未验证 提交 5d3c89cf 编写于 作者: J jakpiase 提交者: GitHub

Added sigmoid BF16 FWD/BWD kernels and gelu BF16 BWD kernel (#34216)

* added sigmoid BF16 FWD/BWD and gelu BF16 BWD

* added newline at EOF

* switched from lambdas to local functions

* changed function names
上级 b0a2f005
......@@ -251,7 +251,9 @@ namespace ops = paddle::operators;
ops::MKLDNNActivationKernel<ops::functor<paddle::platform::bfloat16>>); \
REGISTER_OP_KERNEL( \
act_type##_grad, MKLDNN, ::paddle::platform::CPUPlace, \
ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>);
ops::MKLDNNActivationGradKernel<ops::grad_functor<float>>, \
ops::MKLDNNActivationGradKernel< \
ops::grad_functor<paddle::platform::bfloat16>>);
#define FOR_EACH_MKLDNN_KERNEL_FUNCTOR(__macro) \
__macro(relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor); \
......@@ -259,7 +261,6 @@ namespace ops = paddle::operators;
__macro(leaky_relu, ReluMKLDNNFunctor, ReluMKLDNNGradFunctor); \
__macro(swish, SwishMKLDNNFunctor, SwishMKLDNNGradFunctor); \
__macro(hardswish, HardSwishMKLDNNFunctor, HardSwishMKLDNNGradFunctor); \
__macro(sigmoid, SigmoidMKLDNNFunctor, SigmoidMKLDNNGradFunctor); \
__macro(tanh, TanhMKLDNNFunctor, TanhMKLDNNGradFunctor); \
__macro(sqrt, SqrtMKLDNNFunctor, SqrtMKLDNNGradFunctor); \
__macro(abs, AbsMKLDNNFunctor, AbsMKLDNNGradFunctor);
......@@ -267,3 +268,5 @@ namespace ops = paddle::operators;
FOR_EACH_MKLDNN_KERNEL_FUNCTOR(REGISTER_ACTIVATION_MKLDNN_KERNEL);
REGISTER_ACTIVATION_MKLDNN_BF16_KERNEL(gelu, GeluMKLDNNFunctor,
GeluMKLDNNGradFunctor);
REGISTER_ACTIVATION_MKLDNN_BF16_KERNEL(sigmoid, SigmoidMKLDNNFunctor,
SigmoidMKLDNNGradFunctor);
......@@ -16,9 +16,9 @@ from __future__ import print_function
import unittest
import numpy as np
from scipy.special import expit
from scipy.special import expit, erf
import paddle.fluid.core as core
from paddle.fluid.tests.unittests.op_test import OpTest, convert_float_to_uint16
from paddle.fluid.tests.unittests.op_test import OpTest, OpTestTool, convert_float_to_uint16
from paddle.fluid.tests.unittests.test_activation_op import TestActivation, TestRelu, TestTanh, TestSqrt, TestAbs, TestLeakyRelu, TestSwish, TestHardSwish, TestRelu6, TestSigmoid
from paddle.fluid.tests.unittests.test_gelu_op import gelu
from mkldnn_op_test import check_if_mkldnn_primitives_exist_in_bwd
......@@ -79,46 +79,88 @@ class TestMKLDNNGeluDim2Approx(TestActivation):
self.attrs = {"use_mkldnn": True, "approximate": True}
@unittest.skipIf(not core.supports_bfloat16(),
"place does not support BF16 evaluation")
class TestMKLDNNGeluBf16Dim2(TestActivation):
#Use it as a base class for BF16 activation tests, just override necessary functions
class TestMKLDNNSigmoidBF16Op(TestActivation):
@OpTestTool.skip_if_not_cpu_bf16()
def config(self):
self.op_type = "sigmoid"
def op_forward(self, x):
return 1 / (1 + np.exp(-x))
def op_grad(self, dout, x):
return dout * self.op_forward(x) * (1 - self.op_forward(x))
def set_attrs(self):
self.attrs = {"use_mkldnn": True}
def init_data(self):
self.x = np.random.uniform(-1, 1, [2, 4, 3, 5]).astype(np.float32)
def setUp(self):
self.op_type = "gelu"
self.dtype = np.uint16
self.init_data()
self.config()
self.out = self.op_forward(self.x)
x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
out = convert_float_to_uint16(gelu(x, False))
self.inputs = {'X': convert_float_to_uint16(self.x)}
self.outputs = {'Out': self.out}
self.set_attrs()
self.inputs = {'X': convert_float_to_uint16(x)}
self.outputs = {'Out': out}
self.attrs = {"use_mkldnn": True}
def calculate_grads(self):
self.dx = self.op_grad(self.out, self.x)
def test_check_output(self):
self.check_output_with_place(core.CPUPlace())
def test_check_grad(self):
pass
self.calculate_grads()
self.check_grad_with_place(
core.CPUPlace(), ["X"],
"Out",
user_defined_grads=[self.dx],
user_defined_grad_outputs=[convert_float_to_uint16(self.out)])
@unittest.skipIf(not core.supports_bfloat16(),
"place does not support BF16 evaluation")
class TestMKLDNNGeluBf16Dim2Approx(TestActivation):
def setUp(self):
class TestMKLDNNGeluErfBF16Op(TestMKLDNNSigmoidBF16Op):
def config(self):
self.op_type = "gelu"
self.dtype = np.uint16
x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
out = convert_float_to_uint16(gelu(x, True))
def op_forward(self, x):
return gelu(x, False)
self.inputs = {'X': convert_float_to_uint16(x)}
self.outputs = {'Out': out}
def op_grad(self, dout, x):
return (dout *
(0.5 + 0.5 * erf(x / np.sqrt(2)) +
(x / np.sqrt(2 * np.pi) * np.exp(-0.5 * np.power(x, 2)))))
class TestMKLDNNGeluErfDim2BF16Op(TestMKLDNNGeluErfBF16Op):
def init_data(self):
self.x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
class TestMKLDNNGeluTanhBF16Op(TestMKLDNNSigmoidBF16Op):
def config(self):
self.op_type = "gelu"
def op_forward(self, x):
return gelu(x, True)
def op_grad(self, dout, x):
grad_part = np.tanh(
np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3)))
return dout * 0.5 * (1 + grad_part) * (1 + np.sqrt(2 / np.pi) *
(x + 0.134145 * np.power(x, 3)) *
(1 - grad_part))
def set_attrs(self):
self.attrs = {"use_mkldnn": True, "approximate": True}
def test_check_output(self):
self.check_output_with_place(core.CPUPlace())
def test_check_grad(self):
pass
class TestMKLDNNGeluTanhDim2BF16Op(TestMKLDNNGeluTanhBF16Op):
def init_data(self):
self.x = np.random.uniform(-1, 1, [11, 17]).astype(np.float32)
class TestMKLDNNTanhDim2(TestTanh):
......
......@@ -18,7 +18,7 @@ import unittest
import numpy as np
from scipy.special import expit, erf
from op_test import OpTest, convert_float_to_uint16
from paddle.fluid.tests.unittests.op_test import OpTest, convert_float_to_uint16, skip_check_grad_ci
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
......@@ -1619,7 +1619,6 @@ class TestHardSwish(TestActivation):
self.op_type = 'hard_swish'
self.init_dtype()
from op_test import skip_check_grad_ci
skip_check_grad_ci(reason="not implemented yet")
np.random.seed(1024)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册