Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
5aea2cd2
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
5aea2cd2
编写于
2月 19, 2019
作者:
T
tensor-tang
提交者:
GitHub
2月 19, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15652 from tensor-tang/refine/pyramiddnn
refine fused emb seq pool
上级
adea672b
75fc792d
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
487 addition
and
41 deletion
+487
-41
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h
+14
-21
paddle/fluid/operators/jit/benchmark.cc
paddle/fluid/operators/jit/benchmark.cc
+36
-0
paddle/fluid/operators/jit/gen/CMakeLists.txt
paddle/fluid/operators/jit/gen/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/gen/embseqpool.cc
paddle/fluid/operators/jit/gen/embseqpool.cc
+149
-0
paddle/fluid/operators/jit/gen/embseqpool.h
paddle/fluid/operators/jit/gen/embseqpool.h
+81
-0
paddle/fluid/operators/jit/gen/seqpool.h
paddle/fluid/operators/jit/gen/seqpool.h
+1
-1
paddle/fluid/operators/jit/helper.cc
paddle/fluid/operators/jit/helper.cc
+1
-0
paddle/fluid/operators/jit/helper.h
paddle/fluid/operators/jit/helper.h
+9
-0
paddle/fluid/operators/jit/kernel_base.h
paddle/fluid/operators/jit/kernel_base.h
+47
-19
paddle/fluid/operators/jit/kernel_key.cc
paddle/fluid/operators/jit/kernel_key.cc
+5
-0
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/more/mkl/mkl.cc
paddle/fluid/operators/jit/more/mkl/mkl.cc
+11
-0
paddle/fluid/operators/jit/more/mkl/mkl.h
paddle/fluid/operators/jit/more/mkl/mkl.h
+29
-0
paddle/fluid/operators/jit/refer/CMakeLists.txt
paddle/fluid/operators/jit/refer/CMakeLists.txt
+1
-0
paddle/fluid/operators/jit/refer/refer.cc
paddle/fluid/operators/jit/refer/refer.cc
+2
-0
paddle/fluid/operators/jit/refer/refer.h
paddle/fluid/operators/jit/refer/refer.h
+34
-0
paddle/fluid/operators/jit/test.cc
paddle/fluid/operators/jit/test.cc
+65
-0
未找到文件。
paddle/fluid/operators/fused/fused_embedding_seq_pool_op.h
浏览文件 @
5aea2cd2
...
...
@@ -21,6 +21,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/operators/math/blas.h"
namespace
paddle
{
...
...
@@ -37,32 +38,24 @@ struct EmbeddingVSumFunctor {
const
LoDTensor
*
table_t
,
const
LoDTensor
*
ids_t
,
LoDTensor
*
output_t
)
{
auto
*
table
=
table_t
->
data
<
T
>
();
int64_t
row_number
=
table_t
->
dims
()[
0
];
int64_t
row
_width
=
table_t
->
dims
()[
1
];
int64_t
last_dim
=
output_t
->
dims
()[
1
];
int64_t
table_height
=
table_t
->
dims
()[
0
];
int64_t
table
_width
=
table_t
->
dims
()[
1
];
int64_t
out_width
=
output_t
->
dims
()[
1
];
const
int64_t
*
ids
=
ids_t
->
data
<
int64_t
>
();
auto
ids_lod
=
ids_t
->
lod
()[
0
];
int64_t
ids_count
=
ids_t
->
numel
()
/
ids_lod
.
back
();
int64_t
idx_width
=
ids_t
->
numel
()
/
ids_lod
.
back
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int64_t
i
=
0
;
i
!=
ids_lod
.
size
()
-
1
;
++
i
)
{
size_t
begin
=
ids_lod
[
i
]
*
ids_count
;
for
(
int64_t
j
=
0
;
j
!=
ids_count
;
++
j
)
{
PADDLE_ENFORCE_LT
(
ids
[
begin
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
begin
],
0
,
"ids %d"
,
i
);
blas
.
VCOPY
(
row_width
,
table
+
ids
[
begin
+
j
]
*
row_width
,
output
+
i
*
last_dim
+
j
*
row_width
);
}
PADDLE_ENFORCE_LE
(
table_width
*
idx_width
,
out_width
);
for
(
int64_t
r
=
(
ids_lod
[
i
]
+
1
)
*
ids_count
;
r
<
ids_lod
[
i
+
1
]
*
ids_count
;
++
r
)
{
PADDLE_ENFORCE_LT
(
ids
[
r
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
r
],
0
,
"ids %d"
,
i
);
blas
.
AXPY
(
row_width
,
1.
