Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
5ed713d5
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5ed713d5
编写于
7月 18, 2019
作者:
G
guru4elephant
提交者:
GitHub
7月 18, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove ctr reader, all functions are satisfied in dataset (#18672)
* remove ctr reader, all functions are satisfied in dataset
上级
898237c1
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
0 addition
and
989 deletion
+0
-989
paddle/fluid/API.spec
paddle/fluid/API.spec
+0
-1
paddle/fluid/operators/reader/CMakeLists.txt
paddle/fluid/operators/reader/CMakeLists.txt
+0
-6
paddle/fluid/operators/reader/ctr_reader.cc
paddle/fluid/operators/reader/ctr_reader.cc
+0
-398
paddle/fluid/operators/reader/ctr_reader.h
paddle/fluid/operators/reader/ctr_reader.h
+0
-189
paddle/fluid/operators/reader/ctr_reader_test.cc
paddle/fluid/operators/reader/ctr_reader_test.cc
+0
-229
python/paddle/fluid/contrib/reader/__init__.py
python/paddle/fluid/contrib/reader/__init__.py
+0
-2
python/paddle/fluid/contrib/reader/ctr_reader.py
python/paddle/fluid/contrib/reader/ctr_reader.py
+0
-164
未找到文件。
paddle/fluid/API.spec
浏览文件 @
5ed713d5
...
...
@@ -451,7 +451,6 @@ paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 (ArgSpec(args=['self', '
paddle.fluid.contrib.QuantizeTranspiler.freeze_program (ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None)), ('document', '909675a1ab055c69b436a7893fcae4fd'))
paddle.fluid.contrib.QuantizeTranspiler.training_transpile (ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None)), ('document', '6dd9909f10b283ba2892a99058a72884'))
paddle.fluid.contrib.distributed_batch_reader (ArgSpec(args=['batch_reader'], varargs=None, keywords=None, defaults=None), ('document', 'b60796eb0a481484dd34e345f0eaa4d5'))
paddle.fluid.contrib.reader.ctr_reader.ctr_reader (ArgSpec(args=['feed_dict', 'file_type', 'file_format', 'dense_slot_index', 'sparse_slot_index', 'capacity', 'thread_num', 'batch_size', 'file_list', 'slots', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b2ebf3de2a6ef1af2c3b88d2db7591ab'))
paddle.fluid.contrib.Compressor ('paddle.fluid.contrib.slim.core.compressor.Compressor', ('document', 'a5417774a94aa9ae5560a42b96527e7d'))
paddle.fluid.contrib.Compressor.__init__ (ArgSpec(args=['self', 'place', 'scope', 'train_program', 'train_reader', 'train_feed_list', 'train_fetch_list', 'eval_program', 'eval_reader', 'eval_feed_list', 'eval_fetch_list', 'teacher_programs', 'checkpoint_path', 'train_optimizer', 'distiller_optimizer', 'search_space'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None, [], None, None, None, None)), ('document', 'c195b3bba26169cff9439e8c467557c0'))
paddle.fluid.contrib.Compressor.config (ArgSpec(args=['self', 'config_file'], varargs=None, keywords=None, defaults=None), ('document', '780d9c007276ccbb95b292400d7807b0'))
...
...
paddle/fluid/operators/reader/CMakeLists.txt
浏览文件 @
5ed713d5
...
...
@@ -30,12 +30,6 @@ reader_library(create_multi_pass_reader_op SRCS create_multi_pass_reader_op.cc)
reader_library
(
create_custom_reader_op SRCS create_custom_reader_op.cc
)
reader_library
(
create_py_reader_op SRCS create_py_reader_op.cc DEPS py_reader
)
if
(
NOT WIN32 AND NOT ON_INFER
)
cc_library
(
ctr_reader SRCS ctr_reader.cc DEPS gzstream reader zlib
)
cc_test
(
ctr_reader_test SRCS ctr_reader_test.cc DEPS ctr_reader
)
reader_library
(
create_ctr_reader_op SRCS create_ctr_reader_op.cc DEPS ctr_reader
)
endif
()
cc_test
(
reader_blocking_queue_test SRCS reader_blocking_queue_test.cc
)
# Export local libraries to parent
# set(READER_LIBRARY ${LOCAL_READER_LIBS} PARENT_SCOPE)
...
...
paddle/fluid/operators/reader/ctr_reader.cc
已删除
100644 → 0
浏览文件 @
898237c1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reader/ctr_reader.h"
#include <gzstream.h>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <sstream>
#include <string>
#include <unordered_map>
#include <algorithm>
#include <random>
namespace
paddle
{
namespace
operators
{
namespace
reader
{
static
inline
void
string_split
(
const
std
::
string
&
s
,
const
char
delimiter
,
std
::
vector
<
std
::
string
>*
output
)
{
if
(
s
.
empty
())
return
;
size_t
start
=
0
;
size_t
end
=
s
.
find
(
delimiter
);
while
(
end
!=
std
::
string
::
npos
)
{
if
(
end
>
start
)
output
->
emplace_back
(
s
.
substr
(
start
,
end
-
start
));
start
=
end
+
1
;
end
=
s
.
find
(
delimiter
,
start
);
}
auto
term
=
s
.
substr
(
start
);
if
(
!
term
.
empty
())
output
->
emplace_back
(
term
);
}
static
inline
void
parse_line
(
const
std
::
string
&
line
,
const
std
::
unordered_map
<
std
::
string
,
size_t
>&
slot_to_index
,
int64_t
*
label
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>*
slot_to_data
)
{
std
::
vector
<
std
::
string
>
ret
;
string_split
(
line
,
' '
,
&
ret
);
*
label
=
std
::
stoi
(
ret
[
0
])
>
0
;
for
(
size_t
i
=
1
;
i
<
ret
.
