Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
6197c09b
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6197c09b
编写于
10月 16, 2017
作者:
G
gongweibao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify styles
上级
f1ca3f7e
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
50 addition
and
48 deletion
+50
-48
paddle/operators/block_expand_op.cc
paddle/operators/block_expand_op.cc
+23
-22
paddle/operators/block_expand_op.h
paddle/operators/block_expand_op.h
+27
-26
未找到文件。
paddle/operators/block_expand_op.cc
浏览文件 @
6197c09b
...
...
@@ -33,32 +33,33 @@ class BlockExpandOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
in_dim
.
size
(),
4
,
"Input format must be NCHW."
);
PADDLE_ENFORCE_GE
(
in_dim
[
0
],
1
,
"Input batchsize must >= 1."
);
int
block
H
eight
=
ctx
->
Attrs
().
Get
<
int
>
(
"blockHeight"
);
int
block
W
idth
=
ctx
->
Attrs
().
Get
<
int
>
(
"blockWidth"
);
int
stride
H
eight
=
ctx
->
Attrs
().
Get
<
int
>
(
"strideHeight"
);
int
stride
W
idth
=
ctx
->
Attrs
().
Get
<
int
>
(
"strideWidth"
);
int
padding
H
eight
=
ctx
->
Attrs
().
Get
<
int
>
(
"paddingHeight"
);
int
padding
W
idth
=
ctx
->
Attrs
().
Get
<
int
>
(
"paddingWidth"
);
int
block
_h
eight
=
ctx
->
Attrs
().
Get
<
int
>
(
"blockHeight"
);
int
block
_w
idth
=
ctx
->
Attrs
().
Get
<
int
>
(
"blockWidth"
);
int
stride
_h
eight
=
ctx
->
Attrs
().
Get
<
int
>
(
"strideHeight"
);
int
stride
_w
idth
=
ctx
->
Attrs
().
Get
<
int
>
(
"strideWidth"
);
int
padding
_h
eight
=
ctx
->
Attrs
().
Get
<
int
>
(
"paddingHeight"
);
int
padding
_w
idth
=
ctx
->
Attrs
().
Get
<
int
>
(
"paddingWidth"
);
int
N
=
in_dim
[
0
];
int
C
=
in_dim
[
1
];
int
img
H
eight
=
in_dim
[
3
];
int
img
W
idth
=
in_dim
[
4
];
int
img
_h
eight
=
in_dim
[
3
];
int
img
_w
idth
=
in_dim
[
4
];
int
output
H
eight
=
0
;
int
output
W
idth
=
0
;
int
output
_h
eight
=
0
;
int
output
_w
idth
=
0
;
get_blockexpand_output_shape
(
imgHeight
,
imgWidth
,
blockHeight
,
blockWidth
,
strideHeight
,
strideWidth
,
paddingHeight
,
paddingWidth
,
outputHeight
,
outputWidth
);
get_blockexpand_output_shape
(
img_height
,
img_width
,
block_height
,
block_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
output_height
,
output_width
);
// The result of im2col is [output
Height, outputW
idth,
// The result of im2col is [output
_height, output_w
idth,
// inputChannels, filterHeight, filterWidth], and it is easy to
// reshape into [seqLength, stepSize], where seqLength is equal
// output
Height * outputW
idth, stepSize is equal
// output
_height * output_w
idth, stepSize is equal
// input_channels * blockHeight * blockWidth
ctx
->
SetOutputDim
(
"Out"
,
{
N
,
output
Height
,
outputWidth
,
C
,
blockHeight
,
blockW
idth
});
"Out"
,
{
N
,
output
_height
,
output_width
,
C
,
block_height
,
block_w
idth
});
// ctx->ShareLoD("X", /*->*/ "Out");
}
...
...
@@ -85,18 +86,18 @@ class BlockExpandOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
int
>
(
"paddingWidth"
,
"(int)width of padding."
);
AddComment
(
R"DOC(
Expand feature map to minibatch matrix.
- matirx height is: output
Height * outputW
idth
- matirx height is: output
_height * output_w
idth
- matrix width is: blockHeight * blockWidth * channels
output
H
eight =
1 + (2 * paddingHeight + img
H
eight - blockHeight + strideHeight - 1) /
output
_h
eight =
1 + (2 * paddingHeight + img
_h
eight - blockHeight + strideHeight - 1) /
strideHeight;
output
W
idth =
1 + (2 * paddingWidth + img
W
idth - blockWidth + strideWidth - 1) /
output
_w
idth =
1 + (2 * paddingWidth + img
_w
idth - blockWidth + strideWidth - 1) /
strideWidth;
The expand method is the same with ExpandConvLayer, but saved the transposed
value. After expanding, The number of time steps are output
Height * outputW
idth
value. After expanding, The number of time steps are output
_height * output_w
idth
and the dimension of each time step is blockHeight * blockWidth * channels.
