Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
5ca0b762
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5ca0b762
编写于
2月 08, 2018
作者:
W
wanghaox
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add OutPosCount for detection_map op
上级
a0b57ac7
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
271 addition
and
19 deletion
+271
-19
paddle/operators/detection_map_op.cc
paddle/operators/detection_map_op.cc
+41
-6
paddle/operators/detection_map_op.h
paddle/operators/detection_map_op.h
+130
-2
python/paddle/v2/fluid/tests/test_detection_map_op.py
python/paddle/v2/fluid/tests/test_detection_map_op.py
+100
-11
未找到文件。
paddle/operators/detection_map_op.cc
浏览文件 @
5ca0b762
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserve.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
you may not use this file except in compliance with the License.
...
@@ -28,6 +28,12 @@ class DetectionMAPOp : public framework::OperatorWithKernel {
...
@@ -28,6 +28,12 @@ class DetectionMAPOp : public framework::OperatorWithKernel {
"Input(Detection) of DetectionMAPOp should not be null."
);
"Input(Detection) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input(Label) of DetectionMAPOp should not be null."
);
"Input(Label) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"OutPosCount"
),
"Output(OutPosCount) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"OutTruePos"
),
"Output(OutTruePos) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"OutFalsePos"
),
"Output(OutFalsePos) of DetectionMAPOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MAP"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MAP"
),
"Output(MAP) of DetectionMAPOp should not be null."
);
"Output(MAP) of DetectionMAPOp should not be null."
);
...
@@ -44,9 +50,6 @@ class DetectionMAPOp : public framework::OperatorWithKernel {
...
@@ -44,9 +50,6 @@ class DetectionMAPOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
label_dims
[
1
],
6UL
,
PADDLE_ENFORCE_EQ
(
label_dims
[
1
],
6UL
,
"The shape is of Input(Label) [N, 6]."
);
"The shape is of Input(Label) [N, 6]."
);
auto
ap_type
=
GetAPType
(
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"ap_type"
));
PADDLE_ENFORCE_NE
(
ap_type
,
APType
::
kNone
,
"The ap_type should be 'integral' or '11point."
);
auto
map_dim
=
framework
::
make_ddim
({
1
});
auto
map_dim
=
framework
::
make_ddim
({
1
});
ctx
->
SetOutputDim
(
"MAP"
,
map_dim
);
ctx
->
SetOutputDim
(
"MAP"
,
map_dim
);
}
}
...
@@ -55,7 +58,8 @@ class DetectionMAPOp : public framework::OperatorWithKernel {
...
@@ -55,7 +58,8 @@ class DetectionMAPOp : public framework::OperatorWithKernel {
framework
::
OpKernelType
GetExpectedKernelType
(
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
)
->
type
()),
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"Detection"
)
->
type
()),
ctx
.
device_context
());
ctx
.
device_context
());
}
}
};
};
...
@@ -80,6 +84,33 @@ class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -80,6 +84,33 @@ class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
"the offsets in first dimension are called LoD, the number of "
"the offsets in first dimension are called LoD, the number of "
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
"no detected data."
);
"no detected data."
);
AddInput
(
"PosCount"
,
"(Tensor) A tensor with shape [Ncls, 1], store the "
"input positive example count of each class."
)
.
AsDispensable
();
AddInput
(
"TruePos"
,
"(LodTensor) A 2-D LodTensor with shape [Ntp, 2], store the "
"input true positive example of each class."
)
.
AsDispensable
();
AddInput
(
"FalsePos"
,
"(LodTensor) A 2-D LodTensor with shape [Nfp, 2], store the "
"input false positive example of each class."
)
.
AsDispensable
();
AddOutput
(
"OutPosCount"
,
"(Tensor) A tensor with shape [Ncls, 1], store the "
"positive example count of each class. It combines the input "
"input(PosCount) and the positive example count computed from "
"input(Detection) and input(Label)."
);
AddOutput
(
"OutTruePos"
,
"(LodTensor) A LodTensor with shape [Ntp', 2], store the "
"true positive example of each class. It combines the "
"input(TruePos) and the true positive examples computed from "
"input(Detection) and input(Label)."
);
AddOutput
(
"OutFalsePos"
,
"(LodTensor) A LodTensor with shape [Nfp', 2], store the "
"false positive example of each class. It combines the "
"input(FalsePos) and the false positive examples computed from "
"input(Detection) and input(Label)."