size
();
++
i
)
{
const
std
::
string
&
item
=
ret
[
i
];
std
::
vector
<
std
::
string
>
feasign_and_slot
;
string_split
(
item
,
':'
,
&
feasign_and_slot
);
if
(
feasign_and_slot
.
size
()
==
2
&&
slot_to_index
.
find
(
feasign_and_slot
[
1
])
!=
slot_to_index
.
end
())
{
int64_t
feasign
=
std
::
strtoll
(
feasign_and_slot
[
0
].
c_str
(),
NULL
,
10
);
(
*
slot_to_data
)[
feasign_and_slot
[
1
]].
push_back
(
feasign
);
}
}
// NOTE:: if the slot has no value, then fill [0] as it's data.
for
(
auto
&
item
:
slot_to_index
)
{
if
(
slot_to_data
->
find
(
item
.
first
)
==
slot_to_data
->
end
())
{
(
*
slot_to_data
)[
item
.
first
].
push_back
(
0
);
}
}
}
// label slot1:fea_sign slot2:fea_sign slot1:fea_sign
static
inline
void
parse_svm_line
(
const
std
::
string
&
line
)
{}
class
Reader
{
public:
virtual
~
Reader
()
{}
virtual
bool
HasNext
()
=
0
;
virtual
void
NextLine
(
std
::
string
*
line
)
=
0
;
};
class
GzipReader
:
public
Reader
{
public:
explicit
GzipReader
(
const
std
::
string
&
file_name
)
:
gzstream_
(
file_name
.
c_str
())
{}
~
GzipReader
()
{}
bool
HasNext
()
override
{
return
gzstream_
.
peek
()
!=
EOF
;
}
void
NextLine
(
std
::
string
*
line
)
override
{
std
::
getline
(
gzstream_
,
*
line
);
}
private:
igzstream
gzstream_
;
};
class
PlainFileReader
:
public
Reader
{
public:
explicit
PlainFileReader
(
const
std
::
string
&
file_name
)
:
stream_
(
file_name
.
c_str
())
{}
~
PlainFileReader
()
{}
bool
HasNext
()
override
{
return
stream_
.
peek
()
!=
EOF
;
}
void
NextLine
(
std
::
string
*
line
)
override
{
std
::
getline
(
stream_
,
*
line
);
}
private:
std
::
ifstream
stream_
;
};
template
<
typename
SingleFileReader
>
class
MultiFileReader
:
public
Reader
{
public:
explicit
MultiFileReader
(
const
std
::
vector
<
std
::
string
>&
file_list
)
{
for
(
auto
&
file
:
file_list
)
{
readers_
.
emplace_back
(
std
::
make_shared
<
SingleFileReader
>
(
file
));
}
}
bool
HasNext
()
override
{
if
(
current_reader_index_
>=
readers_
.
size
())
{
return
false
;
}
if
(
!
readers_
[
current_reader_index_
]
->
HasNext
())
{
current_reader_index_
++
;
return
HasNext
();
}
return
true
;
}
void
NextLine
(
std
::
string
*
line
)
override
{
readers_
[
current_reader_index_
]
->
NextLine
(
line
);
}
private:
std
::
vector
<
std
::
shared_ptr
<
SingleFileReader
>>
readers_
;
size_t
current_reader_index_
=
0
;
};
void
MonitorThread
(
std
::
vector
<
ReaderThreadStatus
>*
thread_status
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
)
{
VLOG
(
3
)
<<
"monitor thread in"
;
bool
reader_thread_is_running
=
true
;
while
(
reader_thread_is_running
)
{
VLOG
(
3
)
<<
"reader_thread_is_running"
;
reader_thread_is_running
=
false
;
for
(
size_t
i
=
0
;
i
<
(
*
thread_status
).
size
();
++
i
)
{
if
((
*
thread_status
)[
i
]
==
Running
)
{
VLOG
(
3
)
<<
"reader is running!"
;
reader_thread_is_running
=
true
;
}
}
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
milliseconds
(
1000
));
}
VLOG
(
3
)
<<
"all reader thread is stopped, close the queue"
;
queue
->
Close
();
VLOG
(
3
)
<<
"monitor thread exited"
;
}
void
ReadSvmData
(
const
DataDesc
&
data_desc
,
std
::
shared_ptr
<
Reader
>
reader
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
)
{
std
::
unordered_map
<
std
::
string
,
size_t
>
slot_to_index
;
for
(
size_t
i
=
0
;
i
<
data_desc
.
sparse_slot_ids_
.
size
();
++
i
)
{
slot_to_index
[
data_desc
.
sparse_slot_ids_
[
i
]]
=
i
;
}
std
::
string
line
;
std
::
vector
<
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>>
batch_data
;
std
::
vector
<
int64_t
>
batch_label
;
while
(
reader
->
HasNext
())
{
batch_data
.
clear
();
batch_data
.
reserve
(
data_desc
.
batch_size_
);
batch_label
.
clear
();
batch_label
.
reserve
(
data_desc
.
batch_size_
);
// read batch_size data
for
(
int
i
=
0
;
i
<
data_desc
.
batch_size_
;
++
i
)
{
if
(
reader
->
HasNext
())
{
reader
->
NextLine
(
&
line
);
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int64_t
>>
slot_to_data
;
int64_t
label
;
parse_line
(
line
,
slot_to_index
,
&
label
,
&
slot_to_data
);
batch_data
.
push_back
(
slot_to_data
);
batch_label
.
push_back
(
label
);
}
else
{
break
;
}
}
std
::
vector
<
framework
::
LoDTensor
>
lod_datas
;
// first insert tensor for each sparse_slots
for
(
auto
&
slot
:
data_desc
.
sparse_slot_ids_
)
{
std
::
vector
<
size_t
>
lod_data
{
0
};
std
::
vector
<
int64_t
>
batch_feasign
;
for
(
size_t
i
=
0
;
i
<
batch_data
.
size
();
++
i
)
{
auto
&
feasign
=
batch_data
[
i
][
slot
];
lod_data
.
push_back
(
lod_data
.
back
()
+
feasign
.
size
());
batch_feasign
.
insert
(
batch_feasign
.
end
(),
feasign
.
begin
(),
feasign
.
end
());
}
framework
::
LoDTensor
lod_tensor
;
framework
::
LoD
lod
{
lod_data
};
lod_tensor
.
set_lod
(
lod
);
int64_t
*
tensor_data
=
lod_tensor
.