,
table
+
ids
[
r
]
*
row_width
,
output
+
i
*
last_dim
+
(
r
%
ids_count
)
*
row_width
);
}
jit
::
emb_seq_pool_attr_t
attr
(
table_height
,
table_width
,
0
,
idx_width
,
out_width
,
jit
::
SeqPoolType
::
kSum
);
for
(
int64_t
i
=
0
;
i
!=
ids_lod
.
size
()
-
1
;
++
i
)
{
attr
.
index_height
=
ids_lod
[
i
+
1
]
-
ids_lod
[
i
];
auto
emb_seqpool
=
jit
::
Get
<
jit
::
kEmbSeqPool
,
jit
::
EmbSeqPoolTuples
<
T
>
,
platform
::
CPUPlace
>
(
attr
);
emb_seqpool
(
table
,
ids
+
ids_lod
[
i
]
*
idx_width
,
output
+
i
*
out_width
,
&
attr
);
}
}
};
...
...
paddle/fluid/operators/jit/benchmark.cc
浏览文件 @
5aea2cd2
...
...
@@ -301,6 +301,37 @@ void BenchSeqPoolKernel() {
}
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchEmbSeqPoolKernel
()
{
std
::
vector
<
jit
::
SeqPoolType
>
pool_types
=
{
jit
::
SeqPoolType
::
kSum
};
int64_t
tbl_h
=
1e4
;
for
(
int
tbl_w
:
{
10
,
16
,
256
})
{
Tensor
table
;
table
.
Resize
({
tbl_h
,
tbl_w
});
RandomVec
<
T
>
(
tbl_h
*
tbl_w
,
table
.
mutable_data
<
T
>
(
PlaceType
()),
-
2.
f
,
2.
f
);
const
T
*
table_data
=
table
.
data
<
T
>
();
for
(
auto
type
:
pool_types
)
{
for
(
int
idx_w
:
{
1
,
2
,
10
,
16
})
{
for
(
int
idx_h
:
{
1
,
2
,
9
,
13
,
16
})
{
int64_t
out_w
=
tbl_w
*
idx_w
;
jit
::
emb_seq_pool_attr_t
attr
(
tbl_h
,
tbl_w
,
idx_h
,
idx_w
,
out_w
,
type
);
Tensor
idx
,
out
;
idx
.
Resize
({
idx_h
,
idx_w
});
out
.
Resize
({
out_w
});
RandomVec
<
int64_t
>
(
idx_h
*
idx_w
,
idx
.
mutable_data
<
int64_t
>
(
PlaceType
()),
0
,
tbl_h
-
1
);
const
int64_t
*
idx_data
=
idx
.
data
<
int64_t
>
();
T
*
o_data
=
out
.
mutable_data
<
T
>
(
PlaceType
());
BenchAllImpls
<
KT
,
jit
::
EmbSeqPoolTuples
<
T
>
,
PlaceType
>
(
attr
,
table_data
,
idx_data
,
o_data
,
&
attr
);
}
}
}
}
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
BenchMatMulKernel
()
{
for
(
int
m
:
{
1
,
2
,
3
,
4
})
{
...
...
@@ -441,6 +472,11 @@ BENCH_FP32_CPU(kGRUHtPart2) { BenchGRUKernel<jit::kGRUHtPart2, T, CPUPlace>(); }
// seq pool function
BENCH_FP32_CPU
(
kSeqPool
)
{
BenchSeqPoolKernel
<
jit
::
kSeqPool
,
T
,
CPUPlace
>
();
}
// embedding seq pool function
BENCH_FP32_CPU
(
kEmbSeqPool
)
{
BenchEmbSeqPoolKernel
<
jit
::
kEmbSeqPool
,
T
,
CPUPlace
>
();
}
// matmul
BENCH_FP32_CPU
(
kMatMul
)
{
BenchMatMulKernel
<
jit
::
kMatMul
,
T
,
CPUPlace
>
();
}
...
...
paddle/fluid/operators/jit/gen/CMakeLists.txt
浏览文件 @
5aea2cd2
...
...
@@ -31,3 +31,4 @@ USE_JITKERNEL_GEN(kNCHW16CMulNC)
USE_JITKERNEL_GEN
(
kSeqPool
)
USE_JITKERNEL_GEN
(
kHMax
)
USE_JITKERNEL_GEN
(
kHSum
)
USE_JITKERNEL_GEN
(
kEmbSeqPool
)
paddle/fluid/operators/jit/gen/embseqpool.cc
0 → 100644
浏览文件 @
5aea2cd2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jit/gen/embseqpool.h"
#include <stddef.h> // offsetof
#include <vector>
#include "paddle/fluid/operators/jit/gen/act.h" // for exp_float_consts ones
#include "paddle/fluid/operators/jit/registry.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
operators
{
namespace
jit
{
namespace
gen
{
void
EmbSeqPoolJitCode
::
genCode
()
{
preCode
();
constexpr
int
block
=
YMM_FLOAT_BLOCK
;
constexpr
int
max_num_regs
=
8
;
const
int
num_block
=
tbl_w_
/
block
;
const
int
num_groups
=
num_block
/
max_num_regs
;
const
size_t
block_size
=
sizeof
(
float
)
*
block
;
std
::
vector
<
int
>
groups
(
num_groups
,
max_num_regs
);
int
rest_num_regs
=
num_block
%
max_num_regs
;
if
(
rest_num_regs
>
0
)
{
groups
.