);
AddOutput
(
"MAP"
,
AddOutput
(
"MAP"
,
"(Tensor) A tensor with shape [1], store the mAP evaluate "
"(Tensor) A tensor with shape [1], store the mAP evaluate "
"result of the detection."
);
"result of the detection."
);
...
@@ -97,7 +128,11 @@ class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -97,7 +128,11 @@ class DetectionMAPOpMaker : public framework::OpProtoAndCheckerMaker {
"(string, default 'integral') "
"(string, default 'integral') "
"The AP algorithm type, 'integral' or '11point'."
)
"The AP algorithm type, 'integral' or '11point'."
)
.
SetDefault
(
"integral"
)
.
SetDefault
(
"integral"
)
.
InEnum
({
"integral"
,
"11point"
});
.
InEnum
({
"integral"
,
"11point"
})
.
AddCustomChecker
([](
const
std
::
string
&
ap_type
)
{
PADDLE_ENFORCE_NE
(
GetAPType
(
ap_type
),
APType
::
kNone
,
"The ap_type should be 'integral' or '11point."
);
});
AddComment
(
R"DOC(
AddComment
(
R"DOC(
Detection mAP evaluate operator.
Detection mAP evaluate operator.
The general steps are as follows. First, calculate the true positive and
The general steps are as follows. First, calculate the true positive and
...
...
paddle/operators/detection_map_op.h
浏览文件 @
5ca0b762
/* Copyright (c) 201
6
PaddlePaddle Authors. All Rights Reserve.
/* Copyright (c) 201
8
PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
you may not use this file except in compliance with the License.
...
@@ -58,6 +58,14 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
...
@@ -58,6 +58,14 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
auto
*
in_label
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Label"
);
auto
*
in_label
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Label"
);
auto
*
out_map
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MAP"
);
auto
*
out_map
=
ctx
.
Output
<
framework
::
Tensor
>
(
"MAP"
);
auto
*
in_pos_count
=
ctx
.
Input
<
framework
::
Tensor
>
(
"PosCount"
);
auto
*
in_true_pos
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"TruePos"
);
auto
*
in_false_pos
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"FalsePos"
);
auto
*
out_pos_count
=
ctx
.
Output
<
framework
::
Tensor
>
(
"OutPosCount"
);
auto
*
out_true_pos
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"OutTruePos"
);
auto
*
out_false_pos
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"OutFalsePos"
);
float
overlap_threshold
=
ctx
.
Attr
<
float
>
(
"overlap_threshold"
);
float
overlap_threshold
=
ctx
.
Attr
<
float
>
(
"overlap_threshold"
);
float
evaluate_difficult
=
ctx
.
Attr
<
bool
>
(
"evaluate_difficult"
);
float
evaluate_difficult
=
ctx
.
Attr
<
bool
>
(
"evaluate_difficult"
);
auto
ap_type
=
GetAPType
(
ctx
.
Attr
<
std
::
string
>
(
"ap_type"
));
auto
ap_type
=
GetAPType
(
ctx
.
Attr
<
std
::
string
>
(
"ap_type"
));
...
@@ -79,12 +87,20 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
...
@@ -79,12 +87,20 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>
true_pos
;
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>
true_pos
;
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>
false_pos
;
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>
false_pos
;
if
(
in_pos_count
!=
nullptr
)
{
GetInputPos
(
*
in_pos_count
,
*
in_true_pos
,
*
in_false_pos
,
label_pos_count
,
true_pos
,
false_pos
);
}
CalcTrueAndFalsePositive
(
gt_boxes
,
detect_boxes
,
evaluate_difficult
,
CalcTrueAndFalsePositive
(
gt_boxes
,
detect_boxes
,
evaluate_difficult
,
overlap_threshold
,
label_pos_count
,
true_pos
,
overlap_threshold
,
label_pos_count
,
true_pos
,
false_pos
);
false_pos
);
T
map
=
CalcMAP
(
ap_type
,
label_pos_count
,
true_pos
,
false_pos
);
T
map
=
CalcMAP
(
ap_type
,
label_pos_count
,
true_pos
,
false_pos
);
GetOutputPos
(
ctx
,
label_pos_count
,
true_pos
,
false_pos
,
*
out_pos_count
,
*
out_true_pos
,
*
out_false_pos
);
T
*
map_data
=
out_map
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
map_data
=
out_map
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
map_data
[
0
]
=
map
;
map_data
[
0
]
=
map
;
}
}
...