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
batch_feasign
.
size
()),
1
}),
platform
::
CPUPlace
());
memcpy
(
tensor_data
,
batch_feasign
.
data
(),
batch_feasign
.
size
()
*
sizeof
(
int64_t
));
lod_datas
.
push_back
(
lod_tensor
);
}
// insert label tensor
framework
::
LoDTensor
label_tensor
;
auto
*
label_tensor_data
=
label_tensor
.
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
batch_label
.
size
()),
1
}),
platform
::
CPUPlace
());
memcpy
(
label_tensor_data
,
batch_label
.
data
(),
batch_label
.
size
()
*
sizeof
(
int64_t
));
lod_datas
.
push_back
(
label_tensor
);
queue
->
Push
(
lod_datas
);
VLOG
(
4
)
<<
"push one data, queue_size="
<<
queue
->
Size
();
}
}
// label dense_fea,dense_fea sparse_fea,sparse_fea
static
inline
void
parse_csv_line
(
const
std
::
string
&
line
,
const
DataDesc
&
data_desc
,
int64_t
*
label
,
std
::
vector
<
std
::
vector
<
float
>>*
dense_datas
,
std
::
vector
<
std
::
vector
<
int64_t
>>*
sparse_datas
)
{
std
::
vector
<
std
::
string
>
ret
;
string_split
(
line
,
' '
,
&
ret
);
*
label
=
std
::
stol
(
ret
[
0
]);
dense_datas
->
resize
(
data_desc
.
dense_slot_index_
.
size
());
for
(
size_t
i
=
0
;
i
<
data_desc
.
dense_slot_index_
.
size
();
++
i
)
{
int
slot_idx
=
data_desc
.
dense_slot_index_
[
i
];
auto
&
slot_data
=
ret
[
slot_idx
];
std
::
vector
<
std
::
string
>
data_in_slot_str
;
string_split
(
slot_data
,
','
,
&
data_in_slot_str
);
std
::
vector
<
float
>
data_in_slot
;
for
(
auto
&
data_str
:
data_in_slot_str
)
{
(
*
dense_datas
)[
i
].
push_back
(
std
::
stof
(
data_str
));
}
}
sparse_datas
->
resize
(
data_desc
.
sparse_slot_index_
.
size
());
for
(
size_t
i
=
0
;
i
<
data_desc
.
sparse_slot_index_
.
size
();
++
i
)
{
int
slot_idx
=
data_desc
.
sparse_slot_index_
[
i
];
auto
&
slot_data
=
ret
[
slot_idx
];
std
::
vector
<
std
::
string
>
data_in_slot_str
;
string_split
(
slot_data
,
','
,
&
data_in_slot_str
);
std
::
vector
<
int64_t
>
data_in_slot
;
for
(
auto
&
data_str
:
data_in_slot_str
)
{
auto
id
=
std
::
stol
(
data_str
);
(
*
sparse_datas
)[
i
].
push_back
(
id
);
}
}
}
void
ReadCsvData
(
const
DataDesc
&
data_desc
,
std
::
shared_ptr
<
Reader
>
reader
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
)
{
std
::
string
line
;
while
(
reader
->
HasNext
())
{
std
::
vector
<
int64_t
>
batch_label
;
batch_label
.
reserve
(
data_desc
.
batch_size_
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
batch_dense_data
;
batch_dense_data
.
reserve
(
data_desc
.
batch_size_
);
std
::
vector
<
std
::
vector
<
std
::
vector
<
int64_t
>>>
batch_sparse_data
;
batch_sparse_data
.
reserve
(
data_desc
.
batch_size_
);
// read batch_size data
for
(
int
i
=
0
;
i
<
data_desc
.
batch_size_
;
++
i
)
{
if
(
reader
->
HasNext
())
{
reader
->
NextLine
(
&
line
);
int64_t
label
;
std
::
vector
<
std
::
vector
<
float
>>
dense_datas
;
std
::
vector
<
std
::
vector
<
int64_t
>>
sparse_datas
;
parse_csv_line
(
line
,
data_desc
,
&
label
,
&
dense_datas
,
&
sparse_datas
);
batch_label
.
push_back
(
label
);
if
(
!
batch_dense_data
.
empty
())
{
PADDLE_ENFORCE_EQ
(
batch_dense_data
[
0
].
size
(),
dense_datas
.
size
(),
"dense data should have the same shape"
);
}
batch_dense_data
.
push_back
(
dense_datas
);
batch_sparse_data
.
push_back
(
sparse_datas
);
}
else
{
break
;
}
}
// the order of output data is label, dense_datas, sparse_datas
std
::
vector
<
framework
::
LoDTensor
>
lod_datas
;
// insert label tensor
framework
::
LoDTensor
label_tensor
;
auto
*
label_tensor_data
=
label_tensor
.
