Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
59d75bda
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
59d75bda
编写于
6月 07, 2018
作者:
Y
yuyang18
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into feature/python_doc
上级
df681fd4
50104f18
变更
65
隐藏空白更改
内联
并排
Showing
65 changed file
with
1421 addition
and
425 deletion
+1421
-425
benchmark/fluid/README.md
benchmark/fluid/README.md
+2
-0
benchmark/fluid/run_fluid_benchmark.sh
benchmark/fluid/run_fluid_benchmark.sh
+9
-0
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+1
-1
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+4
-0
paddle/fluid/framework/details/broadcast_op_handle.h
paddle/fluid/framework/details/broadcast_op_handle.h
+2
-2
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+4
-0
paddle/fluid/framework/details/graph_builder_factory.cc
paddle/fluid/framework/details/graph_builder_factory.cc
+47
-0
paddle/fluid/framework/details/graph_builder_factory.h
paddle/fluid/framework/details/graph_builder_factory.h
+67
-0
paddle/fluid/framework/details/multi_devices_graph_builder.cc
...le/fluid/framework/details/multi_devices_graph_builder.cc
+0
-9
paddle/fluid/framework/details/nccl_all_reduce_op_handle.h
paddle/fluid/framework/details/nccl_all_reduce_op_handle.h
+2
-2
paddle/fluid/framework/details/reduce_op_handle.h
paddle/fluid/framework/details/reduce_op_handle.h
+2
-2
paddle/fluid/framework/details/ssa_graph_builder.cc
paddle/fluid/framework/details/ssa_graph_builder.cc
+0
-58
paddle/fluid/framework/details/ssa_graph_builder.h
paddle/fluid/framework/details/ssa_graph_builder.h
+0
-2
paddle/fluid/framework/details/ssa_graph_printer.cc
paddle/fluid/framework/details/ssa_graph_printer.cc
+83
-0
paddle/fluid/framework/details/ssa_graph_printer.h
paddle/fluid/framework/details/ssa_graph_printer.h
+67
-0
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+10
-13
paddle/fluid/framework/scope.cc
paddle/fluid/framework/scope.cc
+17
-13
paddle/fluid/framework/scope.h
paddle/fluid/framework/scope.h
+14
-3
paddle/fluid/framework/tensor.cc
paddle/fluid/framework/tensor.cc
+98
-1
paddle/fluid/framework/tensor.h
paddle/fluid/framework/tensor.h
+15
-26
paddle/fluid/framework/tensor_impl.h
paddle/fluid/framework/tensor_impl.h
+0
-97
paddle/fluid/inference/analysis/helper.h
paddle/fluid/inference/analysis/helper.h
+9
-0
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
+7
-1
paddle/fluid/inference/tensorrt/convert/activation_op.cc
paddle/fluid/inference/tensorrt/convert/activation_op.cc
+3
-2
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
+3
-3
paddle/fluid/inference/tensorrt/convert/fc_op.cc
paddle/fluid/inference/tensorrt/convert/fc_op.cc
+6
-4
paddle/fluid/inference/tensorrt/convert/mul_op.cc
paddle/fluid/inference/tensorrt/convert/mul_op.cc
+10
-5
paddle/fluid/inference/tensorrt/convert/op_converter.h
paddle/fluid/inference/tensorrt/convert/op_converter.h
+29
-11
paddle/fluid/inference/tensorrt/convert/test_op_converter.cc
paddle/fluid/inference/tensorrt/convert/test_op_converter.cc
+2
-0
paddle/fluid/inference/tensorrt/convert/ut_helper.h
paddle/fluid/inference/tensorrt/convert/ut_helper.h
+3
-2
paddle/fluid/inference/tensorrt/engine.cc
paddle/fluid/inference/tensorrt/engine.cc
+8
-1
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+27
-1
paddle/fluid/inference/tests/book/test_inference_nlp.cc
paddle/fluid/inference/tests/book/test_inference_nlp.cc
+26
-31
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+2
-0
paddle/fluid/operators/detail/CMakeLists.txt
paddle/fluid/operators/detail/CMakeLists.txt
+1
-1
paddle/fluid/operators/detail/grpc_client.cc
paddle/fluid/operators/detail/grpc_client.cc
+25
-39
paddle/fluid/operators/detail/grpc_client.h
paddle/fluid/operators/detail/grpc_client.h
+27
-29
paddle/fluid/operators/detail/grpc_server_test.cc
paddle/fluid/operators/detail/grpc_server_test.cc
+4
-2
paddle/fluid/operators/detail/rpc_client.cc
paddle/fluid/operators/detail/rpc_client.cc
+26
-0
paddle/fluid/operators/detail/rpc_client.h
paddle/fluid/operators/detail/rpc_client.h
+82
-0
paddle/fluid/operators/fetch_barrier_op.cc
paddle/fluid/operators/fetch_barrier_op.cc
+3
-1
paddle/fluid/operators/gen_nccl_id_op.cc
paddle/fluid/operators/gen_nccl_id_op.cc
+4
-3
paddle/fluid/operators/prefetch_op.cc
paddle/fluid/operators/prefetch_op.cc
+3
-3
paddle/fluid/operators/recv_op.cc
paddle/fluid/operators/recv_op.cc
+3
-2
paddle/fluid/operators/reverse_op.cc
paddle/fluid/operators/reverse_op.cc
+107
-0
paddle/fluid/operators/reverse_op.cu
paddle/fluid/operators/reverse_op.cu
+24
-0
paddle/fluid/operators/reverse_op.h
paddle/fluid/operators/reverse_op.h
+87
-0
paddle/fluid/operators/send_barrier_op.cc
paddle/fluid/operators/send_barrier_op.cc
+2
-1
paddle/fluid/operators/send_op.cc
paddle/fluid/operators/send_op.cc
+4
-3
paddle/fluid/operators/send_vars_op.cc
paddle/fluid/operators/send_vars_op.cc
+3
-2
paddle/fluid/operators/tensorrt_engine_op.cc
paddle/fluid/operators/tensorrt_engine_op.cc
+77
-5
paddle/fluid/operators/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt_engine_op.h
+19
-11
paddle/fluid/operators/tensorrt_engine_op_test.cc
paddle/fluid/operators/tensorrt_engine_op_test.cc
+152
-0
paddle/fluid/operators/test_send_nccl_id.cc
paddle/fluid/operators/test_send_nccl_id.cc
+4
-3
paddle/fluid/platform/assert.h
paddle/fluid/platform/assert.h
+5
-2
paddle/fluid/platform/cudnn_helper.h
paddle/fluid/platform/cudnn_helper.h
+22
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+6
-0
paddle/scripts/paddle_build.sh
paddle/scripts/paddle_build.sh
+1
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+5
-5
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+34
-0
python/paddle/fluid/tests/no_test_concurrency.py
python/paddle/fluid/tests/no_test_concurrency.py
+0
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-4
python/paddle/fluid/tests/unittests/test_elementwise_add_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_add_op.py
+20
-0
python/paddle/fluid/tests/unittests/test_mul_op.py
python/paddle/fluid/tests/unittests/test_mul_op.py
+23
-18
python/paddle/fluid/tests/unittests/test_reverse_op.py
python/paddle/fluid/tests/unittests/test_reverse_op.py
+67
-0
未找到文件。
benchmark/fluid/README.md
浏览文件 @
59d75bda
...
