in, void* out, size_t max_size) {}
virtual void operator()(const void* in, LoDTensor* out, size_t max_size) {}
void SetStream(cudaStream_t* stream) { stream_ = stream; }
static void Run(const std::string& in_op_type, const LoDTensor& in, void* out,
size_t max_size, cudaStream_t* stream) {
static void ConvertInput(const std::string& op_type, const LoDTensor& in,
void* out, size_t max_size, cudaStream_t* stream) {
PADDLE_ENFORCE(stream != nullptr);
auto* converter = Registry<EngineInputConverter>::Lookup(
in_op_type, "default" /* default_type */);
auto* converter = Registry<EngineIOConverter>::Lookup(
op_type, "default" /* default_type */);
PADDLE_ENFORCE_NOT_NULL(converter);
converter->SetStream(stream);
(*converter)(in, out, max_size);
}
virtual ~EngineInputConverter() {}
static void ConvertOutput(const std::string& op_type, const void* in,
LoDTensor* out, size_t max_size,
cudaStream_t* stream) {
PADDLE_ENFORCE(stream != nullptr);
auto* converter = Registry<EngineIOConverter>::Lookup(
op_type, "default" /* default_type */);
PADDLE_ENFORCE_NOT_NULL(converter);
converter->SetStream(stream);
(*converter)(in, out, max_size);
}
virtual ~EngineIOConverter() {}
protected:
cudaStream_t* stream_{nullptr};
};
#define REGISTER_TENSORRT_IO_CONVERTER(op_type__, Converter__) \
struct trt_io_##op_type__##_converter { \
trt_io_##op_type__##_converter() { \
Registry<EngineIOConverter>::Register<Converter__>(#op_type__); \
} \
}; \
trt_io_##op_type__##_converter trt_io_##op_type__##_converter__;
} // namespace tensorrt
} // namespace inference
} // namespace paddle
#define REGISTER_TENSORRT_INPUT_CONVERTER(in_op_type__, Converter__) \
struct trt_input_##in_op_type__##_converter { \
trt_input_##in_op_type__##_converter() { \
::paddle::inference::Registry<EngineInputConverter>::Register< \
Converter__>(#in_op_type__); \
} \
}; \
trt_input_##in_op_type__##_converter trt_input_##in_op_type__##_converter__;
......@@ -16,6 +16,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/inference/tensorrt/convert/io_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/place.h"
......@@ -26,7 +27,7 @@ namespace paddle {
namespace inference {
namespace tensorrt {
void Compare(float input, float expect) {
void Compare(const std::string op_type, float input, float expect) {
framework::Scope scope;
platform::CUDAPlace place;
platform::CUDADeviceContext ctx(place);
......@@ -35,6 +36,7 @@ void Compare(float input, float expect) {
auto x_var = scope.Var("X");
auto x_tensor = x_var->GetMutable<framework::LoDTensor>();
x_tensor->Resize({1, 1});
x_tensor->mutable_data<float>(place);
std::vector<float> init;
init.push_back(input);
framework::TensorFromVector(init, ctx, x_tensor);
......@@ -45,14 +47,15 @@ void Compare(float input, float expect) {
out_tensor->mutable_data<float>(place);
framework::OpDesc op_desc;
op_desc.SetType("relu");
op_desc.SetType(op_type);
op_desc.SetInput("X", {"X"});
op_desc.SetOutput("Out", {"Out"});
auto relu_op = framework::OpRegistry::CreateOp(*op_desc.Proto());
auto op = framework::OpRegistry::CreateOp(*op_desc.Proto());
// run fluid op
relu_op->Run(scope, place);
op->Run(scope, place);
// get fluid output
std::vector<float> out1;
framework::TensorToVector(*out_tensor, ctx, &out1);
......@@ -63,21 +66,28 @@ void Compare(float input, float expect) {
engine->InitNetwork();
engine->DeclareInput("X", nvinfer1::DataType::kFLOAT,
nvinfer1::DimsCHW{1, 1, 1});
// convert op
OpConverter op_converter;
op_converter.ConvertOp(*op_desc.Proto(), engine);
engine->DeclareOutput("Out");
engine->FreezeNetwork();
engine->SetInputFromCPU("X", &input, 1 * sizeof(float));
// run tensorrt op
// convert LoDTensor to ITensor
size_t size = x_tensor->memory_size();
EngineIOConverter::ConvertInput(op_type, *x_tensor,
engine->buffer("X").buffer, size, &stream);
// run tensorrt Outp
engine->Execute(1);
float out2;
engine->GetOutputInCPU("Out", &out2, 1 * sizeof(float));
ASSERT_EQ(out1[0], out2);
// convert ITensor to LoDTensor
EngineIOConverter::ConvertOutput(op_type, engine->buffer("Out").buffer,
out_tensor, size, &stream);
// get tensorrt output
std::vector<float> out2;
framework::TensorToVector(*out_tensor, ctx, &out2);
// compare
ASSERT_EQ(out1[0], out2[0]);
ASSERT_EQ(out1[0], expect);
delete engine;
......@@ -85,8 +95,8 @@ void Compare(float input, float expect) {
}
TEST(OpConverter, ConvertRelu) {
Compare(1, 1); // relu(1) = 1
Compare(-5, 0); // relu(-5) = 0
Compare("relu", 1, 1); // relu(1) = 1
Compare("relu", -5, 0); // relu(-5) = 0
}
} // namespace tensorrt
......
......@@ -12,40 +12,63 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/inference/tensorrt/convert/io_converter.h"
#include <gtest/gtest.h>
namespace paddle {
namespace inference {
namespace tensorrt {
class EngineInputConverterTester : public ::testing::Test {
public:
void SetUp() override { tensor.Resize({10, 10}); }
void IOConverterTester(const platform::DeviceContext& ctx) {
cudaStream_t stream;
ASSERT_EQ(0, cudaStreamCreate(&stream));
framework::LoDTensor tensor;
};
// init fluid in_tensor
framework::LoDTensor in_tensor;
in_tensor.Resize({10, 10});
auto place = ctx.GetPlace();
in_tensor.mutable_data<float>(place);
std::vector<float> init;
for (int64_t i = 0; i < 10 * 10; ++i) {
init.push_back(i);
}
framework::TensorFromVector(init, ctx, &in_tensor);
TEST_F(EngineInputConverterTester, DefaultCPU) {
// init tensorrt buffer
void* buffer;
tensor.mutable_data<float>(platform::CPUPlace());
ASSERT_EQ(cudaMalloc(&buffer, tensor.memory_size()), 0);
size_t size = in_tensor.memory_size();
ASSERT_EQ(cudaMalloc(&buffer, size), 0);
cudaStream_t stream;
EngineInputConverter::Run("test", tensor, buffer, tensor.memory_size(),
&stream);
// convert fluid in_tensor to tensorrt buffer
EngineIOConverter::ConvertInput("test", in_tensor, buffer, size, &stream);
// convert tensorrt buffer to fluid out_tensor
framework::LoDTensor out_tensor;
out_tensor.Resize({10, 10});
out_tensor.mutable_data<float>(place);
EngineIOConverter::ConvertOutput("test", buffer, &out_tensor, size, &stream);
// compare in_tensor and out_tensor
std::vector<float> result;
framework::TensorToVector(out_tensor, ctx, &result);
EXPECT_EQ(init.size(), result.size());
for (size_t i = 0; i < init.size(); i++) {
EXPECT_EQ(init[i], result[i]);
}
cudaStreamDestroy(stream);
}
TEST_F(EngineInputConverterTester, DefaultGPU) {
void* buffer;
tensor.mutable_data<float>(platform::CUDAPlace());
ASSERT_EQ(cudaMalloc(&buffer, tensor.memory_size()), 0);
TEST(EngineIOConverterTester, DefaultCPU) {
platform::CPUPlace place;
platform::CPUDeviceContext ctx(place);
IOConverterTester(ctx);
}
cudaStream_t stream;
EngineInputConverter::Run("test", tensor, buffer, tensor.memory_size(),
&stream);
TEST(EngineIOConverterTester, DefaultGPU) {
platform::CUDAPlace place;
platform::CUDADeviceContext ctx(place);
IOConverterTester(ctx);
}
} // namespace tensorrt
......