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
batch_label
.
size
()),
1
}),
platform
::
CPUPlace
());
memcpy
(
label_tensor_data
,
batch_label
.
data
(),
batch_label
.
size
()
*
sizeof
(
int64_t
));
lod_datas
.
push_back
(
label_tensor
);
// insert tensor for each dense_slots
for
(
size_t
i
=
0
;
i
<
data_desc
.
dense_slot_index_
.
size
();
++
i
)
{
framework
::
LoDTensor
lod_tensor
;
size_t
width
=
batch_dense_data
[
0
][
i
].
size
();
auto
*
tensor_data
=
lod_tensor
.
mutable_data
<
float
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
batch_dense_data
.
size
()),
// batch_size
static_cast
<
int64_t
>
(
width
)}),
platform
::
CPUPlace
());
for
(
size_t
j
=
0
;
j
<
batch_dense_data
.
size
();
++
j
)
{
auto
&
dense_data_row
=
batch_dense_data
[
j
][
i
];
memcpy
(
tensor_data
+
j
*
width
,
dense_data_row
.
data
(),
width
*
sizeof
(
float
));
}
lod_datas
.
push_back
(
lod_tensor
);
}
// insert tensor for each sparse_slots
for
(
size_t
i
=
0
;
i
<
data_desc
.
sparse_slot_index_
.
size
();
++
i
)
{
std
::
vector
<
size_t
>
lod_data
{
0
};
std
::
vector
<
int64_t
>
batch_feasign
;
for
(
size_t
row_idx
=
0
;
row_idx
<
batch_sparse_data
.
size
();
++
row_idx
)
{
auto
&
sparse_ids
=
batch_sparse_data
[
row_idx
][
i
];
lod_data
.
push_back
(
lod_data
.
back
()
+
sparse_ids
.
size
());
batch_feasign
.
insert
(
batch_feasign
.
end
(),
sparse_ids
.
begin
(),
sparse_ids
.
end
());
}
framework
::
LoDTensor
lod_tensor
;
framework
::
LoD
lod
{
lod_data
};
lod_tensor
.
set_lod
(
lod
);
int64_t
*
tensor_data
=
lod_tensor
.
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
batch_feasign
.
size
()),
1
}),
platform
::
CPUPlace
());
memcpy
(
tensor_data
,
batch_feasign
.
data
(),
batch_feasign
.
size
()
*
sizeof
(
int64_t
));
lod_datas
.
push_back
(
lod_tensor
);
}
queue
->
Push
(
lod_datas
);
VLOG
(
4
)
<<
"push one data, queue_size="
<<
queue
->
Size
();
}
}
void
ReadThread
(
const
std
::
vector
<
std
::
string
>&
file_list
,
const
DataDesc
&
data_desc
,
int
thread_id
,
std
::
vector
<
ReaderThreadStatus
>*
thread_status
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
)
{
VLOG
(
3
)
<<
"["
<<
thread_id
<<
"]"
<<
" reader thread start! thread_id = "
<<
thread_id
;
for
(
auto
&
file
:
file_list
)
{
VLOG
(
3
)
<<
"["
<<
thread_id
<<
"]"
<<
" file "
<<
file
;
}
(
*
thread_status
)[
thread_id
]
=
Running
;
VLOG
(
3
)
<<
"set status to running"
;
std
::
shared_ptr
<
Reader
>
reader
;
if
(
data_desc
.
file_type_
==
"gzip"
)
{
reader
.
reset
(
new
MultiFileReader
<
GzipReader
>
(
file_list
));
}
else
if
(
data_desc
.
file_type_
==
"plain"
)
{
reader
.
reset
(
new
MultiFileReader
<
PlainFileReader
>
(
file_list
));
}
else
{
PADDLE_THROW
(
"do not support file format %s"
,
data_desc
.
file_type_
);
}
VLOG
(
3
)
<<
"reader inited"
;
if
(
data_desc
.
file_format_
==
"svm"
)
{
ReadSvmData
(
data_desc
,
reader
,
queue
);
}
else
if
(
data_desc
.
file_format_
==
"csv"
)
{
ReadCsvData
(
data_desc
,
reader
,
queue
);
}
(
*
thread_status
)[
thread_id
]
=
Stopped
;
VLOG
(
3
)
<<
"set status to stopped, thread "
<<
thread_id
<<
" exited"
;
}
}
// namespace reader
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/reader/ctr_reader.h
已删除
100644 → 0
浏览文件 @
898237c1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <sys/time.h>
#include <algorithm>
#include <chrono> // NOLINT
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
namespace
paddle
{
namespace
operators
{
namespace
reader
{
enum
ReaderThreadStatus
{
Running
,
Stopped
};
struct
DataDesc
{
DataDesc
(
int
batch_size
,
const
std
::
vector
<
std
::
string
>&
file_names
,
const
std
::
string
&
file_type
,
const
std
::
string
&
file_format
,
const
std
::
vector
<
int
>&
dense_slot_index
,
const
std
::
vector
<
int
>&
sparse_slot_index
,
const
std
::
vector
<
std
::
string
>&
sparse_slot_ids
)
:
batch_size_
(
batch_size
),
file_names_
(
file_names
),
file_type_
(
file_type
),
file_format_
(
file_format
),
dense_slot_index_
(
dense_slot_index
),
sparse_slot_index_
(
sparse_slot_index
),
sparse_slot_ids_
(
sparse_slot_ids
)
{}
const
int
batch_size_
;
const
std
::
vector
<
std
::
string
>
file_names_
;
const
std
::
string
file_type_
;
// gzip or plain
const
std
::
string
file_format_
;
// csv or svm
// used for csv data format
const
std
::
vector
<
int
>
dense_slot_index_
;
const
std
::
vector
<
int
>
sparse_slot_index_
;
// used for svm data format
const
std
::
vector
<
std
::
string
>
sparse_slot_ids_
;
};
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
DataDesc
&
data_desc
)
{
os
<<
"data_desc:
\n
"
;
os
<<
"
\t
batch_size -> "
<<
data_desc
.