push_back
(
rest_num_regs
);
}
// protect param_dst
mov
(
reg_ptr_param_dst
,
param_dst
);
mov
(
reg_idx_width_in_byte
,
qword
[
param_attr
+
offsetof
(
emb_seq_pool_attr_t
,
index_width
)]);
mov
(
reg_idx_height
,
qword
[
param_attr
+
offsetof
(
emb_seq_pool_attr_t
,
index_height
)]);
mov
(
rax
,
sizeof
(
int64_t
));
mul
(
reg_idx_width_in_byte
);
mov
(
reg_idx_width_in_byte
,
rax
);
const
size_t
tbl_width_in_byte
=
sizeof
(
float
)
*
tbl_w_
;
int
acc_num_regs
=
0
;
for
(
int
num_regs
:
groups
)
{
Label
l_next_idx_w
,
l_next_idx_h
,
l_save_now
;
xor_
(
reg_idx_w_i_in_byte
,
reg_idx_w_i_in_byte
);
mov
(
reg_ptr_dst_i
,
reg_ptr_param_dst
);
add
(
reg_ptr_dst_i
,
acc_num_regs
*
block_size
);
L
(
l_next_idx_w
);
{
// h == 0
mov
(
reg_ptr_idx_i
,
param_idx
);
add
(
reg_ptr_idx_i
,
reg_idx_w_i_in_byte
);
mov
(
reg_idx
,
qword
[
reg_ptr_idx_i
]);
mov
(
rax
,
tbl_width_in_byte
);
mul
(
reg_idx
);
mov
(
reg_ptr_tbl_i
,
rax
);
// reg is offset now
add
(
reg_ptr_tbl_i
,
param_tbl
);
// reg is ptr_i now
size_t
w_offset
=
0
;
for
(
int
reg_i
=
0
;
reg_i
<
num_regs
;
++
reg_i
)
{
vmovups
(
ymm_t
(
reg_i
+
num_regs
),
ptr
[
reg_ptr_tbl_i
+
w_offset
]);
w_offset
+=
block_size
;
}
add
(
reg_ptr_idx_i
,
reg_idx_width_in_byte
);
// end condition of idx h
mov
(
reg_idx_h_end
,
reg_idx_height
);
mov
(
rax
,
reg_idx_width_in_byte
);
mul
(
reg_idx_h_end
);
mov
(
reg_idx_h_end
,
rax
);
add
(
reg_idx_h_end
,
reg_idx_w_i_in_byte
);
add
(
reg_idx_h_end
,
param_idx
);
cmp
(
reg_ptr_idx_i
,
reg_idx_h_end
);
jge
(
l_save_now
,
T_NEAR
);
L
(
l_next_idx_h
);
{
mov
(
reg_idx
,
qword
[
reg_ptr_idx_i
]);
mov
(
reg_ptr_tbl_i
,
reg_idx
);
mov
(
rax
,
tbl_width_in_byte
);
mul
(
reg_idx
);
mov
(
reg_ptr_tbl_i
,
rax
);
add
(
reg_ptr_tbl_i
,
param_tbl
);
size_t
w_offset
=
0
;
for
(
int
reg_i
=
0
;
reg_i
<
num_regs
;
++
reg_i
)
{
vmovups
(
ymm_t
(
reg_i
),
ptr
[
reg_ptr_tbl_i
+
w_offset
]);
vaddps
(
ymm_t
(
reg_i
+
num_regs
),
ymm_t
(
reg_i
+
num_regs
),
ymm_t
(
reg_i
));
w_offset
+=
block_size
;
}
add
(
reg_ptr_idx_i
,
reg_idx_width_in_byte
);
cmp
(
reg_ptr_idx_i
,
reg_idx_h_end
);
jl
(
l_next_idx_h
,
T_NEAR
);
}
// end of idx h
L
(
l_save_now
);
// avg or sqrt here, if needed
w_offset
=
0
;
for
(
int
reg_i
=
0
;
reg_i
<
num_regs
;
++
reg_i
)
{
vmovups
(
ptr
[
reg_ptr_dst_i
+
w_offset
],
ymm_t
(
reg_i
+
num_regs
));
w_offset
+=
block_size
;
}
add
(
reg_ptr_dst_i
,
tbl_width_in_byte
);
add
(
reg_idx_w_i_in_byte
,
sizeof
(
int64_t
));
cmp
(
reg_idx_w_i_in_byte
,
reg_idx_width_in_byte
);
jl
(
l_next_idx_w
,
T_NEAR
);
}
// end of idx w
acc_num_regs
+=
num_regs
;
add
(
param_tbl
,
num_regs
*
block_size
);
// do not use acc_num_regs
}
// end of groups
postCode
();
}
class
EmbSeqPoolCreator
:
public
JitCodeCreator
<
emb_seq_pool_attr_t
>
{
public:
bool
UseMe
(
const
emb_seq_pool_attr_t
&
attr
)
const
override
{
return
platform
::
MayIUse
(
platform
::
avx
)
&&
attr
.