@@ -161,6 +177,119 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
...
@@ -161,6 +177,119 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
}
}
}
}
void
GetOutputPos
(
const
framework
::
ExecutionContext
&
ctx
,
const
std
::
map
<
int
,
int
>&
label_pos_count
,
const
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
true_pos
,
const
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
false_pos
,
framework
::
Tensor
&
output_pos_count
,
framework
::
LoDTensor
&
output_true_pos
,
framework
::
LoDTensor
&
output_false_pos
)
const
{
int
max_class_id
=
0
;
int
true_pos_count
=
0
;
int
false_pos_count
=
0
;
for
(
auto
it
=
label_pos_count
.
begin
();
it
!=
label_pos_count
.
end
();
++
it
)
{
int
label
=
it
->
first
;
if
(
label
>
max_class_id
)
max_class_id
=
label
;
int
label_num_pos
=
it
->
second
;
if
(
label_num_pos
==
0
||
true_pos
.
find
(
label
)
==
true_pos
.
end
())
continue
;
auto
label_true_pos
=
true_pos
.
find
(
label
)
->
second
;
auto
label_false_pos
=
false_pos
.
find
(
label
)
->
second
;
true_pos_count
+=
label_true_pos
.
size
();
false_pos_count
+=
label_false_pos
.
size
();
}
int
*
pos_count_data
=
output_pos_count
.
mutable_data
<
int
>
(
framework
::
make_ddim
({
max_class_id
+
1
,
1
}),
ctx
.
GetPlace
());
T
*
true_pos_data
=
output_true_pos
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
true_pos_count
,
2
}),
ctx
.
GetPlace
());
T
*
false_pos_data
=
output_false_pos
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
false_pos_count
,
2
}),
ctx
.
GetPlace
());
true_pos_count
=
0
;
false_pos_count
=
0
;
std
::
vector
<
size_t
>
true_pos_starts
=
{
0
};
std
::
vector
<
size_t
>
false_pos_starts
=
{
0
};
for
(
int
i
=
0
;
i
<=
max_class_id
;
++
i
)
{
auto
it_count
=
label_pos_count
.
find
(
i
);
pos_count_data
[
i
]
=
0
;
if
(
it_count
!=
label_pos_count
.
end
())
{
pos_count_data
[
i
]
=
it_count
->
second
;
}
auto
it_true_pos
=
true_pos
.
find
(
i
);
if
(
it_true_pos
!=
true_pos
.
end
())
{
const
std
::
vector
<
std
::
pair
<
T
,
int
>>&
true_pos_vec
=
it_true_pos
->
second
;
for
(
const
std
::
pair
<
T
,
int
>&
tp
:
true_pos_vec
)
{
true_pos_data
[
true_pos_count
*
2
]
=
tp
.
first
;
true_pos_data
[
true_pos_count
*
2
+
1
]
=
static_cast
<
T
>
(
tp
.
second
);
true_pos_count
++
;
}
}
true_pos_starts
.
push_back
(
true_pos_count
);
auto
it_false_pos
=
false_pos
.
find
(
i
);
if
(
it_false_pos
!=
false_pos
.
end
())
{
const
std
::
vector
<
std
::
pair
<
T
,
int
>>&
false_pos_vec
=
it_false_pos
->
second
;
for
(
const
std
::
pair
<
T
,
int
>&
fp
:
false_pos_vec
)
{
false_pos_data
[
false_pos_count
*
2
]
=
fp
.
first
;
false_pos_data
[
false_pos_count
*
2
+
1
]
=
static_cast
<
T
>
(
fp
.
second
);
false_pos_count
++
;
}
}
false_pos_starts
.
push_back
(
false_pos_count
);
}
framework
::
LoD
true_pos_lod
;
true_pos_lod
.
emplace_back
(
true_pos_starts
);
framework
::
LoD
false_pos_lod
;
false_pos_lod
.
emplace_back
(
false_pos_starts
);
output_true_pos
.
set_lod
(
true_pos_lod
);
output_false_pos
.
set_lod
(
false_pos_lod
);
return
;
}
void
GetInputPos
(
const
framework
::
Tensor
&
input_pos_count
,
const
framework
::
LoDTensor
&
input_true_pos
,
const
framework
::
LoDTensor
&
input_false_pos
,
std
::
map
<
int
,
int
>&
label_pos_count
,
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
true_pos
,
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
int
>>>&
false_pos
)
const
{
constexpr
T
kEPS
=
static_cast
<
T
>
(
1e-6
);
int
class_number
=
input_pos_count
.