batch_size_
<<
"
\n
"
;
os
<<
"
\t
file_type -> "
<<
data_desc
.
file_type_
<<
"
\n
"
;
os
<<
"
\t
file_format -> "
<<
data_desc
.
file_format_
<<
"
\n
"
;
os
<<
"
\t
file_names -> {"
;
for
(
auto
&
file_name
:
data_desc
.
file_names_
)
{
os
<<
file_name
<<
","
;
}
os
<<
"}
\n
"
;
os
<<
"
\t
dense_slot_index -> {"
;
for
(
auto
&
slot
:
data_desc
.
dense_slot_index_
)
{
os
<<
slot
<<
","
;
}
os
<<
"}
\n
"
;
os
<<
"
\t
sparse_slot_index_ -> {"
;
for
(
auto
&
slot
:
data_desc
.
sparse_slot_index_
)
{
os
<<
slot
<<
","
;
}
os
<<
"}
\n
"
;
os
<<
"
\t
sparse_slot_ids_ -> {"
;
for
(
auto
&
slot
:
data_desc
.
sparse_slot_ids_
)
{
os
<<
slot
<<
","
;
}
os
<<
"}
\n
"
;
return
os
;
}
void
ReadThread
(
const
std
::
vector
<
std
::
string
>&
file_list
,
const
DataDesc
&
data_desc
,
int
thread_id
,
std
::
vector
<
ReaderThreadStatus
>*
thread_status
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
);
// monitor all running thread, if they are all stopped,
// then push an empty data into LoDTensorBlockingQueue
void
MonitorThread
(
std
::
vector
<
ReaderThreadStatus
>*
thread_status
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
);
class
CTRReader
:
public
framework
::
FileReader
{
public:
CTRReader
(
const
std
::
shared_ptr
<
LoDTensorBlockingQueue
>&
queue
,
int
thread_num
,
const
DataDesc
&
data_desc
)
:
data_desc_
(
data_desc
)
{
PADDLE_ENFORCE_GT
(
thread_num
,
0
,
"thread num should be larger then 0!"
);
PADDLE_ENFORCE
(
queue
!=
nullptr
,
"LoDTensorBlockingQueue must not be null"
);
PADDLE_ENFORCE_GT
(
data_desc_
.
file_names_
.
size
(),
0
,
"file list should not be empty"
);
thread_num_
=
std
::
min
<
size_t
>
(
data_desc_
.
file_names_
.
size
(),
thread_num
);
queue_
=
queue
;
SplitFiles
();
for
(
size_t
i
=
0
;
i
<
thread_num_
;
++
i
)
{
read_thread_status_
.
push_back
(
Stopped
);
}
}
~
CTRReader
()
{
Shutdown
();
}
void
ReadNext
(
std
::
vector
<
framework
::
LoDTensor
>*
out
)
override
{
bool
success
;
*
out
=
queue_
->
Pop
(
&
success
);
if
(
!
success
)
out
->
clear
();
}
void
Shutdown
()
override
{
VLOG
(
3
)
<<
"Shutdown reader"
;
if
(
status_
==
ReaderStatus
::
kStopped
)
{
return
;
}
// shutdown should stop all the reader thread
for
(
auto
&
read_thread
:
read_threads_
)
{
read_thread
->
join
();
}
if
(
monitor_thread_
)
{
monitor_thread_
->
join
();
}
read_threads_
.
clear
();
monitor_thread_
.
reset
(
nullptr
);
queue_
->
Close
();
status_
=
ReaderStatus
::
kStopped
;
}
void
Start
()
override
{
VLOG
(
3
)
<<
"Start reader"
;
PADDLE_ENFORCE_EQ
(
read_threads_
.
size
(),
0
,
"read thread should be empty!"
);
queue_
->
ReOpen
();
VLOG
(
3
)
<<
"reopen success"
;
VLOG
(
3
)
<<
"thread_num "
<<
thread_num_
;
for
(
size_t
thread_id
=
0
;
thread_id
<
thread_num_
;
thread_id
++
)
{
read_threads_
.
emplace_back
(
new
std
::
thread
(
std
::
bind
(
&
ReadThread
,
file_groups_
[
thread_id
],
data_desc_
,
static_cast
<
int
>
(
thread_id
),
&
read_thread_status_
,
queue_
)));
}
monitor_thread_
.
reset
(
new
std
::
thread
(
std
::
bind
(
&
MonitorThread
,
&
read_thread_status_
,
queue_
)));
status_
=
ReaderStatus
::
kRunning
;
}
private:
void
SplitFiles
()
{
file_groups_
.
resize
(
thread_num_
);
for
(
size_t
i
=
0
;
i
<
data_desc_
.
file_names_
.
size
();
++
i
)
{
auto
&
file_name
=
data_desc_
.
file_names_
[
i
];
std
::
ifstream
f
(
file_name
.
c_str
());
PADDLE_ENFORCE
(
f
.
good
(),
"file %s not exist!"