table_width
%
YMM_FLOAT_BLOCK
==
0
;
}
size_t
CodeSize
(
const
emb_seq_pool_attr_t
&
attr
)
const
override
{
return
96
+
(
attr
.
table_width
/
YMM_FLOAT_BLOCK
)
*
96
*
8
;
}
std
::
unique_ptr
<
GenBase
>
CreateJitCode
(
const
emb_seq_pool_attr_t
&
attr
)
const
override
{
PADDLE_ENFORCE_GT
(
attr
.
table_height
,
0
);
PADDLE_ENFORCE_GT
(
attr
.
table_width
,
0
);
PADDLE_ENFORCE_GT
(
attr
.
index_height
,
0
);
PADDLE_ENFORCE_GT
(
attr
.
index_width
,
0
);
PADDLE_ENFORCE_GT
(
attr
.
out_width
,
0
);
return
make_unique
<
EmbSeqPoolJitCode
>
(
attr
,
CodeSize
(
attr
));
}
};
}
// namespace gen
}
// namespace jit
}
// namespace operators
}
// namespace paddle
namespace
gen
=
paddle
::
operators
::
jit
::
gen
;
REGISTER_JITKERNEL_GEN
(
kEmbSeqPool
,
gen
::
EmbSeqPoolCreator
);
paddle/fluid/operators/jit/gen/embseqpool.h
0 → 100644
浏览文件 @
5aea2cd2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/gen/jitcode.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
operators
{
namespace
jit
{
namespace
gen
{
class
EmbSeqPoolJitCode
:
public
JitCode
{
public:
explicit
EmbSeqPoolJitCode
(
const
emb_seq_pool_attr_t
&
attr
,
size_t
code_size
=
256
*
1024
,
void
*
code_ptr
=
nullptr
)
:
JitCode
(
code_size
,
code_ptr
),
tbl_w_
(
attr
.
table_width
),
type_
(
attr
.
pool_type
)
{
if
(
type_
!=
SeqPoolType
::
kSum
)
{
LOG
(
FATAL
)
<<
"Only support sum pool yet "
;
}
this
->
genCode
();
}
std
::
string
name
()
const
override
{
std
::
string
base
=
"EmbSeqPoolJitCode"
;
if
(
type_
==
SeqPoolType
::
kSum
)
{
base
+=
"_Sum"
;
}
else
if
(
type_
==
SeqPoolType
::
kAvg
)
{
base
+=
"_Avg"
;
}
else
if
(
type_
==
SeqPoolType
::
kSqrt
)
{
base
+=
"_Sqrt"
;
}
base
+=
(
"_W"
+
std
::
to_string
(
tbl_w_
));
return
base
;
}
void
genCode
()
override
;
private:
int
tbl_w_
;
SeqPoolType
type_
;
reg64_t
param_tbl
{
abi_param1
};
reg64_t
param_idx
{
abi_param2
};
reg64_t
param_dst
{
abi_param3
};
reg64_t
param_attr
{
abi_param4
};
reg64_t
reg_tmp
{
rax
};
reg64_t
reg_idx_width_in_byte
{
r8
};
reg64_t
reg_idx_height
{
r9
};
reg64_t
reg_ptr_tbl_i
{
r10
};
reg64_t
reg_idx
{
r10
};
// could use same of reg_ptr_tbl_i
reg64_t
reg_ptr_idx_i
{
r11
};
reg64_t
reg_ptr_dst_i
{
r12
};
reg64_t
reg_ptr_param_dst
{
r13
};
// rdx is used in mul so protect param_dst
reg64_t
reg_idx_w_i_in_byte
{
r14
};
reg64_t
reg_idx_h_end
{
r15
};
};
}
// namespace gen
}
// namespace jit
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/jit/gen/seqpool.h
浏览文件 @
5aea2cd2
...
...
@@ -32,7 +32,7 @@ class SeqPoolJitCode : public JitCode {
:
JitCode
(
code_size
,
code_ptr
),
w_
(
attr
.
w
),
type_
(
attr
.
type
)
{
if
(
!
(
type_
==
SeqPoolType
::
kSum
||
type_
==
SeqPoolType
::
kAvg
||
type_
==
SeqPoolType
::
kSqrt
))
{
LOG
(
FATAL
)
<<
"Only support
sum pool yet
"
;
LOG
(
FATAL
)
<<
"Only support
ed pool type: sum, avg and sqrt.