...
@@ -29,9 +29,11 @@ Currently supported `--model` argument include:
You can choose to use GPU/CPU training. With GPU training, you can specify
`--gpus <gpu_num>`
to run multi GPU training.
*
Run distributed training with parameter servers:
*
see
[
run_fluid_benchmark.sh
](
https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/fluid/run_fluid_benchmark.sh
)
as an example.
*
start parameter servers:
```
bash
PADDLE_TRAINING_ROLE
=
PSERVER
PADDLE_PSERVER_PORT
=
7164
PADDLE_PSERVER_IPS
=
127.0.0.1
PADDLE_TRAINERS
=
1
PADDLE_CURRENT_IP
=
127.0.0.1
PADDLE_TRAINER_ID
=
0 python fluid_benchmark.py
--model
mnist
--device
GPU
--update_method
pserver
sleep
15
```
*
start trainers:
```
bash
...
...
benchmark/fluid/run_fluid_benchmark.sh
0 → 100644
浏览文件 @
59d75bda
#!/bin/bash
PADDLE_TRAINING_ROLE
=
PSERVER
PADDLE_PSERVER_PORT
=
7164
PADDLE_PSERVER_IPS
=
127.0.0.1
PADDLE_TRAINERS
=
2
PADDLE_CURRENT_IP
=
127.0.0.1
PADDLE_TRAINER_ID
=
0 python fluid_benchmark.py
--model
resnet
--device
CPU
--update_method
pserver
--iterations
=
10000 &
sleep
15
CUDA_VISIBLE_DEVICES
=
0,1
PADDLE_TRAINING_ROLE
=
TRAINER
PADDLE_PSERVER_PORT
=
7164
PADDLE_PSERVER_IPS
=
127.0.0.1
PADDLE_TRAINERS
=
2
PADDLE_CURRENT_IP
=
127.0.0.1
PADDLE_TRAINER_ID
=
0 python fluid_benchmark.py
--model
resnet
--device
GPU
--update_method
pserver
--iterations
=
10000
--gpus
2 &
CUDA_VISIBLE_DEVICES
=
2,3
PADDLE_TRAINING_ROLE
=
TRAINER
PADDLE_PSERVER_PORT
=
7164
PADDLE_PSERVER_IPS
=
127.0.0.1
PADDLE_TRAINERS
=
2
PADDLE_CURRENT_IP
=
127.0.0.1
PADDLE_TRAINER_ID
=
1 python fluid_benchmark.py
--model
resnet
--device
GPU
--update_method
pserver
--iterations
=
10000
--gpus
2 &
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
59d75bda
...
...
@@ -87,7 +87,7 @@ cc_library(executor SRCS executor.cc DEPS op_registry device_context scope
framework_proto glog lod_rank_table feed_fetch_method
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS
multi_devices_graph_builder
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS
graph_builder_factory
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
)
cc_library
(
prune SRCS prune.cc DEPS framework_proto
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
...
...
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
59d75bda
...
...
@@ -7,6 +7,7 @@ cc_library(rpc_op_handle SRCS rpc_op_handle.cc DEPS framework_proto scope place
cc_library
(
ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base
)
cc_library
(
ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph
)
cc_library
(
ssa_graph_printer SRCS ssa_graph_printer.cc DEPS ssa_graph_builder
)
cc_library
(
variable_visitor SRCS variable_visitor.cc DEPS lod_tensor selected_rows
)
...
...
@@ -28,6 +29,9 @@ cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope d
cc_library
(
multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle
scale_loss_grad_op_handle rpc_op_handle
${
multi_devices_graph_builder_deps
}
reduce_op_handle broadcast_op_handle
)
cc_library
(
graph_builder_factory SRCS graph_builder_factory.cc DEPS multi_devices_graph_builder ssa_graph_printer
)
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph framework_proto
)
cc_library
(
threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope
simple_threadpool device_context
)
...
...
paddle/fluid/framework/details/broadcast_op_handle.h
浏览文件 @
59d75bda
...
...
@@ -59,8 +59,8 @@ struct BroadcastOpHandle : public OpHandleBase {
void
RunImpl
()
override
;
private:
const
std
::
vector
<
Scope
*>
&
local_scopes_
;
const
std
::
vector
<
platform
::
Place
>
&
places_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
#ifdef PADDLE_WITH_CUDA
const
platform
::
NCCLContextMap
*
nccl_ctxs_
;
#endif
...
...
paddle/fluid/framework/details/build_strategy.h
浏览文件 @
59d75bda
...
...
@@ -14,6 +14,8 @@
#pragma once
#include <string>
namespace
paddle
{
namespace
framework
{
namespace
details
{
...
...
@@ -29,6 +31,8 @@ struct BuildStrategy {
ReduceStrategy
reduce_
{
ReduceStrategy
::
kAllReduce
};
GradientScaleStrategy
gradient_scale_
{
GradientScaleStrategy
::
kCoeffNumDevice
};
std
::
string
debug_graphviz_path_
{
""
};
};
}
// namespace details
...