......@@ -16,7 +16,6 @@ limitations under the License. */
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tests/test_helper.h"
DEFINE_string(data_set, "cifar10", "Data set to test");
DEFINE_string(dirname, "", "Directory of the inference model.");
DEFINE_string(fp16_dirname, "", "Directory of the float16 inference model.");
DEFINE_int32(batch_size, 1, "Batch size of input data");
......@@ -35,19 +34,19 @@ TEST(inference, image_classification) {
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
const bool is_combined = false;
std::vector<std::vector<int64_t>> feed_target_shapes =
GetFeedTargetShapes(dirname, is_combined);
paddle::framework::LoDTensor input;
// Use normilized image pixels as input data,
// which should be in the range [0.0, 1.0].
if (FLAGS_data_set == "cifar10") {
SetupTensor<float>(&input, {FLAGS_batch_size, 3, 32, 32},
static_cast<float>(0), static_cast<float>(1));
} else if (FLAGS_data_set == "imagenet") {
SetupTensor<float>(&input, {FLAGS_batch_size, 3, 224, 224},
static_cast<float>(0), static_cast<float>(1));
} else {
LOG(FATAL) << "Only cifar10 or imagenet is supported.";
}
feed_target_shapes[0][0] = FLAGS_batch_size;
paddle::framework::DDim input_dims =
paddle::framework::make_ddim(feed_target_shapes[0]);
LOG(INFO) << input_dims;
SetupTensor<float>(&input, input_dims, static_cast<float>(0),
static_cast<float>(1));
std::vector<paddle::framework::LoDTensor*> cpu_feeds;
cpu_feeds.push_back(&input);
......@@ -60,7 +59,7 @@ TEST(inference, image_classification) {
LOG(INFO) << "--- CPU Runs: ---";
LOG(INFO) << "Batch size is " << FLAGS_batch_size;
TestInference<paddle::platform::CPUPlace, false, true>(
dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat);
dirname, cpu_feeds, cpu_fetchs1, FLAGS_repeat, is_combined);
LOG(INFO) << output1.dims();
}
......@@ -73,7 +72,7 @@ TEST(inference, image_classification) {
LOG(INFO) << "--- GPU Runs: ---";
LOG(INFO) << "Batch size is " << FLAGS_batch_size;
TestInference<paddle::platform::CUDAPlace, false, true>(
dirname, cpu_feeds, cpu_fetchs2, FLAGS_repeat);
dirname, cpu_feeds, cpu_fetchs2, FLAGS_repeat, is_combined);
LOG(INFO) << output2.dims();
if (!FLAGS_skip_cpu) {
......
......@@ -89,6 +89,50 @@ void CheckError(const paddle::framework::LoDTensor& output1,
EXPECT_EQ(count, 0U) << "There are " << count << " different elements.";
}
std::unique_ptr<paddle::framework::ProgramDesc> InitProgram(
paddle::framework::Executor* executor, paddle::framework::Scope* scope,
const std::string& dirname, const bool is_combined = false) {
std::unique_ptr<paddle::framework::ProgramDesc> inference_program;
if (is_combined) {
// All parameters are saved in a single file.
// Hard-coding the file names of program and parameters in unittest.
// The file names should be consistent with that used in Python API
// `fluid.io.save_inference_model`.
std::string prog_filename = "__model_combined__";
std::string param_filename = "__params_combined__";
inference_program =
paddle::inference::Load(executor, scope, dirname + "/" + prog_filename,
dirname + "/" + param_filename);
} else {
// Parameters are saved in separate files sited in the specified
// `dirname`.
inference_program = paddle::inference::Load(executor, scope, dirname);
}
return inference_program;
}
std::vector<std::vector<int64_t>> GetFeedTargetShapes(
const std::string& dirname, const bool is_combined = false) {
auto place = paddle::platform::CPUPlace();
auto executor = paddle::framework::Executor(place);
auto* scope = new paddle::framework::Scope();
auto inference_program = InitProgram(&executor, scope, dirname, is_combined);
auto& global_block = inference_program->Block(0);
const std::vector<std::string>& feed_target_names =
inference_program->GetFeedTargetNames();
std::vector<std::vector<int64_t>> feed_target_shapes;
for (size_t i = 0; i < feed_target_names.size(); ++i) {
auto* var = global_block.FindVar(feed_target_names[i]);
std::vector<int64_t> var_shape = var->GetShape();
feed_target_shapes.push_back(var_shape);
}
delete scope;
return feed_target_shapes;
}
template <typename Place, bool CreateVars = true, bool PrepareContext = false>
void TestInference(const std::string& dirname,
const std::vector<paddle::framework::LoDTensor*>& cpu_feeds,
......@@ -124,22 +168,7 @@ void TestInference(const std::string& dirname,
paddle::platform::RecordEvent record_event(
"init_program",
paddle::platform::DeviceContextPool::Instance().Get(place));
if (is_combined) {
// All parameters are saved in a single file.
// Hard-coding the file names of program and parameters in unittest.
// The file names should be consistent with that used in Python API
// `fluid.io.save_inference_model`.
std::string prog_filename = "__model_combined__";
std::string param_filename = "__params_combined__";
inference_program = paddle::inference::Load(
&executor, scope, dirname + "/" + prog_filename,
dirname + "/" + param_filename);
} else {
// Parameters are saved in separate files sited in the specified
// `dirname`.
inference_program = paddle::inference::Load(&executor, scope, dirname);
}
inference_program = InitProgram(&executor, scope, dirname, is_combined);
}
// Disable the profiler and print the timing information
paddle::platform::DisableProfiler(paddle::platform::EventSortingKey::kDefault,
......
......@@ -186,6 +186,11 @@ endif()
add_subdirectory(detail)
if(WITH_DISTRIBUTE)
if(WITH_GPU)
op_library(gen_nccl_id_op DEPS nccl_common)
else()
set(DEPS_OPS ${DEPS_OPS} gen_nccl_id_op)
endif()
set(DISTRIBUTE_DEPS sendrecvop_grpc grpc++_unsecure grpc_unsecure gpr cares zlib protobuf)
set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor")
op_library(send_op DEPS ${DISTRIBUTE_DEPS})
......@@ -202,8 +207,9 @@ if(WITH_DISTRIBUTE)
set_source_files_properties(send_barrier_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
set_source_files_properties(send_recv_op_test.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS})
cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS prefetch_op send_op listen_and_serv_op sum_op executor)
cc_test(test_send_nccl_id SRCS test_send_nccl_id.cc DEPS send_op listen_and_serv_op executor)
else()
set(DEPS_OPS ${DEPS_OPS} send_op prefetch_op recv_op listen_and_serv_op send_vars_op send_barrier_op)
set(DEPS_OPS ${DEPS_OPS} send_op prefetch_op recv_op listen_and_serv_op send_vars_op send_barrier_op gen_nccl_id_op)
endif()
op_library(cross_entropy_op DEPS cross_entropy)
......