,
file_name
);
file_groups_
[
i
%
thread_num_
].
push_back
(
file_name
);
}
}
private:
size_t
thread_num_
;
const
DataDesc
data_desc_
;
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue_
;
std
::
vector
<
std
::
unique_ptr
<
std
::
thread
>>
read_threads_
;
std
::
unique_ptr
<
std
::
thread
>
monitor_thread_
;
std
::
vector
<
ReaderThreadStatus
>
read_thread_status_
;
std
::
vector
<
std
::
vector
<
std
::
string
>>
file_groups_
;
};
}
// namespace reader
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/reader/ctr_reader_test.cc
已删除
100644 → 0
浏览文件 @
898237c1
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reader/ctr_reader.h"
#include <gzstream.h>
#include <time.h>
#include <math.h>
#include <stdio.h>
#include <cstring>
#include <fstream>
#include <tuple>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
using
paddle
::
operators
::
reader
::
LoDTensorBlockingQueue
;
using
paddle
::
operators
::
reader
::
LoDTensorBlockingQueueHolder
;
using
paddle
::
operators
::
reader
::
CTRReader
;
using
paddle
::
framework
::
LoDTensor
;
using
paddle
::
framework
::
LoD
;
using
paddle
::
framework
::
DDim
;
using
paddle
::
platform
::
CPUPlace
;
using
paddle
::
framework
::
make_ddim
;
using
paddle
::
operators
::
reader
::
DataDesc
;
static
void
generatedata
(
const
std
::
vector
<
std
::
string
>&
data
,
const
std
::
string
&
file_name
)
{
std
::
ifstream
in
(
file_name
.
c_str
());
if
(
in
.
good
())
{
VLOG
(
3
)
<<
"file "
<<
file_name
<<
" exist, delete it first!"
;
remove
(
file_name
.
c_str
());
}
else
{
in
.
close
();
}
ogzstream
out
(
file_name
.
c_str
());
PADDLE_ENFORCE
(
out
.
good
(),
"open file %s failed!"
,
file_name
);
for
(
auto
&
c
:
data
)
{
out
<<
c
;
}
out
.
close
();
PADDLE_ENFORCE
(
out
.
good
(),
"save file %s failed!"
,
file_name
);
}
static
inline
void
check_all_data
(
const
std
::
vector
<
std
::
string
>&
ctr_data
,
const
std
::
vector
<
std
::
string
>&
slots
,
const
std
::
vector
<
DDim
>&
label_dims
,
const
std
::
vector
<
int64_t
>&
label_value
,
const
std
::
vector
<
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>>&
data_slot_6002
,
const
std
::
vector
<
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>>&
data_slot_6003
,
size_t
batch_num
,
size_t
batch_size
,
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
,
CTRReader
*
reader
)
{
std
::
vector
<
LoDTensor
>
out
;
for
(
size_t
i
=
0
;
i
<
batch_num
;
++
i
)
{
reader
->
ReadNext
(
&
out
);
ASSERT_EQ
(
out
.
size
(),
slots
.
size
()
+
1
);
auto
&
label_tensor
=
out
.
back
();
ASSERT_EQ
(
label_tensor
.
dims
(),
label_dims
[
i
]);
for
(
size_t
j
=
0
;
j
<
batch_size
&&
i
*
batch_num
+
j
<
ctr_data
.
size
();
++
j
)
{
auto
&
label
=
label_tensor
.
data
<
int64_t
>
()[
j
];
ASSERT_TRUE
(
label
==
0
||
label
==
1
);
ASSERT_EQ
(
label
,
label_value
[
i
*
batch_size
+
j
]);
}
auto
&
tensor_6002
=
out
[
0
];
ASSERT_EQ
(
std
::
get
<
0
>
(
data_slot_6002
[
i
]),
tensor_6002
.
lod
());
ASSERT_EQ
(
std
::
memcmp
(
std
::
get
<
1
>
(
data_slot_6002
[
i
]).
data
(),
tensor_6002
.
data
<
int64_t
>
(),
tensor_6002
.
dims
()[
1
]
*
sizeof
(
int64_t
)),
0
);
}
reader
->
ReadNext
(
&
out
);
ASSERT_EQ
(
out
.
size
(),
0
);
ASSERT_EQ
(
queue
->
Size
(),
0
);
}
TEST
(
CTR_READER
,
read_data
)
{
const
std
::
vector
<
std
::
string
>
ctr_data
=
{
"0 0:6002 1:6003 2:6004 3:6005 4:6006
\n
"
,
"0 5:6003 6:6003 7:6003 8:6004 9:6004
\n
"
,
"1 10:6002 11:6002 12:6002 13:6002 14:6002
\n
"
,
"0 15:6003 16:6003 17:6003 18:6003 19:6004
\n
"
,
"1 20:6001 21:6001 22:6001 23:6001 24:6001
\n
"
,
"1 25:6004 26:6004 27:6004 28:6005 29:6005
\n
"
,
"0 30:6002 31:6003 32:6004 33:6004 34:6005
\n
"
,
"1 35:6003 36:6003 37:6005 38:6005 39:6005
\n
"
,
"1 40:6002 41:6003 42:6004 43:6004 44:6005
\n
"
,
"1 46:6006 45:6006 47:6003 48:6003 49:6003
\n
"
,
};
std
::
string
gz_file_name
=
"test_ctr_reader_data.gz"
;
generatedata
(
ctr_data
,
gz_file_name
);
std
::
vector
<
int64_t
>
label_value
=
{
0
,
0
,
1
,
0
,
1
,
1
,
0
,
1
,
1
,
1
};
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
a1
({{
0
,
1
,
2
,
7
}},
{
0
,
0
,
10
,
11
,
12
,
13
,
14
});
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
a2
({{
0
,
1
,
2
,
3
}},
{
0
,
0
,
0
});
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
a3
({{
0
,
1
,
2
,
3
}},
{
30
,
0
,
40
});
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
a4
({{
0
,
1
}},
{
0
});
std
::
vector
<
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>>
data_slot_6002
{
a1
,
a2
,
a3
,
a4
};
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
b1
({{
0
,
1
,
4
,
5
}},
{
1
,
5
,
6
,
7
,
0
});
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
b2
({{
0
,
4
,
5
,
6
}},
{
15
,
16
,
17
,
18
,
0
,
0
});
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
b3
({{
0
,
1
,
3
,
4
}},
{
31
,
35
,
36
,
41
});
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>
b4
({{
0
,
3
}},
{
47
,
48
,
49
});
std
::
vector
<
std
::
tuple
<
LoD
,
std
::
vector
<
int64_t
>>>
data_slot_6003
{
b1
,
b2
,
b3
,
b4
};
std
::
vector
<
DDim
>
label_dims
=
{{
3
,
1
},
{
3
,
1
},
{
3
,
1
},
{
1
,
1
}};
LoDTensorBlockingQueueHolder
queue_holder
;
int
capacity
=
64
;
queue_holder
.
