Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
619c62bb
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
619c62bb
编写于
1月 07, 2021
作者:
W
WangXi
提交者:
GitHub
1月 07, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix adamw apply gradient (#30130)
上级
7564d43b
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
44 addition
and
87 deletion
+44
-87
python/paddle/fluid/tests/unittests/test_adamw_op.py
python/paddle/fluid/tests/unittests/test_adamw_op.py
+6
-4
python/paddle/optimizer/adam.py
python/paddle/optimizer/adam.py
+2
-0
python/paddle/optimizer/adamw.py
python/paddle/optimizer/adamw.py
+36
-83
未找到文件。
python/paddle/fluid/tests/unittests/test_adamw_op.py
浏览文件 @
619c62bb
...
@@ -29,10 +29,12 @@ class TestAdamWOp(unittest.TestCase):
...
@@ -29,10 +29,12 @@ class TestAdamWOp(unittest.TestCase):
parameters
=
linear
.
parameters
(),
parameters
=
linear
.
parameters
(),
apply_decay_param_fun
=
lambda
name
:
True
,
apply_decay_param_fun
=
lambda
name
:
True
,
weight_decay
=
0.01
)
weight_decay
=
0.01
)
out
=
linear
(
a
)
out
.
backward
()
for
_
in
range
(
2
):
adam
.
step
()
out
=
linear
(
a
)
adam
.
clear_gradients
()
out
.
backward
()
adam
.
step
()
adam
.
clear_gradients
()
def
test_adamw_op_coverage
(
self
):
def
test_adamw_op_coverage
(
self
):
paddle
.
disable_static
()
paddle
.
disable_static
()
...
...
python/paddle/optimizer/adam.py
浏览文件 @
619c62bb
...
@@ -16,6 +16,7 @@ from .optimizer import Optimizer
...
@@ -16,6 +16,7 @@ from .optimizer import Optimizer
from
..fluid
import
core
from
..fluid
import
core
from
..fluid
import
framework
from
..fluid
import
framework
from
..fluid.framework
import
Variable
from
..fluid.framework
import
Variable
from
..fluid.dygraph
import
base
as
imperative_base
import
paddle
import
paddle
...
@@ -247,6 +248,7 @@ class Adam(Optimizer):
...
@@ -247,6 +248,7 @@ class Adam(Optimizer):
return
adam_op
return
adam_op
@
imperative_base
.
no_grad
@
framework
.
dygraph_only
@
framework
.
dygraph_only
def
step
(
self
):
def
step
(
self
):
"""
"""
...
...
python/paddle/optimizer/adamw.py
浏览文件 @
619c62bb
...
@@ -129,6 +129,7 @@ class AdamW(Adam):
...
@@ -129,6 +129,7 @@ class AdamW(Adam):
self
.
_params_name
=
set
()
self
.
_params_name
=
set
()
self
.
_apply_decay_param_fun
=
apply_decay_param_fun
self
.
_apply_decay_param_fun
=
apply_decay_param_fun
self
.
_coeff
=
coeff
self
.
_coeff
=
coeff
self
.
_lr_to_coeff
=
dict
()
super
(
AdamW
,
self
).
__init__
(
super
(
AdamW
,
self
).
__init__
(
learning_rate
=
learning_rate
,
learning_rate
=
learning_rate
,
parameters
=
parameters
,
parameters
=
parameters
,
...
@@ -139,96 +140,48 @@ class AdamW(Adam):
...
@@ -139,96 +140,48 @@ class AdamW(Adam):
name
=
name
,
name
=
name
,
lazy_mode
=
lazy_mode
)
lazy_mode
=
lazy_mode
)
def
_
scale_parameters
(
self
,
params_and_grads
):
def
_
append_decoupled_weight_decay
(
self
,
block
,
param_and_grad
):
"""
"""
Add
s weight decay ops
.
Add
decoupled weight decay op
.
scaled_parameter = parameter * coeff
parameter = parameter - parameter * coeff * lr
Args:
Args:
params_and_grads: A list of (parameters, gradients) pairs,
block: block in which variable is to be created
param_and_grad: (parameters, gradients) pairs,
the parameters need to decay.
the parameters need to decay.
Raises:
Raises:
Exception: The type of coeff and parameter is not consistent.
Exception: The type of coeff and parameter is not consistent.
"""
"""
param
,
grad
=
param_and_grad
scaled_params
=
[]
for
param
,
grad
in
params_and_grads
:
if
self
.
_apply_decay_param_fun
is
not
None
\
# If no gradient then we don't need to do anything
and
not
self
.
_apply_decay_param_fun
(
param
.
name
):
if
grad
is
None
:
return
continue
if
self
.
_apply_decay_param_fun
is
not
None
\
if
isinstance
(
self
.
_learning_rate
,
float
):
and
not
self
.