......@@ -52,7 +52,7 @@ bool RPCClient::AsyncSendVariable(const std::string& ep,
// stub context
SendProcessor* s = new SendProcessor(ch);
s->Prepare(var_h, time_out);
s->response_call_back_ = NULL;
s->response_call_back_ = nullptr;
auto call = s->stub_g_.PrepareUnaryCall(
s->context_.get(), "/sendrecv.SendRecvService/SendVariable", req, &cq_);
......
......@@ -57,7 +57,9 @@ void ProcGetResponse(const VarHandle& var_h, const grpc::ByteBuffer& msg);
class BaseProcessor {
public:
explicit BaseProcessor(std::shared_ptr<grpc::Channel> ch) { context_ = NULL; }
explicit BaseProcessor(std::shared_ptr<grpc::Channel> ch) {
context_ = nullptr;
}
virtual ~BaseProcessor() {}
......@@ -105,7 +107,7 @@ class SendProcessor : public BaseProcessor {
::grpc::GenericStub stub_g_;
::grpc::ByteBuffer reply_;
RequestSendCallBack response_call_back_ = NULL;
RequestSendCallBack response_call_back_ = nullptr;
};
typedef std::function<void(const VarHandle&, const ::grpc::ByteBuffer&)>
......
......@@ -306,7 +306,7 @@ void AsyncGRPCServer::TryToRegisterNewPrefetchOne() {
}
RequestPrefetch* prefetch =
new RequestPrefetch(&service_, cq_prefetch_.get(), sync_mode_, scope_,
dev_ctx_, executor_, program_, prefetch_ctx_);
dev_ctx_, executor_, program_, prefetch_ctx_.get());
VLOG(4) << "Create RequestPrefetch status:" << prefetch->Status();
}
......
......@@ -47,6 +47,7 @@ class AsyncGRPCServer final {
explicit AsyncGRPCServer(const std::string &address, bool sync_mode)
: address_(address), sync_mode_(sync_mode), ready_(0) {}
~AsyncGRPCServer() {}
void WaitServerReady();
void RunSyncUpdate();
......@@ -63,8 +64,9 @@ class AsyncGRPCServer final {
void SetExecutor(framework::Executor *executor) { executor_ = executor; }
void SetPrefetchPreparedCtx(framework::ExecutorPrepareContext *prepared) {
prefetch_ctx_ = prepared;
void SetPrefetchPreparedCtx(
std::unique_ptr<framework::ExecutorPrepareContext> prepared) {
prefetch_ctx_.reset(prepared.release());
}
int GetSelectedPort() const { return selected_port_; }
......@@ -115,7 +117,7 @@ class AsyncGRPCServer final {
std::unique_ptr<std::thread> t_get_;
std::unique_ptr<std::thread> t_prefetch_;
framework::ExecutorPrepareContext *prefetch_ctx_;
std::unique_ptr<framework::ExecutorPrepareContext> prefetch_ctx_;
framework::ProgramDesc *program_;
framework::Executor *executor_;
int selected_port_;
......
......@@ -100,7 +100,7 @@ void StartServer(const std::string& endpoint) {
InitTensorsOnServer(&scope, &place, 10);
rpc_service_->SetProgram(&program);
rpc_service_->SetPrefetchPreparedCtx(prepared.get());
rpc_service_->SetPrefetchPreparedCtx(std::move(prepared));
rpc_service_->SetDevCtx(&ctx);
rpc_service_->SetScope(&scope);
rpc_service_->SetExecutor(&exe);
......
......@@ -32,6 +32,7 @@ service SendRecvService {
enum VarType {
LOD_TENSOR = 0;
SELECTED_ROWS = 1;
NCCL_ID = 2;
}
// NOTICE(gongwb):don't modify this proto if you are not
......
......@@ -14,6 +14,9 @@ limitations under the License. */
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
#ifdef PADDLE_WITH_CUDA
#include <nccl.h>
#endif
#include <sys/time.h>
#include <thread> // NOLINT
......@@ -129,6 +132,10 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
} else if (var->IsType<framework::SelectedRows>()) {
request.set_type(::sendrecv::SELECTED_ROWS);
GetSelectedRowsPayload(var, ctx, &request, &payload, &payload_size);
#ifdef PADDLE_WITH_CUDA
} else if (var->IsType<ncclUniqueId>()) {
request.set_type(::sendrecv::NCCL_ID);
#endif
} else {
PADDLE_THROW("Serialize does not support type: %s",
typeid(var->Type()).name());
......@@ -149,6 +156,24 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var,
void* buf = buffer.get();
ProtoEncodeHelper e(static_cast<char*>(buf), 1024);
e.WriteRawBytes(std::string(header.data(), header.size()));
// NCCLID is copied directly to the message, return bytebuffer
// with only one slice if serializing NCCLID.
#ifdef PADDLE_WITH_CUDA
if (var->IsType<ncclUniqueId>()) {
e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber,
NCCL_UNIQUE_ID_BYTES);
const ncclUniqueId& uid = var->Get<ncclUniqueId>();
e.WriteRawBytes(std::string(uid.internal, NCCL_UNIQUE_ID_BYTES));
// for serialize NCCL_ID
::grpc::Slice slices(e.size());
memcpy(const_cast<uint8_t*>(slices.begin()), e.data(), e.size());
::grpc::ByteBuffer tmp(&slices, 1);
msg->Swap(&tmp);
return;
}
#endif
e.WriteVarlengthBeginning(VarMsg::kSerializedFieldNumber, payload_size);
// steal reference of tensor data
::grpc::Slice slices[4]; // metadata, tensor, rows meta, rows
......
......@@ -17,6 +17,9 @@
#include <string>
#include <utility>
#include <vector>
#ifdef PADDLE_WITH_CUDA
#include <nccl.h>
#endif
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/operators/detail/send_recv.pb.h"
......@@ -368,7 +371,8 @@ int VariableResponse::Parse(Source* source) {
}
case sendrecv::VariableMessage::kSerializedFieldNumber: {
PADDLE_ENFORCE((meta_.type() == sendrecv::SELECTED_ROWS ||
meta_.type() == sendrecv::LOD_TENSOR) &&
meta_.type() == sendrecv::LOD_TENSOR ||
meta_.type() == sendrecv::NCCL_ID) &&
meta_.varname() != "",
"meta info should be got first!");
......@@ -378,6 +382,22 @@ int VariableResponse::Parse(Source* source) {
return tag;
}
if (meta_.type() == sendrecv::NCCL_ID) {
#ifdef PADDLE_WITH_CUDA
auto* var = scope_->FindVar(meta_.varname());
if (var != nullptr) {
ncclUniqueId* id = var->GetMutable<ncclUniqueId>();
if (!ReadRaw(&input, *dev_ctx_, platform::CPUPlace(), id->internal,
num_bytes)) {
return tag;
}
}
break;
#else
PADDLE_THROW("Not compiled with CUDA!");
#endif
}
framework::DDim dims = GetDims(meta_.dims());
if (meta_.type() == sendrecv::LOD_TENSOR) {
PADDLE_ENFORCE(meta_.lod_size() >= 0,
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <nccl.h>
#include <stdint.h>
#include <ostream>
#include <string>
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/operators/detail/grpc_client.h"
#include "paddle/fluid/operators/detail/grpc_server.h"
#include "paddle/fluid/platform/nccl_helper.h"
namespace paddle {
namespace operators {
class GenNCCLIdOp : public framework::OperatorBase {
public:
GenNCCLIdOp(const std::string& type, const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void RunImpl(const framework::Scope& scope,
const platform::Place& dev_place) const override {
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
// put nccl id in CPUPlace
auto& dev_ctx = *pool.Get(platform::CPUPlace());
int trainer_id = Attr<int>("trainer_id");
framework::Scope& local_scope = scope.NewScope();
if (trainer_id == 0) {
GenerateAndSend(&local_scope, dev_ctx);
} else {
GetIdByServer(&local_scope, dev_ctx);
}
}
private:
void GenerateAndSend(framework::Scope* scope,
const platform::DeviceContext& dev_ctx) const {
auto var = scope->FindVar(NCCL_ID_VARNAME);
PADDLE_ENFORCE_NOT_NULL(var);
auto id = var->GetMutable<ncclUniqueId>();
PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(id));
std::vector<std::string> endpoint_list =
Attr<std::vector<std::string>>("endpoint_list");
detail::RPCClient client;
for (auto& ep : endpoint_list) {
VLOG(3) << "sending nccl id to " << ep;
client.AsyncSendVariable(ep, dev_ctx, *scope, NCCL_ID_VARNAME);
}
client.Wait();
VLOG(3) << "sending completed...";
}
void GetIdByServer(framework::Scope* scope,
const platform::DeviceContext& dev_ctx) const {
std::string endpoint = Attr<std::string>("endpoint");
// NOTE: Can not use unique_ptr here because the default
// deleter will call GRPC Server's base class's dtor and
// that will cause a wired crash.