"
;
}
fp_h_
[
0
]
=
1.
f
;
this
->
genCode
();
...
...
paddle/fluid/operators/jit/helper.cc
浏览文件 @
5aea2cd2
...
...
@@ -54,6 +54,7 @@ const char* to_string(KernelType kt) {
ONE_CASE
(
kHMax
);
ONE_CASE
(
kHSum
);
ONE_CASE
(
kSoftmax
);
ONE_CASE
(
kEmbSeqPool
);
default:
PADDLE_THROW
(
"Not support type: %d, or forget to add it."
,
kt
);
return
"NOT JITKernel"
;
...
...
paddle/fluid/operators/jit/helper.h
浏览文件 @
5aea2cd2
...
...
@@ -172,6 +172,15 @@ inline std::ostream& operator<<(std::ostream& os, const seq_pool_attr_t& attr) {
return
os
;
}
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
emb_seq_pool_attr_t
&
attr
)
{
os
<<
"table_height["
<<
attr
.
table_height
<<
"],table_width["
<<
attr
.
table_width
<<
"],index_height["
<<
attr
.
index_height
<<
"],index_width["
<<
attr
.
index_width
<<
"],output_width["
<<
attr
.
out_width
<<
"],pool_type["
<<
to_string
(
attr
.
pool_type
)
<<
"]"
;
return
os
;
}
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
matmul_attr_t
&
attr
)
{
os
<<
"M["
<<
attr
.
m
<<
"],N["
<<
attr
.
n
<<
"],K["
<<
attr
.
k
<<
"]"
;
return
os
;
...
...
paddle/fluid/operators/jit/kernel_base.h
浏览文件 @
5aea2cd2
...
...
@@ -13,6 +13,7 @@
* limitations under the License. */
#pragma once
#include <cstdint>
#include "paddle/fluid/operators/jit/macro.h"
#include "paddle/fluid/platform/macros.h"
...
...
@@ -20,34 +21,35 @@ namespace paddle {
namespace
operators
{
namespace
jit
{
// TODO(TJ): reorder by alphabet
typedef
enum
{
kNone
=
0
,
kVMul
=
1
,
kVAdd
=
2
,
kVAddRelu
,
kVSub
,
kVScal
,
kVAddBias
,
kVRelu
,
kVIdentity
,
kVSquare
,
kVExp
,
kVSigmoid
,
kVTanh
,
kLSTMCtHt
,
kLSTMC1H1
,
// sort by alphabet
kCRFDecoding
=
1
,
kEmbSeqPool
=
2
,
kGRUH1
,
kGRUHtPart1
,
kGRUHtPart2
,
kCRFDecoding
,
kHSum
,
// horizontal max
kHMax
,
// horizontal sum
kLSTMCtHt
,
kLSTMC1H1
,
kLayerNorm
,
kMatMul
,
kNCHW16CMulNC
,
kSeqPool
,
kMatMul
,
kHSum
,
// horizontal max
kHMax
,
// horizontal sum
kSoftmax
,
kVAdd
,
kVAddBias
,
kVAddRelu
,
kVExp
,
kVIdentity
,
kVMul
,
kVRelu
,
kVScal
,
kVSigmoid
,
kVSquare
,
kVSub
,
kVTanh
,
}
KernelType
;
typedef
enum
{
...
...
@@ -145,6 +147,32 @@ struct SeqPoolTuples {
typedef
void
(
*
func_type
)(
const
T
*
,
T
*
,
const
seq_pool_attr_t
*
);
};
typedef
struct
emb_seq_pool_attr_s
{
int64_t
table_height
,
table_width
;
int64_t
index_height
,
index_width
;
int64_t
out_width
;
SeqPoolType
pool_type
;
emb_seq_pool_attr_s
()
=
default
;
explicit
emb_seq_pool_attr_s
(
int64_t
tbl_height
,
int64_t
tbl_width
,
int64_t
idx_height
,
int64_t
idx_width
,
int64_t
output_width
,
SeqPoolType
seqpool_type
=
SeqPoolType
::
kSum
)
:
table_height
(
tbl_height
),
table_width
(
tbl_width
),
index_height
(
idx_height
),
index_width
(
idx_width
),
out_width
(
output_width
),
pool_type
(
seqpool_type
)
{}
}
emb_seq_pool_attr_t
;
template
<
typename
T
>
struct
EmbSeqPoolTuples
{
typedef
T
data_type
;
typedef
emb_seq_pool_attr_t
attr_type
;
typedef
void
(
*
func_type
)(
const
T
*
,
const
int64_t
*
,
T
*
,
const
emb_seq_pool_attr_t
*
);
};
typedef
struct
matmul_attr_s
{
int
m
,
n
,
k
;
void
*
packed_weight
{
nullptr
};
...