dims
()[
0
];
const
int
*
pos_count_data
=
input_pos_count
.
data
<
int
>
();
for
(
int
i
=
0
;
i
<
class_number
;
++
i
)
{
label_pos_count
[
i
]
=
pos_count_data
[
i
];
}
const
T
*
true_pos_data
=
input_true_pos
.
data
<
T
>
();
auto
true_pos_data_lod
=
input_true_pos
.
lod
();
for
(
int
i
=
0
;
i
<
true_pos_data_lod
.
size
();
++
i
)
{
for
(
int
j
=
true_pos_data_lod
[
0
][
i
];
j
<
true_pos_data_lod
[
0
][
i
+
1
];
++
j
)
{
T
score
=
true_pos_data
[
j
*
2
];
int
flag
=
1
;
if
(
true_pos_data
[
j
*
2
+
1
]
<
kEPS
)
flag
=
0
;
true_pos
[
i
].
push_back
(
std
::
make_pair
(
score
,
flag
));
}
}
const
T
*
false_pos_data
=
input_false_pos
.
data
<
T
>
();
auto
false_pos_data_lod
=
input_false_pos
.
lod
();
for
(
int
i
=
0
;
i
<
false_pos_data_lod
.
size
();
++
i
)
{
for
(
int
j
=
false_pos_data_lod
[
0
][
i
];
j
<
false_pos_data_lod
[
0
][
i
+
1
];
++
j
)
{
T
score
=
false_pos_data
[
j
*
2
];
int
flag
=
1
;
if
(
false_pos_data
[
j
*
2
+
1
]
<
kEPS
)
flag
=
0
;
false_pos
[
i
].
push_back
(
std
::
make_pair
(
score
,
flag
));
}
}
return
;
}
void
CalcTrueAndFalsePositive
(
void
CalcTrueAndFalsePositive
(
const
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
Box
>>>&
gt_boxes
,
const
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
Box
>>>&
gt_boxes
,
const
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
Box
>>>>&
const
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
std
::
pair
<
T
,
Box
>>>>&
...
@@ -283,7 +412,6 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
...
@@ -283,7 +412,6 @@ class DetectionMAPOpKernel : public framework::OpKernel<T> {
size_t
num
=
tp_sum
.
size
();
size_t
num
=
tp_sum
.
size
();
// Compute Precision.
// Compute Precision.
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
// CHECK_LE(tpCumSum[i], labelNumPos);
precision
.
push_back
(
static_cast
<
T
>
(
tp_sum
[
i
])
/
precision
.
push_back
(
static_cast
<
T
>
(
tp_sum
[
i
])
/
static_cast
<
T
>
(
tp_sum
[
i
]
+
fp_sum
[
i
]));
static_cast
<
T
>
(
tp_sum
[
i
]
+
fp_sum
[
i
]));
recall
.
push_back
(
static_cast
<
T
>
(
tp_sum
[
i
])
/
label_num_pos
);
recall
.
push_back
(
static_cast
<
T
>
(
tp_sum
[
i
])
/
label_num_pos
);
...
...
python/paddle/v2/fluid/tests/test_detection_map_op.py
浏览文件 @
5ca0b762
...
@@ -29,10 +29,24 @@ class TestDetectionMAPOp(OpTest):
...
@@ -29,10 +29,24 @@ class TestDetectionMAPOp(OpTest):
self
.
detect
=
np
.
array
(
self
.
detect
).
astype
(
'float32'
)
self
.
detect
=
np
.
array
(
self
.
detect
).
astype
(
'float32'
)
self
.
mAP
=
np
.
array
(
self
.
mAP
).
astype
(
'float32'
)
self
.
mAP
=
np
.
array
(
self
.
mAP
).
astype
(
'float32'
)
self
.
inputs
=
{
if
(
len
(
self
.
class_pos_count
)
>
0
):
'Label'
:
(
self
.
label
,
self
.
label_lod
),
self
.
class_pos_count
=
np
.
array
(
self
.
class_pos_count
).
astype
(
'Detection'
:
(
self
.
detect
,
self
.
detect_lod
)
'int32'
)
}
self
.
true_pos
=
np
.
array
(
self
.
true_pos
).