detail::AsyncGRPCServer rpc_service(endpoint, true);
framework::ProgramDesc empty_program;
framework::Executor executor(dev_ctx.GetPlace());
rpc_service.SetScope(scope);
rpc_service.SetDevCtx(&dev_ctx);
rpc_service.SetProgram(&empty_program);
rpc_service.SetExecutor(&executor);
std::thread server_thread(
std::bind(&detail::AsyncGRPCServer::RunSyncUpdate, &rpc_service));
rpc_service.SetCond(0);
VLOG(3) << "start getting nccl id from trainer 0...";
auto recv = rpc_service.Get();
VLOG(3) << "got nccl id and stop server...";
rpc_service.ShutDown();
VLOG(3) << "rpc server stopped";
server_thread.join();
}
};
class GenNCCLIdOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddOutput("NCCLID", "Raw variable contains a NCCL UniqueId instaces.");
AddComment(R"DOC(
GenNCCLId operator
For trainer 0: generate a new UniqueId and send it to all the other trainers.
For trainer 1~n: start a gRPC server to get the UniqueId, once got, stop the server.
)DOC");
AddAttr<std::string>("endpoint",
"(string), e.g. 127.0.0.1:6175 "
"current listen endpoint");
AddAttr<std::vector<std::string>>(
"endpoint_list",
"['trainer1_ip:port', 'trainer2_ip:port', ...] "
"list of trainer endpoints start from trainer 1")
.SetDefault({});
AddAttr<int>("trainer_id",
"(int default 0) "
"The index of the trainer in distributed training.")
.SetDefault(0);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(gen_nccl_id, ops::GenNCCLIdOp, ops::GenNCCLIdOpMaker);
......@@ -322,8 +322,7 @@ void ListenAndServOp::RunImpl(const framework::Scope &scope,
// prepare for prefetch
VLOG(3) << "prefetch block id is " << prefetch_block->ID();
auto prefetch_prepared = executor.Prepare(*program, prefetch_block->ID());
rpc_service_->SetPrefetchPreparedCtx(prefetch_prepared.get());
prefetch_prepared.release();
rpc_service_->SetPrefetchPreparedCtx(std::move(prefetch_prepared));
// start the server listening after all member initialized.
server_thread_.reset(new std::thread(RunServer, rpc_service_));
......
......@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fstream>
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h"
......@@ -31,6 +31,7 @@ class LoadCombineOp : public framework::OperatorBase {
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
auto filename = Attr<std::string>("file_path");
auto load_as_fp16 = Attr<bool>("load_as_fp16");
std::ifstream fin(filename);
PADDLE_ENFORCE(static_cast<bool>(fin),
......@@ -59,17 +60,25 @@ class LoadCombineOp : public framework::OperatorBase {
// Get data from fin to tensor
DeserializeFromStream(fin, tensor, dev_ctx);
if (platform::is_gpu_place(place)) {
// copy CPU to GPU
framework::LoDTensor cpu_tensor;
cpu_tensor.ShareDataWith(*tensor);
cpu_tensor.set_lod(tensor->lod());
// reset tensor
auto in_dtype = framework::ToDataType(tensor->type());
auto out_dtype =
load_as_fp16 ? framework::proto::VarType::FP16 : in_dtype;
if (in_dtype != out_dtype) {
// convert to float16 tensor
auto in_kernel_type = framework::OpKernelType(in_dtype, place);
auto out_kernel_type = framework::OpKernelType(out_dtype, place);
framework::LoDTensor fp16_tensor;
// copy LoD info to the new tensor
fp16_tensor.set_lod(tensor->lod());
framework::TransDataType(in_kernel_type, out_kernel_type, *tensor,
&fp16_tensor);
// reset output tensor
out_var->Clear();
tensor = out_var->GetMutable<framework::LoDTensor>();
tensor->set_lod(cpu_tensor.lod());
TensorCopy(cpu_tensor, place, dev_ctx, tensor);
tensor->set_lod(fp16_tensor.lod());
tensor->ShareDataWith(fp16_tensor);
}
}
}
......@@ -82,6 +91,13 @@ class LoadCombineOpProtoMaker : public framework::OpProtoAndCheckerMaker {
"Out",
"(vector) The output LoDTensors that will be read from the input file.")
.AsDuplicable();
AddAttr<bool>(
"load_as_fp16",
"(boolean, default false)"
"If true, the tensor will be first loaded and then "
"converted to float16 data type. Otherwise, the tensor will be "
"directly loaded without data type conversion.")
.SetDefault(false);
AddAttr<std::string>("file_path",
"(string) "
"LoDTensors will be loaded from \"file_path\".")
......
......@@ -64,18 +64,22 @@ class LoDTensor2BatchFunctor {
bool is_reverse = false) const {
if (!is_cal_batch_lod) {
auto lods = batch->lod();
PADDLE_ENFORCE_GT(lods.size(), 2UL);
PADDLE_ENFORCE_EQ(lods[1].size(),
static_cast<size_t>(lod_tensor.dims()[0]));
PADDLE_ENFORCE_GT(lods.size(), 2UL,
"The LoD of LoDTensor should inlcude at least 2-level "
"sequence information.");
PADDLE_ENFORCE_EQ(
lods[1].size(), static_cast<size_t>(lod_tensor.dims()[0]),
"The LoD information should be consistent with the dims.");
CopyMatrixRowsFunctor<DeviceContext, T> to_batch;
to_batch(context, lod_tensor, lods[1], batch, true);
return;
}
auto lods = lod_tensor.lod();
auto lod = lods[0];
PADDLE_ENFORCE_EQ(lods.size(), 1UL, "Only support one level sequence now.");
auto lod = lods[0];
std::vector<SeqInfo> seq_info;
for (size_t seq_id = 0; seq_id < lod.size() - 1; ++seq_id) {
int length = lod[seq_id + 1] - lod[seq_id];
......@@ -157,9 +161,12 @@ class Batch2LoDTensorFunctor {
const framework::LoDTensor& batch,
framework::LoDTensor* lod_tensor) const {
auto in_lod = batch.lod();
PADDLE_ENFORCE_GT(in_lod.size(), 2UL);
PADDLE_ENFORCE_EQ(in_lod[1].size(),
static_cast<size_t>(lod_tensor->dims()[0]));
PADDLE_ENFORCE_GT(in_lod.size(), 2UL,
"The LoD of LoDTensor should inlcude at least 2-level "
"sequence information.");
PADDLE_ENFORCE_EQ(
in_lod[1].size(), static_cast<size_t>(lod_tensor->dims()[0]),
"The LoD information should be consistent with the dims.");
CopyMatrixRowsFunctor<DeviceContext, T> to_seq;
to_seq(context, batch, in_lod[1], lod_tensor, false);
}
......