...
paddle/fluid/operators/jit/kernel_key.cc
浏览文件 @
5aea2cd2
...
...
@@ -56,6 +56,11 @@ size_t JitCodeKey<matmul_attr_t>(const matmul_attr_t& attr) {
return
(
key
<<
shift
*
2
)
+
((
static_cast
<
size_t
>
(
attr
.
n
))
<<
shift
)
+
attr
.
k
;
}
template
<
>
size_t
JitCodeKey
<
emb_seq_pool_attr_t
>
(
const
emb_seq_pool_attr_t
&
attr
)
{
return
attr
.
table_width
;
}
}
// namespace jit
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/jit/more/mkl/CMakeLists.txt
浏览文件 @
5aea2cd2
...
...
@@ -13,3 +13,4 @@ USE_JITKERNEL_MORE(kVSigmoid, mkl)
USE_JITKERNEL_MORE
(
kVTanh, mkl
)
USE_JITKERNEL_MORE
(
kSeqPool, mkl
)
USE_JITKERNEL_MORE
(
kSoftmax, mkl
)
USE_JITKERNEL_MORE
(
kEmbSeqPool, mkl
)
paddle/fluid/operators/jit/more/mkl/mkl.cc
浏览文件 @
5aea2cd2
...
...
@@ -174,6 +174,16 @@ bool SeqPoolKernel<double>::UseMe(const seq_pool_attr_t& attr) const {
return
true
;
}
template
<
>
bool
EmbSeqPoolKernel
<
float
>::
UseMe
(
const
emb_seq_pool_attr_t
&
attr
)
const
{
return
true
;
}
template
<
>
bool
EmbSeqPoolKernel
<
double
>::
UseMe
(
const
emb_seq_pool_attr_t
&
attr
)
const
{
return
true
;
}
template
<
>
bool
MatMulKernel
<
float
>::
UseMe
(
const
matmul_attr_t
&
attr
)
const
{
return
platform
::
MayIUse
(
platform
::
avx
);
...
...
@@ -227,6 +237,7 @@ REGISTER_MKL_KERNEL(kVSquare, VSquare);
REGISTER_MKL_KERNEL
(
kVSigmoid
,
VSigmoid
);
REGISTER_MKL_KERNEL
(
kVTanh
,
VTanh
);
REGISTER_MKL_KERNEL
(
kSeqPool
,
SeqPool
);
REGISTER_MKL_KERNEL
(
kEmbSeqPool
,
EmbSeqPool
);
REGISTER_MKL_KERNEL
(
kSoftmax
,
Softmax
);
#undef REGISTER_MKL_KERNEL
paddle/fluid/operators/jit/more/mkl/mkl.h
浏览文件 @
5aea2cd2
...
...
@@ -18,6 +18,7 @@
#include <type_traits>
#include <vector>
#include "paddle/fluid/operators/jit/kernel_base.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -91,6 +92,32 @@ void SeqPool(const T* x, T* y, const seq_pool_attr_t* attr) {
}
}
template
<
typename
T
>
void
EmbSeqPool
(
const
T
*
table
,
const
int64_t
*
idx
,
T
*
out
,
const
emb_seq_pool_attr_t
*
attr
)
{
PADDLE_ENFORCE_EQ
(
attr
->
table_width
*
attr
->
index_width
,
attr
->
out_width
);
auto
check_idx_value_valid
=
[
&
](
int64_t
i
)
{
PADDLE_ENFORCE_LT
(
idx
[
i
],
attr
->
table_height
,
"idx value: %d, i: %d"
,
idx
[
i
],
i
);
PADDLE_ENFORCE_GE
(
idx
[
i
],
0
,
"idx value: %d, i: %d"
,
idx
[
i
],
i
);
};
for
(
int64_t
w
=
0
;
w
!=
attr
->
index_width
;
++
w
)
{
check_idx_value_valid
(
w
);
VCopy
<
T
>
(
table
+
idx
[
w
]
*
attr
->
table_width
,
out
+
w
*
attr
->
table_width
,
attr
->
table_width
);
}
for
(
int64_t
h
=
1
;
h
<
attr
->
index_height
;
++
h
)
{
for
(
int64_t
w
=
0
;
w
<
attr
->
index_width
;
++
w
)
{
int64_t
i
=
h
*
attr
->
index_width
+
w
;
check_idx_value_valid
(
i
);
VAXPY
<
T
>
(
static_cast
<
T
>
(
1
),
table
+
idx
[
i
]
*
attr
->
table_width
,
out
+
w
*
attr
->
table_width
,
attr
->
table_width
);
}
}
}
template
<
typename
T
>
void
ASum
(
const
T
*
x
,
T
*
res
,
int
n
);
...
...