...
paddle/fluid/framework/details/graph_builder_factory.cc
0 → 100644
浏览文件 @
59d75bda
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/graph_builder_factory.h"
#include <fstream>
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
#include "paddle/fluid/framework/details/ssa_graph_printer.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
std
::
unique_ptr
<
SSAGraphBuilder
>
SSAGraphBuilderFactory
::
Create
()
{
std
::
unique_ptr
<
SSAGraphBuilder
>
res
(
#ifdef PADDLE_WITH_CUDA
new
MultiDevSSAGraphBuilder
(
places_
,
loss_var_name_
,
param_names_
,
local_scopes_
,
nccl_ctxs_
,
strategy_
)
#else
new
MultiDevSSAGraphBuilder
(
places_
,
loss_var_name_
,
param_names_
,
local_scopes_
,
strategy_
)
#endif
);
// NOLINT
if
(
!
strategy_
.
debug_graphviz_path_
.
empty
())
{
std
::
unique_ptr
<
std
::
ostream
>
fout
(
new
std
::
ofstream
(
strategy_
.
debug_graphviz_path_
));
PADDLE_ENFORCE
(
fout
->
good
());
std
::
unique_ptr
<
GraphvizSSAGraphPrinter
>
graphviz_printer
(
new
GraphvizSSAGraphPrinter
());
res
.
reset
(
new
SSAGraghBuilderWithPrinter
(
std
::
move
(
fout
),
std
::
move
(
graphviz_printer
),
std
::
move
(
res
)));
}
return
res
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/graph_builder_factory.h
0 → 100644
浏览文件 @
59d75bda
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/ssa_graph_builder.h"
#include "paddle/fluid/platform/place.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace
paddle
{
namespace
framework
{
class
Scope
;
namespace
details
{
class
SSAGraphBuilderFactory
{
public:
SSAGraphBuilderFactory
(
const
std
::
vector
<
platform
::
Place
>&
places
,
const
std
::
string
&
loss_var_name
,
const
std
::
unordered_set
<
std
::
string
>&
param_names
,
const
std
::
vector
<
Scope
*>&
local_scopes
,
const
BuildStrategy
&
strategy
)
:
places_
(
places
),
loss_var_name_
(
loss_var_name
),
param_names_
(
param_names
),
local_scopes_
(
local_scopes
),
strategy_
(
strategy
)
{}
#ifdef PADDLE_WITH_CUDA
void
SetNCCLContextMap
(
platform
::
NCCLContextMap
*
nccl_ctxs
)
{
nccl_ctxs_
=
nccl_ctxs
;
}
#endif
std
::
unique_ptr
<
SSAGraphBuilder
>
Create
();
private:
std
::
vector
<
platform
::
Place
>
places_
;
std
::
string
loss_var_name_
;
std
::
unordered_set
<
std
::
string
>
param_names_
;
std
::
vector
<
Scope
*>
local_scopes_
;
BuildStrategy
strategy_
;
#ifdef PADDLE_WITH_CUDA
platform
::
NCCLContextMap
*
nccl_ctxs_
;
#endif
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/multi_devices_graph_builder.cc
浏览文件 @
59d75bda
...
...
@@ -30,10 +30,6 @@
#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h"
#endif
DEFINE_string
(
ssa_graph_path
,
"/tmp/ssa_graph.dot"
,
"the ssa graph path only print with GLOG_v=10,"
"default /tmp/graph.dot"
);
namespace
paddle
{
namespace
framework
{
namespace
details
{
...
...
@@ -277,11 +273,6 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
*/
AddOutputToLeafOps
(
&
result
);
if
(
VLOG_IS_ON
(
10
))
{
std
::
ofstream
fout
(
FLAGS_ssa_graph_path
);
PrintGraphviz
(
*
graph
,
fout
);
}
return
std
::
unique_ptr
<
SSAGraph
>
(
graph
);
}
...
...
paddle/fluid/framework/details/nccl_all_reduce_op_handle.h
浏览文件 @
59d75bda
...
...
@@ -41,8 +41,8 @@ struct NCCLAllReduceOpHandle : public OpHandleBase {
void
RunImpl
()
override
;
private:
const
std
::
vector
<
Scope
*>
&
local_scopes_
;
const
std
::
vector
<
platform
::
Place
>
&
places_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
const
platform
::
NCCLContextMap
&
nccl_ctxs_
;
};
...
...
paddle/fluid/framework/details/reduce_op_handle.h
浏览文件 @
59d75bda
...
...
@@ -32,8 +32,8 @@ namespace framework {
namespace
details
{
struct
ReduceOpHandle
:
public
OpHandleBase
{
const
std
::
vector
<
Scope
*>
&
local_scopes_
;
const
std
::
vector
<
platform
::
Place
>
&
places_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
platform
::
Place
>
places_
;
#ifdef PADDLE_WITH_CUDA
const
platform
::
NCCLContextMap
*
nccl_ctxs_
;
...
...
paddle/fluid/framework/details/ssa_graph_builder.cc
浏览文件 @
59d75bda
...
...
@@ -73,64 +73,6 @@ void SSAGraphBuilder::CreateOpOutput(SSAGraph *graph, OpHandleBase *op_handle,
op_handle
->
AddOutput
(
var
);
}
template
<
typename
Callback
>
void
IterAllVar
(
const
SSAGraph
&
graph
,
Callback
callback
)
{
for
(
auto
&
each
:
graph
.
vars_
)
{
for
(
auto
&
pair1
:
each
)
{
for
(
auto
&
pair2
:
pair1
.
second
)
{
callback
(
*
pair2
);
}
}
}
for
(
auto
&
var
:
graph
.
dep_vars_
)
{
callback
(
*
var
);
}
}
void
SSAGraphBuilder
::
PrintGraphviz
(
const
SSAGraph
&
graph
,
std
::
ostream
&
sout
)
{
size_t
var_id
=
0
;
std
::
unordered_map
<
const
VarHandleBase
*
,
size_t
>
vars
;
sout
<<
"digraph G {
\n
"
;
IterAllVar
(
graph
,
[
&
](
const
VarHandleBase
&
var
)
{
auto
*
var_ptr
=
&
var
;
auto
*
var_handle_ptr
=
dynamic_cast
<
const
VarHandle
*>
(
var_ptr
);
auto
*
dummy_ptr
=
dynamic_cast
<
const
DummyVarHandle
*>
(
var_ptr
);
size_t
cur_var_id
=
var_id
++
;
vars
[
var_ptr
]
=
cur_var_id
;
if
(
var_handle_ptr
)
{
sout
<<
"var_"
<<
cur_var_id
<<
" [label=
\"
"
<<
var_handle_ptr
->
name_
<<
"
\\
n"
<<
var_handle_ptr
->
place_
<<
"
\\
n"
<<
var_handle_ptr
->
version_
<<
"
\"
]"
<<
std
::
endl
;
}
else
if
(
dummy_ptr
)
{
sout
<<
"var_"
<<
cur_var_id
<<
" [label=
\"
dummy
\"
]"
<<
std
::
endl
;
}
});
size_t
op_id
=
0
;
for
(
auto
&
op
:
graph
.