astype
(
'float32'
)
self
.
false_pos
=
np
.
array
(
self
.
false_pos
).
astype
(
'float32'
)
self
.
inputs
=
{
'Label'
:
(
self
.
label
,
self
.
label_lod
),
'Detection'
:
(
self
.
detect
,
self
.
detect_lod
),
'PosCount'
:
self
.
class_pos_count
,
'TruePos'
:
(
self
.
true_pos
,
self
.
true_pos_lod
),
'FalsePos'
:
(
self
.
false_pos
,
self
.
false_pos_lod
)
}
else
:
self
.
inputs
=
{
'Label'
:
(
self
.
label
,
self
.
label_lod
),
'Detection'
:
(
self
.
detect
,
self
.
detect_lod
),
}
self
.
attrs
=
{
self
.
attrs
=
{
'overlap_threshold'
:
self
.
overlap_threshold
,
'overlap_threshold'
:
self
.
overlap_threshold
,
...
@@ -40,7 +54,17 @@ class TestDetectionMAPOp(OpTest):
...
@@ -40,7 +54,17 @@ class TestDetectionMAPOp(OpTest):
'ap_type'
:
self
.
ap_type
'ap_type'
:
self
.
ap_type
}
}
self
.
outputs
=
{
'MAP'
:
self
.
mAP
}
self
.
out_class_pos_count
=
np
.
array
(
self
.
out_class_pos_count
).
astype
(
'int'
)
self
.
out_true_pos
=
np
.
array
(
self
.
out_true_pos
).
astype
(
'float32'
)
self
.
out_false_pos
=
np
.
array
(
self
.
out_false_pos
).
astype
(
'float32'
)
self
.
outputs
=
{
'MAP'
:
self
.
mAP
,
'OutPosCount'
:
self
.
out_class_pos_count
,
'OutTruePos'
:
(
self
.
out_true_pos
,
self
.
out_true_pos_lod
),
'OutFalsePos'
:
(
self
.
out_false_pos
,
self
.
out_false_pos_lod
)
}
def
init_test_case
(
self
):
def
init_test_case
(
self
):
self
.
overlap_threshold
=
0.3
self
.
overlap_threshold
=
0.3
...
@@ -67,13 +91,64 @@ class TestDetectionMAPOp(OpTest):
...
@@ -67,13 +91,64 @@ class TestDetectionMAPOp(OpTest):
[
1
,
0.2
,
1
,
0
],
[
2
,
0.8
,
0
,
1
],
[
2
,
0.1
,
1
,
0
],
[
1
,
0.2
,
1
,
0
],
[
2
,
0.8
,
0
,
1
],
[
2
,
0.1
,
1
,
0
],
[
3
,
0.2
,
0
,
1
]]
[
3
,
0.2
,
0
,
1
]]
self
.
class_pos_count
=
[]
self
.
true_pos_lod
=
[[]]
self
.
true_pos
=
[[]]
self
.
false_pos_lod
=
[[]]
self
.
false_pos
=
[[]]
def
calc_map
(
self
,
tf_pos
,
tf_pos_lod
):
def
calc_map
(
self
,
tf_pos
,
tf_pos_lod
):
mAP
=
0.0
mAP
=
0.0
count
=
0
count
=
0
class_pos_count
=
{}
def
get_input_pos
(
class_pos_count
,
true_pos
,
true_pos_lod
,
false_pos
,
true_pos
=
{}
false_pos_lod
):
false_pos
=
{}
class_pos_count_dict
=
collections
.
Counter
()
true_pos_dict
=
collections
.
defaultdict
(
list
)
false_pos_dict
=
collections
.
defaultdict
(
list
)
for
i
,
count
in
enumerate
(
class_pos_count
):
class_pos_count_dict
[
i
]
=
count
for
i
in
range
(
len
(
true_pos_lod
[
0
])
-
1
):
start
=
true_pos_lod
[
0
][
i
]
end
=
true_pos_lod
[
0
][
i
+
1
]
for
j
in
range
(
start
,
end
):
true_pos_dict
[
i
].
append
(
true_pos
[
j
])
for
i
in
range
(
len
(
false_pos_lod
[
0
])
-
1
):
start
=
false_pos_lod
[
0
][
i
]
end
=
false_pos_lod
[
0
][
i
+
1
]
for
j
in
range
(
start
,
end
):
false_pos_dict
[
i
].