@@ -142,6 +169,8 @@ DECLARE_MKL_KERNEL(VSquare, XYNTuples);
DECLARE_MKL_KERNEL
(
SeqPool
,
SeqPoolTuples
);
DECLARE_MKL_KERNEL
(
EmbSeqPool
,
EmbSeqPoolTuples
);
DECLARE_MKL_KERNEL
(
Softmax
,
SoftmaxTuples
);
#undef DECLARE_MKL_KERNEL
...
...
paddle/fluid/operators/jit/refer/CMakeLists.txt
浏览文件 @
5aea2cd2
...
...
@@ -32,3 +32,4 @@ USE_JITKERNEL_REFER(kVSquare)
USE_JITKERNEL_REFER
(
kHSum
)
USE_JITKERNEL_REFER
(
kHMax
)
USE_JITKERNEL_REFER
(
kSoftmax
)
USE_JITKERNEL_REFER
(
kEmbSeqPool
)
paddle/fluid/operators/jit/refer/refer.cc
浏览文件 @
5aea2cd2
...
...
@@ -57,4 +57,6 @@ REGISTER_REFER_KERNEL(kHSum, HSum);
REGISTER_REFER_KERNEL
(
kSoftmax
,
Softmax
);
REGISTER_REFER_KERNEL
(
kEmbSeqPool
,
EmbSeqPool
);
#undef REGISTER_REFER_KERNEL
paddle/fluid/operators/jit/refer/refer.h
浏览文件 @
5aea2cd2
...
...
@@ -16,6 +16,7 @@
#include <cmath>
#include <limits>
#include <string>
#include "paddle/fluid/operators/jit/helper.h"
#include "paddle/fluid/operators/jit/kernel_base.h"
#include "paddle/fluid/platform/enforce.h"
...
...
@@ -414,6 +415,37 @@ void Softmax(const T* x, T* y, int n, int bs = 1) {
}
}
// embedding seq pool
// table is a matrix with (tbl_h, tbl_w)
// idx is a matrix with (idx_h, idx_w)
// output is a vector with length tbl_w * idx_w
template
<
typename
T
>
void
EmbSeqPool
(
const
T
*
table
,
const
int64_t
*
idx
,
T
*
out
,
const
emb_seq_pool_attr_t
*
attr
)
{
PADDLE_ENFORCE_EQ
(
attr
->
table_width
*
attr
->
index_width
,
attr
->
out_width
);
auto
check_idx_value_valid
=
[
&
](
int64_t
i
)
{
PADDLE_ENFORCE_LT
(
idx
[
i
],
attr
->
table_height
,
"idx value: %d, i: %d"
,
idx
[
i
],
i
);
PADDLE_ENFORCE_GE
(
idx
[
i
],
0
,
"idx value: %d, i: %d"
,
idx
[
i
],
i
);
};
for
(
int64_t
w
=
0
;
w
!=
attr
->
index_width
;
++
w
)
{
check_idx_value_valid
(
w
);
std
::
memcpy
(
out
+
w
*
attr
->
table_width
,
table
+
idx
[
w
]
*
attr
->
table_width
,
attr
->
table_width
*
sizeof
(
T
));
}
for
(
int64_t
h
=
1
;
h
<
attr
->
index_height
;
++
h
)
{
for
(
int64_t
w
=
0
;
w
<
attr
->
index_width
;
++
w
)
{
int64_t
i
=
h
*
attr
->
index_width
+
w
;
check_idx_value_valid
(
i
);
VAdd
(
table
+
idx
[
i
]
*
attr
->
table_width
,
out
+
w
*
attr
->
table_width
,
out
+
w
*
attr
->
table_width
,
attr
->
table_width
);
}
}
}
#define DECLARE_REFER_KERNEL(name, tuples) \
template <typename T> \
class name##Kernel : public ReferKernel<tuples<T>> { \
...
...
@@ -462,6 +494,8 @@ DECLARE_REFER_KERNEL(HSum, XRNTuples);
DECLARE_REFER_KERNEL
(
Softmax
,
SoftmaxTuples
);
DECLARE_REFER_KERNEL
(
EmbSeqPool
,
EmbSeqPoolTuples
);
#undef DECLARE_REFER_KERNEL
}
// namespace refer
...
...
paddle/fluid/operators/jit/test.cc
浏览文件 @
5aea2cd2
...
...