InitOnce
(
capacity
,
false
);
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
=
queue_holder
.
GetQueue
();
int
batch_size
=
3
;
int
thread_num
=
1
;
std
::
vector
<
std
::
string
>
sparse_slots
=
{
"6002"
,
"6003"
};
std
::
vector
<
std
::
string
>
file_list
;
for
(
int
i
=
0
;
i
<
thread_num
;
++
i
)
{
file_list
.
push_back
(
gz_file_name
);
}
DataDesc
data_desc
(
batch_size
,
file_list
,
"gzip"
,
"svm"
,
{},
{},
sparse_slots
);
CTRReader
reader
(
queue
,
thread_num
,
data_desc
);
reader
.
Start
();
size_t
batch_num
=
std
::
ceil
(
static_cast
<
float
>
(
ctr_data
.
size
())
/
batch_size
)
*
thread_num
;
check_all_data
(
ctr_data
,
sparse_slots
,
label_dims
,
label_value
,
data_slot_6002
,
data_slot_6003
,
batch_num
,
batch_size
,
queue
,
&
reader
);
reader
.
Shutdown
();
reader
.
Start
();
check_all_data
(
ctr_data
,
sparse_slots
,
label_dims
,
label_value
,
data_slot_6002
,
data_slot_6003
,
batch_num
,
batch_size
,
queue
,
&
reader
);
reader
.
Shutdown
();
}
static
void
GenereteCsvData
(
const
std
::
string
&
file_name
,
const
std
::
vector
<
std
::
string
>&
data
)
{
std
::
ofstream
out
(
file_name
.
c_str
());
PADDLE_ENFORCE
(
out
.
good
(),
"open file %s failed!"
,
file_name
);
for
(
auto
&
c
:
data
)
{
out
<<
c
;
}
out
.
close
();
PADDLE_ENFORCE
(
out
.
good
(),
"save file %s failed!"
,
file_name
);
}
static
void
CheckReadCsvOut
(
const
std
::
vector
<
LoDTensor
>&
out
)
{
ASSERT_EQ
(
out
.
size
(),
3
);
ASSERT_EQ
(
out
[
0
].
dims
()[
1
],
1
);
ASSERT_EQ
(
out
[
1
].
dims
()[
1
],
2
);
ASSERT_EQ
(
out
[
2
].
dims
()[
1
],
1
);
for
(
size_t
i
=
0
;
i
<
out
[
0
].
numel
();
++
i
)
{
int64_t
label
=
out
[
0
].
data
<
int64_t
>
()[
i
];
auto
&
dense_dim
=
out
[
1
].
dims
();
for
(
size_t
j
=
0
;
j
<
dense_dim
[
1
];
++
j
)
{
ASSERT_EQ
(
out
[
1
].
data
<
float
>
()[
i
*
dense_dim
[
1
]
+
j
],
static_cast
<
float
>
(
label
+
0.1
));
}
auto
&
sparse_lod
=
out
[
2
].
lod
();
for
(
size_t
j
=
sparse_lod
[
0
][
i
];
j
<
sparse_lod
[
0
][
i
+
1
];
++
j
)
{
ASSERT_EQ
(
out
[
2
].
data
<
int64_t
>
()[
j
],
label
);
}
}
}
TEST
(
CTR_READER
,
read_csv_data
)
{
std
::
string
file_name
=
"test_ctr_reader_data.csv"
;
const
std
::
vector
<
std
::
string
>
csv_data
=
{
"0 0.1,0.1 0,0,0,0
\n
"
,
"1 1.1,1.1 1,1,1,1
\n
"
,
"2 2.1,2.1 2,2,2,2
\n
"
,
"3 3.1,3.1 3,3,3,3
\n
"
,
};
GenereteCsvData
(
file_name
,
csv_data
);
LoDTensorBlockingQueueHolder
queue_holder
;
int
capacity
=
64
;
queue_holder
.
InitOnce
(
capacity
,
false
);
std
::
shared_ptr
<
LoDTensorBlockingQueue
>
queue
=
queue_holder
.
GetQueue
();
int
batch_size
=
3
;
int
thread_num
=
1
;
std
::
vector
<
std
::
string
>
file_list
;
for
(
int
i
=
0
;
i
<
thread_num
;
++
i
)
{
file_list
.
push_back
(
file_name
);
}
DataDesc
data_desc
(
batch_size
,
file_list
,
"plain"
,
"csv"
,
{
1
},
{
2
},
{});
CTRReader
reader
(
queue
,
thread_num
,
data_desc
);
for
(
size_t
i
=
0
;
i
<
2
;
++
i
)
{
reader
.
Start
();
std
::
vector
<
LoDTensor
>
out
;
while
(
true
)
{
reader
.
ReadNext
(
&
out
);
if
(
out
.
empty
())
{
break
;
}
CheckReadCsvOut
(
out
);
}
reader
.
Shutdown
();
}
}
python/paddle/fluid/contrib/reader/__init__.py
浏览文件 @
5ed713d5
...
...
@@ -14,9 +14,7 @@
from
__future__
import
print_function
from
.
import
ctr_reader
from
.distributed_reader
import
*
__all__
=
[]
__all__
+=
distributed_reader
.