_apply_decay_param_fun
(
param
.
name
):
learning_rate
=
self
.
_learning_rate
continue
else
:
# NOTE. We add this function to the _append_optimize_op(),
if
isinstance
(
self
.
_coeff
,
float
):
# for we must make sure _create_param_lr() be called after
assert
param
.
dtype
is
not
paddle
.
fluid
.
core
.
VarDesc
.
VarType
.
FP32
,
\
# optimizer._create_global_learning_rate().
"the type of coeff(float) and parameter(%s) is not consistent."
%
(
self
.
_coeff
.
dtype
)
learning_rate
=
self
.
_create_param_lr
(
param_and_grad
)
else
:
assert
self
.
_coeff
.
dtype
==
param
.
dtype
,
\
with
block
.
program
.
_optimized_guard
(
"the type of coeff(%s) and parameter(%s) is not consistent."
%
(
self
.
_coeff
.
dtype
,
param
.
dtype
)
[
param
,
grad
]),
framework
.
name_scope
(
'weight decay'
):
if
isinstance
(
self
.
_learning_rate
,
float
):
self
.
_params_name
.
add
(
param
.
name
)
learning_rate
=
self
.
_learning_rate
else
:
# If it has been calculated, the result will be reused
learning_rate
=
self
.
_learning_rate
()
decay_coeff
=
self
.
_lr_to_coeff
.
get
(
learning_rate
,
None
)
with
param
.
block
.
program
.
_optimized_guard
(
if
decay_coeff
is
None
:
[
param
,
grad
]),
framework
.
name_scope
(
'weight decay'
):
decay_coeff
=
1.0
-
learning_rate
*
self
.
_coeff
scaled_params
.
append
(
self
.
_lr_to_coeff
[
learning_rate
]
=
decay_coeff
(
param
,
grad
,
param
*
self
.
_coeff
*
learning_rate
))
if
param
.
name
not
in
self
.
_params_name
:
scaled_param
=
param
*
decay_coeff
self
.
_params_name
.
add
(
param
.
name
)
paddle
.
fluid
.
layers
.
assign
(
input
=
scaled_param
,
output
=
param
)
param
=
param
*
self
.
_coeff
return
scaled_params
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
self
.
_append_decoupled_weight_decay
(
block
,
param_and_grad
)
@
imperative_base
.
no_grad
return
super
(
AdamW
,
self
).
_append_optimize_op
(
block
,
param_and_grad
)
def
minimize
(
self
,
loss
,
startup_program
=
None
,
parameters
=
None
,
no_grad_set
=
None
):
parameters
=
parameters
if
parameters
\
else
self
.
_parameter_list
params_grads
=
self
.
backward
(
loss
=
loss
,
startup_program
=
startup_program
,
parameters
=
parameters
,
no_grad_set
=
no_grad_set
)
scaled_params
=
self
.
_scale_parameters
(
params_grads
)
for
p_grad_sgrad
in
scaled_params
:
param
,
grad
,
scaled_param
=
p_grad_sgrad
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
grad
]),
framework
.
name_scope
(
'weight decay'
):
updated_param
=
paddle
.
fluid
.
layers
.
elementwise_sub
(
x
=
param
,
y
=
scaled_param
)
paddle
.
fluid
.
layers
.
assign
(
input
=
updated_param
,
output
=
param
)
optimize_ops
=
self
.
_apply_optimize
(
loss
=
loss
,
params_grads
=
params_grads
,
startup_program
=
startup_program
)
return
optimize_ops
,
params_grads
@
framework
.
dygraph_only
@
imperative_base
.
no_grad
def
step
(
self
):
params_grads
=
[]
for
param
in
self
.
_parameter_list
:
if
not
param
.
trainable
:
continue
if
param
.
_grad_ivar
()
is
not
None
:
grad_var
=
param
.
_grad_ivar
()
params_grads
.
append
((
param
,
grad_var
))
scaled_params
=
self
.
_scale_parameters
(
params_grads
)
for
p_grad_sgrad
in
scaled_params
:
param
,
grad
,
scaled_param
=
p_grad_sgrad
with
param
.
block
.
program
.
_optimized_guard
(
[
param
,
grad
]),
framework
.
name_scope
(
'weight decay'
):
updated_param
=
paddle
.
fluid
.
layers
.
elementwise_sub
(
x
=
param
,
y
=
scaled_param
)
paddle
.
fluid
.
layers
.
assign
(
input
=
updated_param
,
output
=
param
)
self
.
_apply_optimize
(
loss
=
None
,
startup_program
=
None
,
params_grads
=
params_grads
)
def
__str__
(
self
):
def
__str__
(
self
):
return
" "
.
join
([
"Weight Decay, params:"
,
","
.
join
(
self
.
_params_name
)])
return
" "
.
join
([
"Weight Decay, params:"
,
","
.
join
(
self
.
_params_name
)])
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录