This layer can be used after convolution neural network, and before recurrent neural network.
)DOC"
);
...
...
paddle/operators/block_expand_op.h
浏览文件 @
6197c09b
...
...
@@ -18,24 +18,25 @@
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im
g
2col.h"
#include "paddle/operators/math/im2col.h"
namespace
paddle
{
namespace
operators
{
inline
void
get_blockexpand_output_shape
(
int
img
Height
,
int
imgW
idth
,
int
block
Height
,
int
blockW
idth
,
int
stride
Height
,
int
strideW
idth
,
int
padding
Height
,
int
paddingW
idth
,
inline
void
get_blockexpand_output_shape
(
int
img
_height
,
int
img_w
idth
,
int
block
_height
,
int
block_w
idth
,
int
stride
_height
,
int
stride_w
idth
,
int
padding
_height
,
int
padding_w
idth
,
int
&
outputHeight
,
int
&
outputWidth
)
{
outputHeight
=
1
+
(
img
Height
+
2
*
paddingHeight
-
blockHeight
+
strideH
eight
-
1
)
/
stride
H
eight
;
(
img
_height
+
2
*
padding_height
-
block_height
+
stride_h
eight
-
1
)
/
stride
_h
eight
;
outputWidth
=
1
+
(
imgWidth
+
2
*
paddingWidth
-
blockWidth
+
strideWidth
-
1
)
/
strideWidth
;
outputWidth
=
1
+
(
img_width
+
2
*
padding_width
-
block_width
+
stride_width
-
1
)
/
stride_width
;
}
template
<
typename
Place
,
typename
T
>
...
...
@@ -50,30 +51,30 @@ class BlockExpandKernel : public framework::OpKernel<T> {
auto
in_dim
=
in
->
dims
();
int
N
=
in_dim
[
0
];
int
C
=
in_dim
[
1
];
int
img
H
eight
=
in_dim
[
2
];
int
img
W
idth
=
in_dim
[
3
];
int
img
_h
eight
=
in_dim
[
2
];
int
img
_w
idth
=
in_dim
[
3
];
int
block
H
eight
=
ctx
.
Attr
<
int
>
(
"blockHeight"
);
int
block
W
idth
=
ctx
.
Attr
<
int
>
(
"blockWidth"
);
int
stride
H
eight
=
ctx
.
Attr
<
int
>
(
"strideHeight"
);
int
stride
W
idth
=
ctx
.
Attr
<
int
>
(
"strideWidth"
);
int
padding
H
eight
=
ctx
.
Attr
<
int
>
(
"paddingHeight"
);
int
padding
W
idth
=
ctx
.
Attr
<
int
>
(
"paddingWidth"
);
int
block
_h
eight
=
ctx
.
Attr
<
int
>
(
"blockHeight"
);
int
block
_w
idth
=
ctx
.
Attr
<
int
>
(
"blockWidth"
);
int
stride
_h
eight
=
ctx
.
Attr
<
int
>
(
"strideHeight"
);
int
stride
_w
idth
=
ctx
.
Attr
<
int
>
(
"strideWidth"
);
int
padding
_h
eight
=
ctx
.
Attr
<
int
>
(
"paddingHeight"
);
int
padding
_w
idth
=
ctx
.
Attr
<
int
>
(
"paddingWidth"
);
int
outputHeight
=
0
;
int
outputWidth
=
0
;
get_blockexpand_output_shape
(
imgHeight
,
imgWidth
,
blockHeight
,
blockWidth
,
strideHeight
,
strideWidth
,
paddingH
eight
,
paddingW
idth
,
outputHeight
,
outputWidth
);
get_blockexpand_output_shape
(
img_height
,
img_width
,
block_height
,
block_width
,
stride_h
eight
,
stride_width
,
padding_height
,
padding_w
idth
,
outputHeight
,
outputWidth
);
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
Tensor
src
=
in
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
C
,
img
Height
,
imgW
idth
);
Tensor
src
=
in
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
C
,
img
_height
,
img_w
idth
);
Tensor
dst
=
out
->
Slice
<
T
>
(
i
,
i
+
1
).
Resize
(
outputHeight
,
outputWidth
,
C
,
block
Height
,
blockW
idth
);
math
::
Im2ColFunctor
<
kOCF
,
ctx
->
GetPlace
(),
T
>
(
ctx
,
src
,
dst
,
strideHeight
,
strideWidth
,
paddingH
eight
,
paddingW
idth
);
block
_height
,
block_w
idth
);
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kOCF
,
Place
,
T
>
(
ctx
,
src
,
dst
,
stride_height
,
stride_width
,
padding_h
eight
,
padding_w
idth
);
}
}
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录