append
(
false_pos
[
j
])
return
class_pos_count_dict
,
true_pos_dict
,
false_pos_dict
def
get_output_pos
(
label_count
,
true_pos
,
false_pos
):
max_label
=
0
for
(
label
,
label_pos_num
)
in
label_count
.
items
():
if
max_label
<
label
:
max_label
=
label
label_number
=
max_label
+
1
out_class_pos_count
=
[]
out_true_pos_lod
=
[
0
]
out_true_pos
=
[]
out_false_pos_lod
=
[
0
]
out_false_pos
=
[]
for
i
in
range
(
label_number
):
out_class_pos_count
.
append
([
label_count
[
i
]])
true_pos_list
=
true_pos
[
i
]
out_true_pos
+=
true_pos_list
out_true_pos_lod
.
append
(
len
(
out_true_pos
))
false_pos_list
=
false_pos
[
i
]
out_false_pos
+=
false_pos_list
out_false_pos_lod
.
append
(
len
(
out_false_pos
))
return
out_class_pos_count
,
out_true_pos
,
[
out_true_pos_lod
],
out_false_pos
,
[
out_false_pos_lod
]
def
get_accumulation
(
pos_list
):
def
get_accumulation
(
pos_list
):
sorted_list
=
sorted
(
pos_list
,
key
=
lambda
pos
:
pos
[
0
],
reverse
=
True
)
sorted_list
=
sorted
(
pos_list
,
key
=
lambda
pos
:
pos
[
0
],
reverse
=
True
)
...
@@ -84,7 +159,9 @@ class TestDetectionMAPOp(OpTest):
...
@@ -84,7 +159,9 @@ class TestDetectionMAPOp(OpTest):
accu_list
.
append
(
sum
)
accu_list
.
append
(
sum
)
return
accu_list
return
accu_list
label_count
=
collections
.
Counter
()
label_count
,
true_pos
,
false_pos
=
get_input_pos
(
self
.
class_pos_count
,
self
.
true_pos
,
self
.
true_pos_lod
,
self
.
false_pos
,
self
.
false_pos_lod
)
for
(
label
,
difficult
,
xmin
,
ymin
,
xmax
,
ymax
)
in
self
.
label
:
for
(
label
,
difficult
,
xmin
,
ymin
,
xmax
,
ymax
)
in
self
.
label
:
if
self
.
evaluate_difficult
:
if
self
.
evaluate_difficult
:
label_count
[
label
]
+=
1
label_count
[
label
]
+=
1
...
@@ -143,8 +220,10 @@ class TestDetectionMAPOp(OpTest):
...
@@ -143,8 +220,10 @@ class TestDetectionMAPOp(OpTest):
mAP
+=
average_precisions
mAP
+=
average_precisions
count
+=
1
count
+=
1
self
.
out_class_pos_count
,
self
.
out_true_pos
,
self
.
out_true_pos_lod
,
self
.
out_false_pos
,
self
.
out_false_pos_lod
=
get_output_pos
(
if
count
!=
0
:
mAP
/=
count
label_count
,
true_pos
,
false_pos
)
if
count
!=
0
:
mAP
/=
count
return
mAP
*
100.0
return
mAP
*
100.0
def
setUp
(
self
):
def
setUp
(
self
):
...
@@ -174,5 +253,15 @@ class TestDetectionMAPOp11Point(TestDetectionMAPOp):
...
@@ -174,5 +253,15 @@ class TestDetectionMAPOp11Point(TestDetectionMAPOp):
self
.
ap_type
=
"11point"
self
.
ap_type
=
"11point"
class
TestDetectionMAPOpMultiBatch
(
TestDetectionMAPOp
):
def
init_test_case
(
self
):
super
(
TestDetectionMAPOpMultiBatch
,
self
).
init_test_case
()
self
.
class_pos_count
=
[
0
,
2
,
1
]
self
.
true_pos_lod
=
[[
0
,
0
,
3
,
5
]]
self
.
true_pos
=
[[
0.7
,
1.
],
[
0.3
,
0.
],
[
0.2
,
1.
],
[
0.8
,
0.
],
[
0.1
,
1.
]]
self
.
false_pos_lod
=
[[
0
,
0
,
3
,
5
]]
self
.
false_pos
=
[[
0.7
,
0.
],
[
0.3
,
1.
],
[
0.2
,
0.
],
[
0.8
,
1.
],
[
0.1
,
0.
]]
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录