......@@ -92,14 +92,16 @@ class ReshapeOp : public framework::OperatorWithKernel {
}
if (unk_dim_idx != -1) {
output_shape[unk_dim_idx] = -in_size / capacity;
// in_size < 0 and is un-determinate in compile time, skip the check,
// for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
// capacity = -24, in_size = -8, output_shape[0] = 0
// the following check will fail.
if (in_size > 0) {
// in_size < 0 and is un-determinate in compile time, skip the check,
// for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
// capacity = -24, in_size = -8, output_shape[0] = 0
// the following check will fail.
output_shape[unk_dim_idx] = -in_size / capacity;
PADDLE_ENFORCE_EQ(output_shape[unk_dim_idx] * capacity, -in_size,
"Invalid shape is given.");
} else {
output_shape[unk_dim_idx] = -1;
}
} else {
PADDLE_ENFORCE_EQ(capacity, in_size, "Invalid shape is given.");
......@@ -122,7 +124,10 @@ class ReshapeKernel : public framework::OpKernel<T> {
void Compute(const framework::ExecutionContext &ctx) const {
auto *out = ctx.Output<framework::LoDTensor>("Out");
auto *in = ctx.Input<framework::LoDTensor>("X");
auto *shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
auto *shape_tensor = ctx.HasInput("Shape")
? ctx.Input<framework::LoDTensor>("Shape")
: nullptr;
framework::DDim out_dims = out->dims();
......
......@@ -139,8 +139,9 @@ TEST(SaveLoadCombineOp, CPU) {
CheckValues<int, int>(expect4, actual4, expect_lod4, actual_lod4, numel4);
}
// FP16 version of SaveLoadCombineOp Test
TEST(SaveLoadCombineFP16Op, CPU) {
// FP16 version of SaveLoadCombineOp Test, only altering the saving aspect
// to save as FP16.
TEST(SaveCombineFP16Op, CPU) {
paddle::framework::Scope scope;
paddle::platform::CPUPlace place;
......@@ -169,7 +170,7 @@ TEST(SaveLoadCombineFP16Op, CPU) {
20, 50, lod4, "test_var4", place, &scope, &expect_lod4);
// Set attributes
std::string filename = "check_tensor_fp16.ls";
std::string filename = "check_tensor_fp16_save.ls";
paddle::framework::AttributeMap attrs;
attrs.insert({"file_path", std::string(filename)});
attrs.insert({"save_as_fp16", true});
......@@ -216,6 +217,89 @@ TEST(SaveLoadCombineFP16Op, CPU) {
actual_lod4, numel4);
}
// FP16 version of SaveLoadCombineOp Test, only altering the loading aspect
// to load tensors with FP16 precision.
TEST(LoadCombineFP16Op, CPU) {
paddle::framework::Scope scope;
paddle::platform::CPUPlace place;
std::vector<int> lod1 = {0, 1, 2, 3, 10};
int numel1 = 100;
paddle::framework::LoD expect_lod1;
float* expect1 = CreateForSaveCombineOp<float, paddle::platform::float16>(
10, 10, lod1, "test_var1", place, &scope, &expect_lod1);
std::vector<int> lod2 = {0, 2, 5, 10};
int numel2 = 200;
paddle::framework::LoD expect_lod2;
float* expect2 = CreateForSaveCombineOp<float, paddle::platform::float16>(
10, 20, lod2, "test_var2", place, &scope, &expect_lod2);
std::vector<int> lod3 = {0, 20};
int numel3 = 4000;
paddle::framework::LoD expect_lod3;
float* expect3 = CreateForSaveCombineOp<float, paddle::platform::float16>(
20, 200, lod3, "test_var3", place, &scope, &expect_lod3);
std::vector<int> lod4 = {0, 1, 20};
int numel4 = 1000;
paddle::framework::LoD expect_lod4;
float* expect4 = CreateForSaveCombineOp<float, paddle::platform::float16>(
20, 50, lod4, "test_var4", place, &scope, &expect_lod4);
// Set attributes
std::string filename = "check_tensor_fp16_load.ls";
paddle::framework::AttributeMap attrs;
attrs.insert({"file_path", std::string(filename)});
// Run the save_combine_op
auto save_combine_op = paddle::framework::OpRegistry::CreateOp(
"save_combine",
{{"X", {"test_var1", "test_var2", "test_var3", "test_var4"}}}, {}, attrs);
save_combine_op->Run(scope, place);
// Set up output vars
auto load_var1 = scope.Var("out_var1");
auto load_var2 = scope.Var("out_var2");
auto load_var3 = scope.Var("out_var3");
auto load_var4 = scope.Var("out_var4");
attrs.insert({"load_as_fp16", true});
// Run the load_combine_op
auto load_combine_op = paddle::framework::OpRegistry::CreateOp(
"load_combine", {},
{{"Out", {"out_var1", "out_var2", "out_var3", "out_var4"}}}, attrs);
load_combine_op->Run(scope, place);
auto* target1 = load_var1->GetMutable<paddle::framework::LoDTensor>();
auto* target2 = load_var2->GetMutable<paddle::framework::LoDTensor>();
auto* target3 = load_var3->GetMutable<paddle::framework::LoDTensor>();
auto* target4 = load_var4->GetMutable<paddle::framework::LoDTensor>();
paddle::framework::LoD actual_lod1, actual_lod2, actual_lod3, actual_lod4;
paddle::platform::float16* actual1 =
GetValuesAfterLoadCombineOp<paddle::platform::float16>(target1, scope,
&actual_lod1);
paddle::platform::float16* actual2 =
GetValuesAfterLoadCombineOp<paddle::platform::float16>(target2, scope,
&actual_lod2);
paddle::platform::float16* actual3 =
GetValuesAfterLoadCombineOp<paddle::platform::float16>(target3, scope,
&actual_lod3);
paddle::platform::float16* actual4 =
GetValuesAfterLoadCombineOp<paddle::platform::float16>(target4, scope,
&actual_lod4);
CheckValues<float, paddle::platform::float16>(expect1, actual1, expect_lod1,
actual_lod1, numel1);
CheckValues<float, paddle::platform::float16>(expect2, actual2, expect_lod2,
actual_lod2, numel2);
CheckValues<float, paddle::platform::float16>(expect3, actual3, expect_lod3,
actual_lod3, numel3);
CheckValues<float, paddle::platform::float16>(expect4, actual4, expect_lod4,
actual_lod4, numel4);
}
// Test with original SaveLoadTest
TEST(SaveLoadTestWithCombineOp, CPU) {
paddle::framework::Scope scope;
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <unistd.h>
#include <string>
#include <thread> // NOLINT
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/operators/detail/grpc_client.h"
#include "paddle/fluid/operators/listen_and_serv_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/nccl_helper.h"
#include "paddle/fluid/string/printf.h"
USE_NO_KERNEL_OP(listen_and_serv);
namespace f = paddle::framework;
namespace p = paddle::platform;
namespace m = paddle::operators::math;
namespace detail = paddle::operators::detail;
namespace string = paddle::string;
std::unique_ptr<detail::AsyncGRPCServer> rpc_service;
void StartServer(std::atomic<bool>* initialized) {
f::Scope scope;
p::CPUPlace place;
scope.Var(NCCL_ID_VARNAME);
p::DeviceContextPool& pool = p::DeviceContextPool::Instance();