ops_
)
{
std
::
string
op_name
=
"op_"
+
std
::
to_string
(
op_id
++
);
sout
<<
op_name
<<
" [label=
\"
"
<<
op
->
Name
()
<<
"
\"
, shape=rect]"
<<
std
::
endl
;
for
(
auto
in
:
op
->
Inputs
())
{
std
::
string
var_name
=
"var_"
+
std
::
to_string
(
vars
[
in
]);
sout
<<
var_name
<<
" -> "
<<
op_name
<<
std
::
endl
;
}
for
(
auto
out
:
op
->
Outputs
())
{
std
::
string
var_name
=
"var_"
+
std
::
to_string
(
vars
[
out
]);
sout
<<
op_name
<<
" -> "
<<
var_name
<<
std
::
endl
;
}
}
sout
<<
"}
\n
"
;
}
void
SSAGraphBuilder
::
AddOutputToLeafOps
(
SSAGraph
*
graph
)
{
for
(
auto
&
op
:
graph
->
ops_
)
{
if
(
!
op
->
Outputs
().
empty
())
{
...
...
paddle/fluid/framework/details/ssa_graph_builder.h
浏览文件 @
59d75bda
...
...
@@ -55,8 +55,6 @@ class SSAGraphBuilder {
const
platform
::
Place
&
place
,
size_t
place_offset
);
static
void
AddOutputToLeafOps
(
SSAGraph
*
graph
);
static
void
PrintGraphviz
(
const
SSAGraph
&
graph
,
std
::
ostream
&
sout
);
};
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/ssa_graph_printer.cc
0 → 100644
浏览文件 @
59d75bda
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/ssa_graph_printer.h"
#include <string>
#include "paddle/fluid/framework/details/ssa_graph.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
template
<
typename
Callback
>
static
inline
void
IterAllVar
(
const
SSAGraph
&
graph
,
Callback
callback
)
{
for
(
auto
&
each
:
graph
.
vars_
)
{
for
(
auto
&
pair1
:
each
)
{
for
(
auto
&
pair2
:
pair1
.
second
)
{
callback
(
*
pair2
);
}
}
}
for
(
auto
&
var
:
graph
.
dep_vars_
)
{
callback
(
*
var
);
}
}
void
GraphvizSSAGraphPrinter
::
Print
(
const
SSAGraph
&
graph
,
std
::
ostream
&
sout
)
const
{
size_t
var_id
=
0
;
std
::
unordered_map
<
const
VarHandleBase
*
,
size_t
>
vars
;
sout
<<
"digraph G {
\n
"
;
IterAllVar
(
graph
,
[
&
](
const
VarHandleBase
&
var
)
{
auto
*
var_ptr
=
&
var
;
auto
*
var_handle_ptr
=
dynamic_cast
<
const
VarHandle
*>
(
var_ptr
);
auto
*
dummy_ptr
=
dynamic_cast
<
const
DummyVarHandle
*>
(
var_ptr
);
size_t
cur_var_id
=
var_id
++
;
vars
[
var_ptr
]
=
cur_var_id
;
if
(
var_handle_ptr
)
{
sout
<<
"var_"
<<
cur_var_id
<<
" [label=
\"
"
<<
var_handle_ptr
->
name_
<<
"
\\
n"
<<
var_handle_ptr
->
place_
<<
"
\\
n"
<<
var_handle_ptr
->
version_
<<
"
\"
]"
<<
std
::
endl
;
}
else
if
(
dummy_ptr
)
{
sout
<<
"var_"
<<
cur_var_id
<<
" [label=
\"
dummy
\"
]"
<<
std
::
endl
;
}
});
size_t
op_id
=
0
;
for
(
auto
&
op
:
graph
.
ops_
)
{
std
::
string
op_name
=
"op_"
+
std
::
to_string
(
op_id
++
);
sout
<<
op_name
<<
" [label=
\"
"
<<
op
->
Name
()
<<
"
\"
, shape=rect]"
<<
std
::
endl
;
for
(
auto
in
:
op
->
Inputs
())
{
std
::
string
var_name
=
"var_"
+
std
::
to_string
(
vars
[
in
]);
sout
<<
var_name
<<
" -> "
<<
op_name
<<
std
::
endl
;
}
for
(
auto
out
:
op
->
Outputs
())
{
std
::
string
var_name
=
"var_"
+
std
::
to_string
(
vars
[
out
]);
sout
<<
op_name
<<
" -> "
<<
var_name
<<
std
::
endl
;
}
}
sout
<<
"}
\n
"
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/ssa_graph_printer.h
0 → 100644
浏览文件 @
59d75bda
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <iosfwd>
#include "paddle/fluid/framework/details/ssa_graph_builder.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
class
SSAGraph
;
class
SSAGraphPrinter
{
public:
virtual
~
SSAGraphPrinter
()
{}
virtual
void
Print
(
const
SSAGraph
&
graph
,
std
::
ostream
&
sout
)
const
=
0
;
};
class
GraphvizSSAGraphPrinter
:
public
SSAGraphPrinter
{
public:
void
Print
(
const
SSAGraph
&
graph
,
std
::
ostream
&
sout
)
const
override
;
};
class
SSAGraghBuilderWithPrinter
:
public
SSAGraphBuilder
{
public:
SSAGraghBuilderWithPrinter
(
std
::
ostream
&
sout
,
std
::
unique_ptr
<
SSAGraphPrinter
>&&
printer
,
std
::
unique_ptr
<
SSAGraphBuilder
>&&
builder
)
:
printer_
(
std
::
move
(
printer
)),
builder_
(
std
::
move
(
builder
)),
stream_ref_
(
sout
)
{}
SSAGraghBuilderWithPrinter
(
std
::
unique_ptr
<
std
::
ostream
>&&
sout
,
std
::
unique_ptr
<
SSAGraphPrinter
>&&
printer
,
std
::
unique_ptr
<
SSAGraphBuilder
>&&
builder
)
:
printer_
(
std
::
move
(
printer
)),
builder_
(
std
::
move
(
builder
)),
stream_ptr_
(
std
::
move
(
sout
)),
stream_ref_
(
*
stream_ptr_
)
{}
std
::
unique_ptr
<
SSAGraph
>
Build
(
const
ProgramDesc
&
program
)
const
override
{
auto
graph
=
builder_
->
Build
(
program
);
printer_
->
Print
(
*
graph
,
stream_ref_
);
return
graph
;
}
private:
std
::
unique_ptr
<
SSAGraphPrinter
>
printer_
;
std
::
unique_ptr
<
SSAGraphBuilder
>
builder_
;
std
::
unique_ptr
<
std
::
ostream
>
stream_ptr_
;
std
::
ostream
&
stream_ref_
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
59d75bda
...