__all__
__all__
+=
ctr_reader
.
__all__
python/paddle/fluid/contrib/reader/ctr_reader.py
已删除
100644 → 0
浏览文件 @
898237c1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
from
paddle.fluid
import
core
from
paddle.fluid.executor
import
global_scope
from
paddle.fluid.framework
import
default_main_program
,
\
default_startup_program
,
Variable
from
paddle.fluid.unique_name
import
generate
as
unique_name
__all__
=
[
'ctr_reader'
]
def
monkey_patch_reader_methods
(
reader
):
def
__get_reader__
():
scope
=
global_scope
()
var
=
scope
.
find_var
(
reader
.
name
)
return
var
.
get_reader
()
def
reset
():
return
__get_reader__
().
reset
()
def
start
():
return
__get_reader__
().
start
()
reader
.
reset
=
reset
reader
.
start
=
start
reader
.
stop_gradient
=
True
reader
.
persistable
=
True
return
reader
def
_copy_reader_var_
(
block
,
var
):
new_var
=
block
.
create_var
(
name
=
var
.
name
,
type
=
core
.
VarDesc
.
VarType
.
READER
)
new_var
.
desc
.
set_shapes
(
var
.
desc
.
shapes
())
new_var
.
desc
.
set_dtypes
(
var
.
desc
.
dtypes
())
new_var
.
persistable
=
True
return
new_var
def
ctr_reader
(
feed_dict
,
file_type
,
# gzip or plain
file_format
,
# csv or svm
dense_slot_index
,
sparse_slot_index
,
capacity
,
thread_num
,
batch_size
,
file_list
,
slots
,
name
=
None
):
"""
Create a CTR reader for data feeding in Python
This layer returns a Reader Variable.
The Reader provides :code:`decorate_paddle_reader()` and
:code:`decorate_tensor_provider()` to set a Python generator as the data
source in Python side. When :code:`Executor::Run()` is invoked in C++
side, the data from the generator would be read automatically. Unlike
:code:`DataFeeder.feed()`, the data reading process and
:code:`Executor::Run()` process can run in parallel using
:code:`py_reader`. The :code:`start()` method of the Reader should be
called when each pass begins, while the :code:`reset()` method should be
called when the pass ends and :code:`fluid.core.EOFException` raises.
Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
Args:
feed_dict(list(variable)): a list of data variable.
file_type('gzip'|'plain'): the type of the data file
file_format('csv'|'svm'): csv data or svm data format.
cvs data format is :
label dense_fea,dense_fea sparse_fea,sparse_fea
the svm data format is :
label slot1:fea_sign slot2:fea_sign slot1:fea_sign
dense_slot_index(list(int)): the index of dense slots
sparse_slot_index(list(int)): the index of sparse slots
capacity(int): The buffer capacity maintained by :code:`py_reader`.
thread_num(int): the thread num to read files by cpp reader.
batch_size(int): batch size of data.
file_list(list(str)): List of file names that need to read.
slots(list(int64)): list of slot id.
name(string): The prefix Python queue name and Reader name. None will
be generated automatically.
Returns:
Variable: A Reader from which we can get feeding data.
Examples:
1. The basic usage of :code:`ctr_reader` is as follows:
.. code-block:: python
py_reader = fluid.contrib.ctr_reader.ctr_reader(
feed_dict=datas, file_type='plain', file_format='csv',
file_list=file_list, dense_slot_indexs=[1, 2, 3, 4], sparse_slot_indexs=[],
capacity=64, thread_num=20, batch_size=1000, slots=[], name='ctr_reader')
"""
if
name
is
None
:
queue_name
=
unique_name
(
'lod_tensor_blocking_queue'
)
reader_name
=
unique_name
(
'create_ctr_reader'
)
else
:
queue_name
=
"_"
.
join
([
name
,
"queue"
])
reader_name
=
"_"
.
join
([
name
,
"reader"
])
var
=
global_scope
().
var
(
queue_name
)
feed_queue
=
core
.
init_lod_tensor_blocking_queue
(
var
,
capacity
)
startup_blk
=
default_startup_program
().
current_block
()
reader_var
=
startup_blk
.
create_var
(
name
=
reader_name
)
startup_blk
.
append_op
(
type
=
'create_ctr_reader'
,
inputs
=
{
'blocking_queue'
:
[
queue_name
]},
outputs
=
{
'Out'
:
[
reader_var
]},
attrs
=
{
'use_data_config'
:
False
,
'thread_num'
:
thread_num
,
'batch_size'
:
batch_size
,
'file_list'
:
file_list
,
'file_type'
:
file_type
,
'file_format'
:
file_format
,
'dense_slot_index'
:
dense_slot_index
,
'sparse_slot_index'
:
sparse_slot_index
,
'sparse_slots'
:
slots
,
'ranks'
:
[],
'lod_levels'
:
[],
'shape_concat'
:
[]
})
dtypes
=
[
data
.
dtype
for
data
in
feed_dict
]
reader_var
.
desc
.
set_dtypes
(
dtypes
)
reader_var
.
persistable
=
True
main_prog_reader_var
=
_copy_reader_var_
(
default_main_program
().
current_block
(),
reader_var
)
reader
=
monkey_patch_reader_methods
(
main_prog_reader_var
)
# monkey patch py_reader special methods
reader
.
queue
=
feed_queue
reader
.
exited
=
False
main_blk
=
default_main_program
().
current_block
()
main_blk
.
append_op
(
type
=
'read'
,
inputs
=
{
'Reader'
:
[
reader
]},
attrs
=
{
'infer_out'
:
False
},
outputs
=
{
'Out'
:
feed_dict
})
return
reader
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录