auto& dev_ctx = *pool.Get(p::CPUPlace());
rpc_service.reset(new detail::AsyncGRPCServer("127.0.0.1:0", true));
f::ProgramDesc empty_program;
f::Executor executor(dev_ctx.GetPlace());
rpc_service->SetScope(&scope);
rpc_service->SetDevCtx(&dev_ctx);
rpc_service->SetProgram(&empty_program);
rpc_service->SetExecutor(&executor);
std::thread server_thread(
std::bind(&detail::AsyncGRPCServer::RunSyncUpdate, rpc_service.get()));
*initialized = true;
rpc_service->SetCond(0);
auto recv = rpc_service->Get();
LOG(INFO) << "got nccl id and stop server...";
rpc_service->ShutDown();
server_thread.join();
}
TEST(SendNcclId, Normal) {
std::atomic<bool> initialized{false};
std::thread server_thread(StartServer, &initialized);
while (!initialized) {
}
// wait server to start
// sleep(2);
rpc_service->WaitServerReady();
f::Scope scope;
p::CPUPlace place;
p::DeviceContextPool& pool = p::DeviceContextPool::Instance();
auto& dev_ctx = *pool.Get(p::CPUPlace());
auto var = scope.Var(NCCL_ID_VARNAME);
// var->SetType(f::proto::VarType_Type_RAW);
auto id = var->GetMutable<ncclUniqueId>();
p::dynload::ncclGetUniqueId(id);
int port = rpc_service->GetSelectedPort();
std::string ep = string::Sprintf("127.0.0.1:%d", port);
detail::RPCClient client;
client.AsyncSendVariable(ep, dev_ctx, scope, NCCL_ID_VARNAME);
client.Wait();
server_thread.join();
auto* ptr = rpc_service.release();
delete ptr;
}
......@@ -14,12 +14,15 @@
#pragma once
#include <stdio.h>
#include <thread> // NOLINT
#include <typeindex>
#include <vector>
#include "paddle/fluid/platform/dynload/nccl.h"
#include "paddle/fluid/platform/enforce.h"
#define NCCL_ID_VARNAME "NCCLID"
namespace paddle {
namespace platform {
......@@ -73,7 +76,9 @@ struct NCCLContextMap {
std::unordered_map<int, NCCLContext> contexts_;
std::vector<int> order_;
explicit NCCLContextMap(const std::vector<platform::Place> &places) {
explicit NCCLContextMap(const std::vector<platform::Place> &places,
ncclUniqueId *nccl_id = nullptr,
size_t num_trainers = 1, size_t trainer_id = 0) {
PADDLE_ENFORCE(!places.empty());
order_.reserve(places.size());
for (auto &p : places) {
......@@ -85,18 +90,34 @@ struct NCCLContextMap {
order_.size(), contexts_.size(),
"NCCL Context Map does not support contain two or more same device");
if (places.size() > 1) {
std::unique_ptr<ncclComm_t[]> comms(new ncclComm_t[order_.size()]);
if (places.size() <= 1) {
return;
}
std::unique_ptr<ncclComm_t[]> comms(new ncclComm_t[order_.size()]);
// if pass nccl_id here, can assume we are doing multi node training
if (nccl_id == nullptr) {
std::lock_guard<std::mutex> guard(NCCLGroupGuard::NCCLMutex());
PADDLE_ENFORCE(platform::dynload::ncclCommInitAll(
comms.get(), static_cast<int>(order_.size()), order_.data()));
} else {
PADDLE_ENFORCE_GT(num_trainers, 1);
// TODO(wuyi): need to ensure each node have same number of GPUs
{
std::lock_guard<std::mutex> guard(NCCLGroupGuard::NCCLMutex());
PADDLE_ENFORCE(platform::dynload::ncclCommInitAll(
comms.get(), static_cast<int>(order_.size()), order_.data()));
}
int i = 0;
for (auto &dev_id : order_) {
contexts_.at(dev_id).comm_ = comms[i++];
int nranks = num_trainers * order_.size();
NCCLGroupGuard gurad;
for (auto &gpu_id : order_) {
int rank = trainer_id * order_.size() + gpu_id;
VLOG(3) << "init nccl rank: " << rank << " nranks: " << nranks;
PADDLE_ENFORCE(cudaSetDevice(gpu_id));
PADDLE_ENFORCE(platform::dynload::ncclCommInitRank(
comms.get() + gpu_id, nranks, *nccl_id, rank));
}
}
}
int i = 0;
for (auto &dev_id : order_) {
contexts_.at(dev_id).comm_ = comms[i++];
}
}
NCCLContextMap(const NCCLContextMap &other) = delete;
......
......@@ -503,12 +503,13 @@ All parameter, weight, gradient are variables in Paddle.
const ProgramDesc &main_program, const std::string &loss_var_name,
Scope *scope, std::vector<Scope *> &local_scopes,
bool allow_op_delay, bool use_default_grad_scale,
bool balance_parameter_opt_between_cards) {
bool balance_parameter_opt_between_cards, size_t num_trainers,
size_t trainer_id) {
new (&self) ParallelExecutor(
num_threads, use_event, places, params, bcast_vars,
main_program, loss_var_name, scope, local_scopes,
allow_op_delay, use_default_grad_scale,
balance_parameter_opt_between_cards);
balance_parameter_opt_between_cards, num_trainers, trainer_id);
})
.def("bcast_params", &ParallelExecutor::BCastParamsToGPUs)
// NOTE: even we return a vec<Scope*>* to Python use reference policy.
......
......@@ -480,6 +480,8 @@ def append_backward(loss, parameter_list=None, no_grad_set=None,
program.current_block_idx = current_block_idx
program.sync_with_cpp()
# FIXME(zcd): prevent loss.grad optimized by mem_opt.
loss.block.var(_append_grad_suffix_(loss.name)).persistable = True
if parameter_list is not None:
parameters = parameter_list
......
......@@ -489,7 +489,7 @@ class Operator(object):
'rnn_memory_helper_grad', 'conditional_block', 'while', 'send',
'recv', 'listen_and_serv', 'parallel_do', 'save_combine',
'load_combine', 'ncclInit', 'channel_create', 'channel_close',
'channel_send', 'channel_recv', 'select'
'channel_send', 'channel_recv', 'select', 'gen_nccl_id'
}
if type not in no_kernel_op_set:
self.desc.infer_var_type(self.block.desc)
......
......@@ -31,7 +31,9 @@ class ParallelExecutor(object):
allow_op_delay=False,
share_vars_from=None,
use_default_grad_scale=True,
balance_parameter_opt_between_cards=False):
balance_parameter_opt_between_cards=False,
num_trainers=1,
trainer_id=0):
"""
ParallelExecutor can run program in parallel.
......@@ -55,6 +57,11 @@ class ParallelExecutor(object):
balance_parameter_opt_between_cards(bool, default True): Whether
updating different gradients on different cards. Currently, it
is not recommended.
num_trainers(int, default 1): If greater than 1, NCCL will be
initialized with multpile rank of nodes, each node should have
same number of GPUs. Distributed training will be enabled then.
trainer_id(int, default 0): Must use together with num_trainers.
trainer_id is the "rank" of current node starts from 0.
Returns:
A ParallelExecutor object.
......@@ -134,8 +141,9 @@ class ParallelExecutor(object):
local_scopes,
allow_op_delay,
use_default_grad_scale,
balance_parameter_opt_between_cards)
balance_parameter_opt_between_cards,
num_trainers,
trainer_id)
self.scope = scope
def run(self, fetch_list, feed=None, feed_dict=None):
......
