提交 5b9450ae 编写于 作者: H hedaoyuan

follow comments

上级 4426573a
...@@ -119,14 +119,14 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad, ...@@ -119,14 +119,14 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad,
* *
* The original formula is: * The original formula is:
* *
* Input(x, y) * Input(i, x, y)
* Output(x, y) = --------------------------------------------- * Output(i, x, y) = ----------------------------------------------
* -- upper * -- upper
* (k + alpha * > (Input(x, y))^2) ^ (beta) * (k + alpha * > (Input(j, x, y))^2) ^ (beta)
* -- lower * -- j = lower
* *
* upper is `min(F, f-[N/2] + N)` * upper is `min(C, c + N/2)`
* lower if `max(0, f-[N/2])` * lower if `max(0, c - N/2)`
* *
* Function implementation: * Function implementation:
* *
...@@ -134,8 +134,12 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad, ...@@ -134,8 +134,12 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad,
* And the meaning of each dimension(0-3) is respectively batch size, * And the meaning of each dimension(0-3) is respectively batch size,
* feature maps, rows and columns. * feature maps, rows and columns.
* *
* Input and Output in the above formula is for each map of one image, and * Input and Output in the above formula is for each map(i) of one image, and
* Input(x, y), Output(x, y) represents an element in an image. * Input(i, x, y), Output(i, x, y) represents an element in an image.
*
* C is the number of feature maps of one image, and N is a hyper-parameters
* is configured when Function is initialized. The sum in the denominator
* is the sum of the same position in the neighboring maps.
* *
* In the implementation of Function, k is equal to 1, * In the implementation of Function, k is equal to 1,
* so Function has no argument for k. * so Function has no argument for k.
...@@ -199,20 +203,26 @@ private: ...@@ -199,20 +203,26 @@ private:
/** /**
* \brief Backward calculation for normalization with across maps. * \brief Backward calculation for normalization with across maps.
* *
* Function implementation:
*
* The implementation of this Function is derived from the * The implementation of this Function is derived from the
* CrossMapNormalFunc implementation. * CrossMapNormalFunc implementation.
* *
* InputGrad = OutputGrad * denoms ^ (-beta) * InputGrad = OutputGrad * denoms ^ (-beta)
* / * -- upper
* + | (OutputGrad * OutputValue * (-2 * alpha * beta) / denoms) * InputValue * + > (OutputGrad * OutputValue * (-2 * alpha * beta) / denoms) * InputValue
* / * -- lower
* *
* Argument in the Function:
* The data of inputs/outputs format is the same as the forward interface * The data of inputs/outputs format is the same as the forward interface
* and is NCHW. * and is NCHW.
* *
* The upper and lower is the same as forward. The logic of the sum
* is also the same as forward.
*
* Function Arguments:
*
* \param size_ represent N * \param size_ represent N
* \param scale_ represent alpha / N * \param scale_ represent alpha
* \param pow_ represent beta * \param pow_ represent beta
* \param inputs[0] represent InputValue, inputs[0] of CrossMapNormalFunc * \param inputs[0] represent InputValue, inputs[0] of CrossMapNormalFunc
* \param inputs[1] represent OutputValue, outputs[0] of CrossMapNormalFunc * \param inputs[1] represent OutputValue, outputs[0] of CrossMapNormalFunc
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册