...
@@ -22,7 +22,7 @@ limitations under the License. */
#include "paddle/fluid/platform/nccl_helper.h"
#endif
#include "paddle/fluid/framework/details/
multi_devices_graph_builder
.h"
#include "paddle/fluid/framework/details/
graph_builder_factory
.h"
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/platform/profiler.h"
...
...
@@ -102,22 +102,19 @@ ParallelExecutor::ParallelExecutor(
var_infos
.
back
().
persistable_
=
var
->
Persistable
();
}
// Step 3. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#ifdef PADDLE_WITH_CUDA
details
::
MultiDevSSAGraphBuilder
builder
(
// Step 3. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
details
::
SSAGraphBuilderFactory
builder_factory
(
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
nccl_ctxs_
.
get
(),
build_strategy
);
#else
details
::
MultiDevSSAGraphBuilder
builder
(
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
build_strategy
);
build_strategy
);
#ifdef PADDLE_WITH_CUDA
builder_factory
.
SetNCCLContextMap
(
member_
->
nccl_ctxs_
.
get
());
#endif
auto
graph
=
builder
.
Build
(
main_program
);
member_
->
executor_
.
reset
(
new
details
::
ThreadedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
places
,
std
::
move
(
graph
)));
exec_strategy
,
member_
->
local_scopes_
,
places
,
builder_factory
.
Create
()
->
Build
(
main_program
)));
member_
->
executor_
.
reset
(
new
details
::
ScopeBufferedSSAGraphExecutor
(
exec_strategy
,
member_
->
local_scopes_
,
std
::
move
(
var_infos
),
...
...
paddle/fluid/framework/scope.cc
浏览文件 @
59d75bda
...
...
@@ -34,13 +34,7 @@ DEFINE_bool(
namespace
paddle
{
namespace
framework
{
Scope
::~
Scope
()
{
DropKids
();
for
(
auto
&
kv
:
vars_
)
{
VLOG
(
3
)
<<
"Destroy variable "
<<
kv
.
first
;
delete
kv
.
second
;
}
}
Scope
::~
Scope
()
{
DropKids
();
}
Scope
&
Scope
::
NewScope
()
const
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
...
...
@@ -49,10 +43,13 @@ Scope& Scope::NewScope() const {
}
Variable
*
Scope
::
Var
(
const
std
::
string
&
name
)
{
// acquire the lock when new var under this scope
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
auto
*
v
=
FindVarLocally
(
name
);
if
(
v
!=
nullptr
)
return
v
;
v
=
new
Variable
();
vars_
[
name
]
=
v
;
vars_
[
name
]
.
reset
(
v
)
;
VLOG
(
3
)
<<
"Create variable "
<<
name
;
v
->
name_
=
&
(
vars_
.
find
(
name
)
->
first
);
return
v
;
...
...
@@ -67,22 +64,29 @@ Variable* Scope::Var(std::string* name) {
}
Variable
*
Scope
::
FindVar
(
const
std
::
string
&
name
)
const
{
// acquire the lock when find var
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
return
FindVarInternal
(
name
);
}
Variable
*
Scope
::
FindVarInternal
(
const
std
::
string
&
name
)
const
{
auto
var
=
FindVarLocally
(
name
);
if
(
var
!=
nullptr
)
{
return
var
;
}
return
(
parent_
==
nullptr
)
?
nullptr
:
parent_
->
FindVar
(
name
);
return
(
parent_
==
nullptr
)
?
nullptr
:
parent_
->
FindVar
Internal
(
name
);
}
const
Scope
*
Scope
::
FindScope
(
const
Variable
*
var
)
const
{
for
(
auto
&
kv
:
vars_
)
{
if
(
kv
.
second
==
var
)
{
if
(
kv
.
second
.
get
()
==
var
)
{
return
this
;
}
}
return
(
parent_
==
nullptr
)
?
nullptr
:
parent_
->
FindScope
(
var
);
}
void
Scope
::
DropKids
()
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
for
(
Scope
*
s
:
kids_
)
delete
s
;
kids_
.
clear
();
}
...
...
@@ -110,10 +114,10 @@ void Scope::DeleteScope(Scope* scope) const {
}
void
Scope
::
EraseVars
(
const
std
::
vector
<
std
::
string
>&
var_names
)
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
std
::
set
<
std
::
string
>
var_set
(
var_names
.
begin
(),
var_names
.
end
());
for
(
auto
it
=
vars_
.
begin
();
it
!=
vars_
.
end
();)
{
if
(
var_set
.
find
(
it
->
first
)
!=
var_set
.
end
())
{
delete
it
->
second
;
it
=
vars_
.
erase
(
it
);
}
else
{
++
it
;
...
...
@@ -129,7 +133,7 @@ void Scope::Rename(const std::string& origin_name,
auto
new_it
=
vars_
.
find
(
new_name
);
PADDLE_ENFORCE
(
new_it
==
vars_
.
end
(),
"The variable with name %s is already in the scope"
,
new_name
);
vars_
[
new_name
]
=
origin_it
->
second
;
vars_
[
new_name
]
.
reset
(
origin_it
->
second
.
release
())
;
vars_
.
erase
(
origin_it
);
}
...
...
@@ -141,7 +145,7 @@ std::string Scope::Rename(const std::string& origin_name) const {
Variable
*
Scope
::
FindVarLocally
(
const
std
::
string
&
name
)
const
{
auto
it
=
vars_
.
find
(
name
);
if
(
it
!=
vars_
.
end
())
return
it
->
second
;
if
(
it
!=
vars_
.
end
())
return
it
->
second
.
get
()
;
return
nullptr
;
}
...
...
paddle/fluid/framework/scope.h
浏览文件 @
59d75bda
...
...
@@ -47,15 +47,18 @@ class Scope {
Scope
&
NewScope
()
const
;
/// Create a variable with given name if it doesn't exist.
/// Caller doesn't own the returned Variable.
Variable
*
Var
(
const
std
::
string
&
name
);
/// Create a variable with a scope-unique name.