@@ -270,6 +270,32 @@ struct TestFuncWithRefer<jit::SeqPoolTuples<T>, std::vector<T>, std::vector<T>,
}
};
template
<
typename
T
>
struct
TestFuncWithRefer
<
jit
::
EmbSeqPoolTuples
<
T
>
,
std
::
vector
<
T
>
,
std
::
vector
<
int64_t
>
,
std
::
vector
<
T
>
,
typename
jit
::
EmbSeqPoolTuples
<
T
>::
attr_type
>
{
void
operator
()(
const
typename
jit
::
EmbSeqPoolTuples
<
T
>::
func_type
tgt
,
const
std
::
vector
<
T
>&
table
,
const
std
::
vector
<
int64_t
>&
idx
,
const
std
::
vector
<
T
>&
oref
,
const
typename
jit
::
EmbSeqPoolTuples
<
T
>::
attr_type
&
attr
)
{
EXPECT_TRUE
(
tgt
!=
nullptr
);
EXPECT_EQ
(
table
.
size
(),
static_cast
<
size_t
>
(
attr
.
table_height
*
attr
.
table_width
));
EXPECT_EQ
(
idx
.
size
(),
static_cast
<
size_t
>
(
attr
.
index_height
*
attr
.
index_width
));
EXPECT_EQ
(
oref
.
size
(),
static_cast
<
size_t
>
(
attr
.
table_width
*
attr
.
index_width
));
const
T
*
table_data
=
table
.
data
();
const
int64_t
*
idx_data
=
idx
.
data
();
const
T
*
oref_data
=
oref
.
data
();
int
o_w
=
oref
.
size
();
std
::
vector
<
T
>
out
(
o_w
);
T
*
o_data
=
out
.
data
();
tgt
(
table_data
,
idx_data
,
o_data
,
&
attr
);
ExpectEQ
<
T
>
(
o_data
,
oref_data
,
o_w
);
}
};
template
<
typename
T
>
struct
TestFuncWithRefer
<
jit
::
MatMulTuples
<
T
>
,
std
::
vector
<
T
>
,
std
::
vector
<
T
>
,
std
::
vector
<
T
>
,
...
...
@@ -644,6 +670,40 @@ void TestSoftmaxKernel() {
}
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestEmbSeqPoolKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
int64_t
tbl_h
=
1e4
;
std
::
vector
<
jit
::
SeqPoolType
>
pool_types
=
{
jit
::
SeqPoolType
::
kSum
};
// only support sum yet
for
(
int
tbl_w
:
TestSizes
())
{
std
::
vector
<
T
>
table
(
tbl_h
*
tbl_w
);
RandomVec
<
T
>
(
tbl_h
*
tbl_w
,
table
.
data
(),
-
2.
f
,
2.
f
);
const
T
*
table_data
=
table
.
data
();
for
(
auto
type
:
pool_types
)
{
for
(
int
idx_w
:
{
1
,
2
,
10
,
16
})
{
for
(
int
idx_h
:
{
1
,
2
,
9
,
13
,
16
})
{
auto
ref
=
jit
::
GetRefer
<
KT
,
jit
::
EmbSeqPoolTuples
<
T
>>
();
EXPECT_TRUE
(
ref
!=
nullptr
);
std
::
vector
<
int64_t
>
idx
(
idx_h
*
idx_w
);
RandomVec
<
int64_t
>
(
idx_h
*
idx_w
,
idx
.
data
(),
0
,
tbl_h
-
1
);
int64_t
out_w
=
tbl_w
*
idx_w
;
std
::
vector
<
T
>
oref
(
out_w
);
const
int64_t
*
idx_data
=
idx
.
data
();
T
*
o_data
=
oref
.
data
();
jit
::
emb_seq_pool_attr_t
attr
(
tbl_h
,
tbl_w
,
idx_h
,
idx_w
,
out_w
,
type
);
ref
(
table_data
,
idx_data
,
o_data
,
&
attr
);
TestAllImpls
<
KT
,
jit
::
EmbSeqPoolTuples
<
T
>
,
PlaceType
,
std
::
vector
<
T
>
,
std
::
vector
<
int64_t
>
,
std
::
vector
<
T
>>
(
attr
,
table
,
idx
,
oref
,
attr
);
}
}
}
}
}
template
<
jit
::
KernelType
KT
,
typename
T
,
typename
PlaceType
>
void
TestNCHW16CMulNCKernel
()
{
VLOG
(
10
)
<<
"===== Test JITKernel "
<<
jit
::
to_string
(
KT
);
...
...
@@ -878,6 +938,11 @@ TEST(JITKernel, kSoftmax) {
TestSoftmaxKernel
<
jit
::
kSoftmax
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kEmbSeqPool
)
{
TestEmbSeqPoolKernel
<
jit
::
kEmbSeqPool
,
float
,
CPUPlace
>
();
TestEmbSeqPoolKernel
<
jit
::
kEmbSeqPool
,
double
,
CPUPlace
>
();
}
TEST
(
JITKernel
,
kNCHW16CMulNC
)
{
TestNCHW16CMulNCKernel
<
jit
::
kNCHW16CMulNC
,
float
,
CPUPlace
>
();
TestNCHW16CMulNCKernel
<
jit
::
kNCHW16CMulNC
,
double
,
CPUPlace
>
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录