......@@ -6,4 +6,5 @@ foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
endforeach()
add_subdirectory(fit_a_line)
add_subdirectory(recognize_digits)
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
# default test
foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
endforeach()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.fluid as fluid
import contextlib
import numpy
import unittest
# train reader
BATCH_SIZE = 20
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.test(), buf_size=500),
batch_size=BATCH_SIZE)
def inference_program():
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
return y_predict
def linear():
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = inference_program()
loss = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(loss)
return avg_loss
def train(use_cuda, save_dirname):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
trainer = fluid.Trainer(
train_func=linear,
infer_func=inference_program,
place=place,
optimizer=fluid.optimizer.SGD(learning_rate=0.001))
def event_handler(event):
if isinstance(event, fluid.EndEpochEvent):
test_metrics = trainer.test(
reader=test_reader, feed_order=['x', 'y'])
print test_metrics
'''
...
['25.768919467926025']
['15.343549569447836']
...
'''
if float(test_metrics[0]) < 20.0:
if save_dirname is not None:
# NOT clear yet
# fluid.io.save_inference_model(save_dirname, ['x'], [y_predict])
# trainer.save_params(save_dirname)
# https://github.com/PaddlePaddle/Paddle/pull/10445
trainer.save_inference_model(save_dirname)
return
trainer.train(
reader=train_reader,
num_epochs=100,
event_handler=event_handler,
feed_order=['x', 'y'])
# infer
def infer(use_cuda, save_dirname=None):
if save_dirname is None:
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
inferencer = fluid.Inferencer(param_path=save_dirname, place=place)
batch_size = 10
tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
results = inferencer.infer({'x': tensor_x})
print("infer results: ", results[0])
def main(use_cuda):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
# Directory for saving the trained model
save_dirname = "fit_a_line.inference.model"
train(use_cuda, save_dirname)
infer(use_cuda, save_dirname)
class TestFitALine(unittest.TestCase):
def test_cpu(self):
with self.program_scope_guard():
with fluid.unique_name.guard():
main(use_cuda=False)
def test_cuda(self):
with self.program_scope_guard():
with fluid.unique_name.guard():
main(use_cuda=True)
@contextlib.contextmanager
def program_scope_guard(self):
prog = fluid.Program()
startup_prog = fluid.Program()
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
with fluid.program_guard(prog, startup_prog):
yield
if __name__ == '__main__':
unittest.main()
......@@ -170,7 +170,7 @@ def train(word_dict,
assert save_dirname is None
adagrad = fluid.optimizer.Adagrad(learning_rate=0.002)
optimize_ops, params_grads = adagrad.minimize(cost)
adagrad.minimize(cost)
train_data = paddle.batch(
paddle.reader.shuffle(
......
......@@ -33,7 +33,7 @@ def train(use_cuda, save_dirname, is_local):
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
sgd_optimizer.minimize(avg_cost)
BATCH_SIZE = 20
......
......@@ -125,7 +125,7 @@ def train(net_type, use_cuda, save_dirname, is_local):
test_program = fluid.default_main_program().clone(for_test=True)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimize_ops, params_grads = optimizer.minimize(avg_cost)
optimizer.minimize(avg_cost)
BATCH_SIZE = 128
PASS_NUM = 1
......
......@@ -175,7 +175,7 @@ def train(use_cuda, save_dirname=None, is_local=True):
decay_steps=100000,
decay_rate=0.5,
staircase=True))
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
sgd_optimizer.minimize(avg_cost)
# TODO(qiao)
# add dependency track and move this config before optimizer
......
......@@ -185,7 +185,7 @@ def train_main(use_cuda, is_sparse, is_local=True):
learning_rate=1e-4,
regularization=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.1))
optimize_ops, params_grads = optimizer.minimize(avg_cost)
optimizer.minimize(avg_cost)
train_data = paddle.batch(
paddle.reader.shuffle(
......
......@@ -95,7 +95,7 @@ def train(nn_type,
test_program = fluid.default_main_program().clone(for_test=True)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimize_ops, params_grads = optimizer.minimize(avg_loss)
optimizer.minimize(avg_loss)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
......
......@@ -160,7 +160,7 @@ def train(use_cuda, save_dirname, is_local=True):
test_program = fluid.default_main_program().clone(for_test=True)
sgd_optimizer = SGDOptimizer(learning_rate=0.2)
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
sgd_optimizer.minimize(avg_cost)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
......
......@@ -101,7 +101,7 @@ def train(use_cuda, is_sparse, is_parallel, save_dirname, is_local=True):
avg_cost = fluid.layers.mean(pd())
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
sgd_optimizer.minimize(avg_cost)
train_reader = paddle.batch(
paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.layers as layers
from paddle.fluid.transpiler.distribute_transpiler import delete_ops
import numpy
class TestDistTranspiler(unittest.TestCase):
def setUp(self):
self.trainer_id = 0
self.trainers = 2
self.pservers = 2
self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
self.current_pserver_ep = "127.0.0.1:6174"
def net_conf(self):
x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
y_predict = fluid.layers.fc(input=x,
size=1000,
act=None,
param_attr=fluid.ParamAttr(name='fc_w'))
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
return optimize_ops, params_grads
def test_transpiler(self):
trainer = self.get_trainer()
pserver, startup = self.get_pserver(self.current_pserver_ep)
self.assertEqual([op.type for op in trainer.global_block().ops],
self.get_expect_trainer_ops())
self.assertEqual(len(pserver.blocks), 3)
# block0: listen_and_serv
self.assertEqual([op.type for op in pserver.blocks[0].ops],
["listen_and_serv"])
# block2: optimize pass
self.assertEqual([op.type for op in pserver.blocks[1].ops],
["sum", "scale", "sgd"])
# confirm startup program
self.assertEqual([op.type for op in startup.global_block().ops], [
"fill_constant", "fill_constant", "uniform_random", "uniform_random"
])
# the variable #fc_w will be split into two blocks
fc_w_var = startup.global_block().var("fc_w.block1")
self.assertEqual(fc_w_var.shape, (500, 1000))
def get_main_program(self):
main = fluid.Program()
with fluid.program_guard(main):
self.net_conf()
return main
def get_expect_trainer_ops(self):
trainer = fluid.Program()
with fluid.program_guard(trainer):
optimize_ops, params_grads = self.net_conf()
delete_ops(trainer.global_block(), optimize_ops)
return [op.type for op in trainer.global_block().ops
] + ["split_byref", "send", "concat"]
def get_trainer(self):
return self._transpiler_instance().get_trainer_program()
def get_pserver(self, ep):
t = self._transpiler_instance()
pserver = t.get_pserver_program(ep)
startup = t.get_startup_program(ep, pserver)
return pserver, startup
def _transpiler_instance(self):
main = self.get_main_program()
t = fluid.DistributeTranspiler()
t.transpile(
self.trainer_id,
program=main,
pservers=self.pserver_eps,
trainers=self.trainers)
return t
if __name__ == "__main__":
unittest.main()
......@@ -21,15 +21,7 @@ import random
class TestSplitVar(unittest.TestCase):
def test_check_output(self):
# split below shapes to 10 servers
shapes = [[3, 5], [1024], [28, 784], [8, 1020], [800, 10]]
expected_sizes = [
[15], [1024],
[2352, 2352, 2352, 2352, 2352, 2352, 2352, 2352, 2352, 784],
[2040, 2040, 2040, 2040],
[1150, 1150, 1150, 1150, 1150, 1150, 1100]
]
def check_split_output(self, shapes, expected_sizes, min_size):
var_list = []
program = fluid.Program()
for shape in shapes:
......@@ -39,7 +31,7 @@ class TestSplitVar(unittest.TestCase):
# dtype=core.VarDesc.VarType.LOD_TENSOR,
shape=shape)
var_list.append(var)
blocks = split_dense_variable(var_list, 10)
blocks = split_dense_variable(var_list, 10, min_size)
all_sizes = []
for s in expected_sizes:
for s2 in s:
......@@ -48,6 +40,25 @@ class TestSplitVar(unittest.TestCase):
varname, block_id, size = block_str.split(":")
self.assertEqual(int(size), all_sizes[i])
def test_1k(self):
shapes = [[3, 5], [1024], [28, 784], [8, 1020], [800, 10]]
expected_sizes = [
[15], [1024],
[2352, 2352, 2352, 2352, 2352, 2352, 2352, 2352, 2352, 784],
[2040, 2040, 2040, 2040],
[1150, 1150, 1150, 1150, 1150, 1150, 1100]
]
self.check_split_output(shapes, expected_sizes, 1024)
def test_check_output_8k(self):
shapes = [[3, 5], [1024], [28, 784], [8, 1020], [800, 10],
[6, 33, 33, 33]]
expected_sizes = [[15], [1024], [10976, 10976], [8160], [8000],
[35937, 35937, 35937, 35937, 35937, 35937]]
self.check_split_output(shapes, expected_sizes, 8192)
if __name__ == '__main__':
unittest.main()
......@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from distribute_transpiler import DistributeTranspiler
from inference_transpiler import InferenceTranspiler
from memory_optimization_transpiler import memory_optimize, release_memory
......