/// Caller doesn't own the returned Variable.
Variable
*
Var
(
std
::
string
*
name
=
nullptr
);
void
EraseVars
(
const
std
::
vector
<
std
::
string
>&
var_names
);
/// Find a variable in the scope or any of its ancestors. Returns
/// nullptr if cannot find.
/// Caller doesn't own the returned Variable.
Variable
*
FindVar
(
const
std
::
string
&
name
)
const
;
const
Scope
*
parent
()
const
{
return
parent_
;
}
...
...
@@ -78,13 +81,21 @@ class Scope {
// Rename variable to a new name and return the new name
std
::
string
Rename
(
const
std
::
string
&
origin_name
)
const
;
Variable
*
FindVarLocally
(
const
std
::
string
&
name
)
const
;
private:
// Call Scope::NewScope for a sub-scope.
explicit
Scope
(
Scope
const
*
parent
)
:
parent_
(
parent
)
{}
mutable
std
::
unordered_map
<
std
::
string
,
Variable
*>
vars_
;
// Called by FindVar recursively.
// Caller doesn't own the returned Variable.
Variable
*
FindVarInternal
(
const
std
::
string
&
name
)
const
;
// Called by FindVarInternal and Var.
// Caller doesn't own the returned Variable.
Variable
*
FindVarLocally
(
const
std
::
string
&
name
)
const
;
mutable
std
::
unordered_map
<
std
::
string
,
std
::
unique_ptr
<
Variable
>>
vars_
;
// Scope in `kids_` are owned by this class.
mutable
std
::
list
<
Scope
*>
kids_
;
Scope
const
*
parent_
{
nullptr
};
...
...
paddle/fluid/framework/tensor.cc
浏览文件 @
59d75bda
...
...
@@ -15,5 +15,102 @@ limitations under the License. */
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
namespace
framework
{}
namespace
framework
{
extern
size_t
SizeOfType
(
std
::
type_index
type
);
void
Tensor
::
check_memory_size
()
const
{
PADDLE_ENFORCE_NOT_NULL
(
holder_
,
"Tensor holds no memory. Call Tensor::mutable_data first."
);
PADDLE_ENFORCE_LE
(
numel
()
*
SizeOfType
(
type
()),
memory_size
(),
"Tensor's dims_ is out of bound. Call Tensor::mutable_data "
"first to re-allocate memory.
\n
"
"or maybe the required data-type mismatches the data already stored."
);
}
size_t
Tensor
::
memory_size
()
const
{
return
holder_
==
nullptr
?
0UL
:
holder_
->
size
()
-
offset_
;
}
void
*
Tensor
::
mutable_data
(
platform
::
Place
place
,
std
::
type_index
type
)
{
if
(
holder_
!=
nullptr
)
{
holder_
->
set_type
(
type
);
}
PADDLE_ENFORCE_GE
(
numel
(),
0
,
"When calling this method, the Tensor's numel must be "
"equal or larger than zero. "
"Please check Tensor::Resize has been called first."
);
int64_t
size
=
numel
()
*
SizeOfType
(
type
);
/* some versions of boost::variant don't have operator!= */
if
(
holder_
==
nullptr
||
!
(
holder_
->
place
()
==
place
)
||
holder_
->
size
()
<
size
+
offset_
)
{
if
(
platform
::
is_cpu_place
(
place
))
{
holder_
.
reset
(
new
PlaceholderImpl
<
platform
::
CPUPlace
>
(
boost
::
get
<
platform
::
CPUPlace
>
(
place
),
size
,
type
));
}
else
if
(
platform
::
is_gpu_place
(
place
)
||
platform
::
is_cuda_pinned_place
(
place
))
{
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW
(
"CUDAPlace or CUDAPinnedPlace is not supported in CPU-only mode."
);
}
#else
if
(
platform
::
is_gpu_place
(
place
))
{
holder_
.
reset
(
new
PlaceholderImpl
<
platform
::
CUDAPlace
>
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
size
,
type
));
}
else
if
(
platform
::
is_cuda_pinned_place
(
place
))
{
holder_
.
reset
(
new
PlaceholderImpl
<
platform
::
CUDAPinnedPlace
>
(
boost
::
get
<
platform
::
CUDAPinnedPlace
>
(
place
),
size
,
type
));
}
}
#endif
offset_
=
0
;
}
return
reinterpret_cast
<
void
*>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
offset_
);
}
void
*
Tensor
::
mutable_data
(
platform
::
Place
place
)
{
PADDLE_ENFORCE
(
this
->
holder_
!=
nullptr
,
"Cannot invoke mutable data if current hold nothing."
);
return
mutable_data
(
place
,
holder_
->
type
());
}
Tensor
&
Tensor
::
ShareDataWith
(
const
Tensor
&
src
)
{
src
.
check_memory_size
();
*
this
=
src
;
return
*
this
;
}
Tensor
Tensor
::
Slice
(
int
begin_idx
,
int
end_idx
)
const
{
check_memory_size
();
PADDLE_ENFORCE_GE
(
begin_idx
,
0
,
"The start row index must be greater than 0."
);
PADDLE_ENFORCE_LE
(
end_idx
,
dims_
[
0
],
"The end row index is out of bound."
);
PADDLE_ENFORCE_LT
(
begin_idx
,
end_idx
,
"The start row index must be lesser than the end row index."
);
if
(
dims_
[
0
]
==
1
)
{
return
*
this
;
}
else
{
size_t
base
=
numel
()
/
dims_
[
0
];
Tensor
dst
;
dst
.
holder_
=
holder_
;
dst
.
set_layout
(
layout_
);
DDim
dst_dims
=
dims_
;
dst_dims
[
0
]
=
end_idx
-
begin_idx
;
dst
.
Resize
(
dst_dims
);
dst
.
offset_
=
offset_
+
begin_idx
*
base
*
SizeOfType
(
type
());
return
dst
;
}
}
Tensor
&
Tensor
::
Resize
(
const
DDim
&
dims
)
{
dims_
=
dims
;
return
*
this
;
}
const
DDim
&
Tensor
::
dims
()
const
{
return
dims_
;
}
int64_t
Tensor
::
numel
()
const
{
return
product
(
dims_
);
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/tensor.h
浏览文件 @
59d75bda
...
...
@@ -54,26 +54,24 @@ class Tensor {
/*! Return a pointer to mutable memory block. */
template
<
typename
T
>
inline
T
*
data
();
T
*
data
();
/*! Return a pointer to constant memory block. */
template
<
typename
T
>
inline
const
T
*
data
()
const
;
const
T
*
data
()
const
;
inline
bool
IsInitialized
()
const
;
inline
void
switch_place
(
platform
::
Place
new_place
);
bool
IsInitialized
()
const
;
/**
* @brief Return a pointer to mutable memory block.
* @note If not exist, then allocation.
*/
template
<
typename
T
>
inline
T
*
mutable_data
(
platform
::
Place
place
);
T
*
mutable_data
(
platform
::
Place
place
);
inline
void
*
mutable_data
(
platform
::
Place
place
,
std
::
type_index
type
);
void
*
mutable_data
(
platform
::
Place
place
,
std
::
type_index
type
);
inline
void
*
mutable_data
(
platform
::
Place
place
);
void
*
mutable_data
(
platform
::
Place
place
);
/**
* @brief Return a pointer to mutable memory block.
...
...
@@ -84,19 +82,19 @@ class Tensor {
* @note If not exist, then allocation.
*/
template
<
typename
T
>
inline
T
*
mutable_data
(
DDim
dims
,
platform
::
Place
place
);
T
*
mutable_data
(
DDim
dims
,
platform
::
Place
place
);
/*! Return the dimensions of the memory block. */
inline
const
DDim
&
dims
()
const
;
const
DDim
&
dims
()
const
;
/*! Return the numel of the memory block. */
in
line
in
t64_t
numel
()
const
;
int64_t
numel
()
const
;
/*! Resize the dimensions of the memory block. */
inline
Tensor
&
Resize
(
const
DDim
&
dims
);
Tensor
&
Resize
(
const
DDim
&
dims
);
/*! The internal of two tensors share the same memory block. */
inline
Tensor
&
ShareDataWith
(
const
Tensor
&
src
);
Tensor
&
ShareDataWith
(
const
Tensor
&
src
);
/**
* @brief Return a sub-tensor of the given tensor.
...
...
@@ -106,7 +104,7 @@ class Tensor {
* @param[in] end_idx The index of the end row(exclusive) to slice.
* The index number begins from 0.
*/
inline
Tensor
Slice
(
int
begin_idx
,
int
end_idx
)
const
;
Tensor
Slice
(
int
begin_idx
,
int
end_idx
)
const
;
platform
::
Place
place
()
const
{
PADDLE_ENFORCE_NOT_NULL
(
...
...
@@ -123,11 +121,11 @@ class Tensor {
// memory size returns the holding memory size in byte.
size_t
memory_size
()
const
;
inline
void
check_memory_size
()
const
;
void
check_memory_size
()
const
;
inline
DataLayout
layout
()
const
{
return
layout_
;
}
DataLayout
layout
()
const
{
return
layout_
;
}
inline
void
set_layout
(
const
DataLayout
layout
)
{
layout_
=
layout
;
}
void
set_layout
(
const
DataLayout
layout
)
{
layout_
=
layout
;
}
private:
/**
...
...
@@ -210,15 +208,6 @@ class Tensor {
size_t
offset_
;
};
inline
void
Tensor
::
switch_place
(
platform
::
Place
new_place
)
{
if
(
holder_
->
place
()
==
new_place
)
{
return
;
}
// TODO(tonyyang-svail): do memcpy here.
PADDLE_THROW
(
"Not Implemented"
);
}
}
// namespace framework
}
// namespace paddle
...
...
paddle/fluid/framework/tensor_impl.h
浏览文件 @
59d75bda
...
...
@@ -20,21 +20,6 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
extern
size_t
SizeOfType
(
std
::
type_index
type
);
inline
void
Tensor
::
check_memory_size
()
const
{
PADDLE_ENFORCE_NOT_NULL
(
holder_
,
"Tensor holds no memory. Call Tensor::mutable_data first."
);
PADDLE_ENFORCE_LE
(
numel
()
*
SizeOfType
(
type
()),
memory_size
(),
"Tensor's dims_ is out of bound. Call Tensor::mutable_data "
"first to re-allocate memory.
\n
"
"or maybe the required data-type mismatches the data already stored."
);
}
inline
size_t
Tensor
::
memory_size
()
const
{
return
holder_
==
nullptr
?
0UL
:
holder_
->
size
()
-
offset_
;
}
template
<
typename
T
>
inline
const
T
*
Tensor
::
data
()
const
{
check_memory_size
();
...
...
@@ -73,88 +58,6 @@ inline T* Tensor::mutable_data(platform::Place place) {
return
reinterpret_cast
<
T
*>
(
mutable_data
(
place
,
typeid
(
T
)));
}
inline
void
*
Tensor
::
mutable_data
(
platform
::
Place
place
,
std
::
type_index
type
)
{
if
(
holder_
!=
nullptr
)
{
holder_
->
set_type
(
type
);
}
PADDLE_ENFORCE_GE
(
numel
(),
0
,
"When calling this method, the Tensor's numel must be "
"equal or larger than zero. "
"Please check Tensor::Resize has been called first."
);
int64_t
size
=
numel
()
*
SizeOfType
(
type
);
/* some versions of boost::variant don't have operator!= */
if
(
holder_
==
nullptr
||
!
(
holder_
->
place
()
==
place
)
||
holder_
->
size
()
<
size
+
offset_
)
{
if
(
platform
::
is_cpu_place
(
place
))
{
holder_
.
reset
(
new
PlaceholderImpl
<
platform
::
CPUPlace
>
(
boost
::
get
<
platform
::
CPUPlace
>
(
place
),
size
,
type
));
}
else
if
(
platform
::
is_gpu_place
(
place
)
||
platform
::
is_cuda_pinned_place
(
place
))
{
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW
(
"CUDAPlace or CUDAPinnedPlace is not supported in CPU-only mode."
);
}
#else
if
(
platform
::
is_gpu_place
(
place
))
{
holder_
.
reset
(
new
PlaceholderImpl
<
platform
::
CUDAPlace
>
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
size
,
type
));
}
else
if
(
platform
::
is_cuda_pinned_place
(
place
))
{
holder_
.
reset
(
new
PlaceholderImpl
<
platform
::
CUDAPinnedPlace
>
(
boost
::
get
<
platform
::
CUDAPinnedPlace
>
(
place
),
size
,
type
));
}
}
#endif
offset_
=
0
;
}
return
reinterpret_cast
<
void
*>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
offset_
);
}
inline
void
*
Tensor
::
mutable_data
(
platform
::
Place
place
)
{
PADDLE_ENFORCE
(
this
->
holder_
!=
nullptr
,
"Cannot invoke mutable data if current hold nothing."