......@@ -17,7 +17,7 @@ from __future__ import print_function
import math
import distributed_splitter as splitter
from .. import core
from .. import core, framework
from ..framework import Program, default_main_program, \
default_startup_program, \
Variable, Parameter, grad_var_name
......@@ -93,30 +93,33 @@ def same_or_split_var(p_name, var_name):
return p_name == var_name or p_name.startswith(var_name + ".block")
def split_dense_variable(var_list,
pserver_count,
min_block_size=1024,
max_block_size=1048576):
def split_dense_variable(var_list, service_count, min_block_size=8192):
"""
We may need to split dense tensor to one or more blocks and put
them equally onto parameter server. One block is a sub-tensor
aligned by dim[0] of the tensor.
We need to have a minimal block size so that the calculations in
the parameter server side can gain better performance. By default
minimum block size is 1024. The max block size is used to prevent
very large blocks that may cause send error.
:return: A list of VarBlocks. Each VarBlock specifies a shard of
the var.
We may need to split dense tensor to one or more blocks and put
them equally onto parameter server. One block is a sub-tensor
aligned by dim[0] of the tensor.
We need to have a minimal block size so that the calculations in
the parameter server side can gain better performance. By default
minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
Args:
var_list (list): List of variables.
service_count (int): Numel of pserver services. A pserver may have two
or more listening ports.
min_block_size (int): Minimum splitted block size.
Returns:
blocks (list[(varname, block_id, current_block_size)]): A list
of VarBlocks. Each VarBlock specifies a shard of the var.
"""
blocks = []
for var in var_list:
split_count = pserver_count
split_count = service_count
var_numel = reduce(lambda x, y: x * y, var.shape)
max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
if max_pserver_count == 0:
max_pserver_count = 1
if max_pserver_count < pserver_count:
if max_pserver_count < service_count:
split_count = max_pserver_count
block_size = int(math.ceil(var_numel / float(split_count)))
......@@ -270,6 +273,7 @@ class DistributeTranspiler:
grad_var_mapping = self._append_split_op(program, grad_blocks)
param_var_mapping = self._create_vars_from_blocklist(program,
param_blocks)
# step3: Add gradients as send op inputs and parameters as send
# op outputs.
send_inputs = []
......@@ -277,9 +281,11 @@ class DistributeTranspiler:
for b in grad_blocks: # append by order
varname, block_id, _ = b.split(":")
send_inputs.append(grad_var_mapping[varname][int(block_id)])
for b in param_blocks:
varname, block_id, _ = b.split(":")
send_outputs.append(param_var_mapping[varname][int(block_id)])
# let send_op know which endpoint to send which var to, eplist has the same
# order as send_inputs.
eplist = split_method(send_inputs, pserver_endpoints)
......@@ -417,7 +423,7 @@ class DistributeTranspiler:
def __append_optimize_op__(op, block, grad_to_block_id):
if self._is_opt_op(op):
self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
default_main_program())
self.origin_program)
else:
self._append_pserver_non_opt_ops(block, op)
......@@ -751,9 +757,18 @@ class DistributeTranspiler:
Create vars for each split.
NOTE: only grads need to be named for different trainers, use
add_trainer_suffix to rename the grad vars.
:return: A dict mapping from original var name to each var split.
Args:
program (ProgramDesc): ProgramDesc which gradients blong.
block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
Returns:
var_mapping (dict(varname->[new_varname_variable])):A dict mapping
from original var name to each var split.
"""
# varname->[(block_id, current_block_size)]
block_map = dict()
var_mapping = dict()
for block_str in block_list:
varname, offset, size = block_str.split(":")
......@@ -824,7 +839,16 @@ class DistributeTranspiler:
persistable=persistable)
def _append_split_op(self, program, gradblocks):
# Split variables that need to be split and append respective ops
"""
Split variables that need to be split and append respective ops
Args:
program (ProgramDesc): ProgramDesc that gradients blong.
gradblocks (list[(varname, block_id, block_size)]): List of gradient blocks.
Returns:
var_mapping (dict(varname->[new_splitted_variable])):A dict mapping
from original var name to each var split.
"""
add_suffix = False
if self.trainer_num > 1:
add_suffix = True
......@@ -1148,6 +1172,12 @@ class DistributeTranspiler:
return lr_ops
def _get_optimize_pass(self):
"""
Get optimizer operators, paramters and gradients from origin_program
Returns:
opt_ops (list): optimize operators.
params_grads (dict): paramter->gradient.
"""
block = self.origin_program.global_block()
opt_ops = []
params_grads = []
......
......@@ -28,3 +28,38 @@ git clone https://github.com/paddlepaddle/paddle
cd paddle/tools/manylinux1
REPO=[yourrepo] ./build_all.sh
```
## Build PaddlePaddle for the different Python ABIs
Choose one of the following Python ABI and set the correct environment variables.
- cp27-cp27m
```bash
export LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs2/lib:${LD_LIBRARY_PATH#/opt/_internal/cpython-2.7.11-ucs4/lib:}
export PATH=/opt/python/cp27-cp27m/bin/:${PATH}
export PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/python/cp27-cp27m/bin/python
-DPYTHON_INCLUDE_DIR:PATH=/opt/python/cp27-cp27m/include/python2.7
-DPYTHON_LIBRARIES:FILEPATH=/opt/_internal/cpython-2.7.11-ucs2/lib/libpython2.7.so"
```
- cp27-cp27mu
```bash
export LD_LIBRARY_PATH=/opt/_internal/cpython-2.7.11-ucs4/lib:${LD_LIBRARY_PATH#/opt/_internal/cpython-2.7.11-ucs2/lib:}
export PATH=/opt/python/cp27-cp27mu/bin/:${PATH}
export PYTHON_FLAGS="-DPYTHON_EXECUTABLE:FILEPATH=/opt/python/cp27-cp27mu/bin/python
-DPYTHON_INCLUDE_DIR:PATH=/opt/python/cp27-cp27mu/include/python2.7
-DPYTHON_LIBRARIES:FILEPATH=/opt/_internal/cpython-2.7.11-ucs4/lib/libpython2.7.so"
```
And then add the `PYTHON_FLAGS` as your cmake flags:
```bash
cmake ..
${PYTHON_FLAGS} \
-DWITH_GPU=OFF \
...
```
You can find more details about cmake flags at [here](http://www.paddlepaddle.org/docs/develop/documentation/fluid/en/build_and_install/build_from_source_en.html#appendix-build-options)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册