);
return
mutable_data
(
place
,
holder_
->
type
());
}
inline
Tensor
&
Tensor
::
ShareDataWith
(
const
Tensor
&
src
)
{
src
.
check_memory_size
();
*
this
=
src
;
return
*
this
;
}
inline
Tensor
Tensor
::
Slice
(
int
begin_idx
,
int
end_idx
)
const
{
check_memory_size
();
PADDLE_ENFORCE_GE
(
begin_idx
,
0
,
"The start row index must be greater than 0."
);
PADDLE_ENFORCE_LE
(
end_idx
,
dims_
[
0
],
"The end row index is out of bound."
);
PADDLE_ENFORCE_LT
(
begin_idx
,
end_idx
,
"The start row index must be lesser than the end row index."
);
if
(
dims_
[
0
]
==
1
)
{
return
*
this
;
}
else
{
size_t
base
=
numel
()
/
dims_
[
0
];
Tensor
dst
;
dst
.
holder_
=
holder_
;
dst
.
set_layout
(
layout_
);
DDim
dst_dims
=
dims_
;
dst_dims
[
0
]
=
end_idx
-
begin_idx
;
dst
.
Resize
(
dst_dims
);
dst
.
offset_
=
offset_
+
begin_idx
*
base
*
SizeOfType
(
type
());
return
dst
;
}
}
inline
Tensor
&
Tensor
::
Resize
(
const
DDim
&
dims
)
{
dims_
=
dims
;
return
*
this
;
}
inline
const
DDim
&
Tensor
::
dims
()
const
{
return
dims_
;
}
inline
int64_t
Tensor
::
numel
()
const
{
return
product
(
dims_
);
}
inline
Tensor
ReshapeToMatrix
(
const
Tensor
&
src
,
int
num_col_dims
)
{
Tensor
res
;
res
.
ShareDataWith
(
src
);
...
...
paddle/fluid/inference/analysis/helper.h
浏览文件 @
59d75bda
...
...
@@ -18,6 +18,8 @@ limitations under the License. */
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
...
...
@@ -107,6 +109,13 @@ class OrderedRegistry {
std
::
vector
<
std
::
unique_ptr
<
T
>>
data_
;
};
template
<
typename
T
>
T
&
GetFromScope
(
const
framework
::
Scope
&
scope
,
const
std
::
string
&
name
)
{
framework
::
Variable
*
var
=
scope
.
FindVar
(
name
);
PADDLE_ENFORCE
(
var
!=
nullptr
);
return
*
var
->
GetMutable
<
T
>
();
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
...
...
paddle/fluid/inference/tensorrt/convert/CMakeLists.txt
浏览文件 @
59d75bda
# Add TRT tests
nv_test
(
test_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine
)
# This test is not stable
# See https://paddleci.ngrok.io/viewLog.html?tab=buildLog&buildTypeId=Paddle_PrCi2&buildId=36834&_focus=8828
#nv_test(test_trt_activation_op SRCS test_activation_op.cc activation_op.cc io_converter.cc
# DEPS ${FLUID_CORE_MODULES} activation_op tensorrt_engine
# SERIAL)
nv_library
(
tensorrt_converter
SRCS mul_op.cc conv2d_op.cc fc_op.cc
DEPS tensorrt_engine mul_op
)
nv_test
(
test_op_converter SRCS test_op_converter.cc DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine tensorrt_converter
)
nv_test
(
test_io_converter SRCS test_io_converter.cc io_converter.cc DEPS dynload_cuda dynamic_loader lod_tensor
)
nv_test
(
test_trt_mul_op SRCS test_mul_op.cc mul_op.cc
DEPS
${
FLUID_CORE_MODULES
}
tensorrt_engine mul_op SERIAL
)
...
...
paddle/fluid/inference/tensorrt/convert/activation_op.cc
浏览文件 @
59d75bda
...
...
@@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
namespace
paddle
{
...
...
@@ -36,8 +37,8 @@ class ReluOpConverter : public OpConverter {
}
};
REGISTER_TRT_OP_CONVERTER
(
relu
,
ReluOpConverter
);
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
relu
,
ReluOpConverter
);
paddle/fluid/inference/tensorrt/convert/conv2d_op.cc
浏览文件 @
59d75bda
...
...
@@ -22,14 +22,14 @@ class Conv2dOpConverter : public OpConverter {
public:
Conv2dOpConverter
()
{}
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
)
override
{
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
LOG
(
INFO
)
<<
"convert a fluid conv2d op to tensorrt conv layer without bias"
;
}
};
REGISTER_TRT_OP_CONVERTER
(
conv2d
,
Conv2dOpConverter
);
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
conv2d
,
Conv2dOpConverter
);
paddle/fluid/inference/tensorrt/convert/fc_op.cc
浏览文件 @
59d75bda
...
...
@@ -56,7 +56,7 @@ void ReorderCKtoKC(TensorRTEngine::Weight& iweights,
class
FcOpConverter
:
public
OpConverter
{
public:
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
)
override
{
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
4
)
<<
"convert a fluid fc op to tensorrt fc layer without bias"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
...
...
@@ -106,14 +106,16 @@ class FcOpConverter : public OpConverter {
n_output
,
weight
.
get
(),
bias
.
get
());
auto
output_name
=
op_desc
.
Output
(
"Out"
).
front
();
engine_
->
DeclareOutput
(
layer
,
0
,
output_name
);
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
engine_
->
DeclareOutput
(
output_name
);
}
}
};
REGISTER_TRT_OP_CONVERTER
(
fc
,
FcOpConverter
);
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
REGISTER_TRT_OP_CONVERTER
(
fc
,
FcOpConverter
);
USE_OP
(
mul
);
paddle/fluid/inference/tensorrt/convert/mul_op.cc
浏览文件 @
59d75bda
...
...
@@ -23,9 +23,8 @@ namespace tensorrt {
*/
class
MulOpConverter
:
public
OpConverter
{
public:
MulOpConverter
()
{}
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
)
override
{
const
framework
::
Scope
&
scope
,
bool
test_mode
)
override
{
VLOG
(
4
)
<<
"convert a fluid mul op to tensorrt mul layer without bias"
;
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
...
...
@@ -37,12 +36,18 @@ class MulOpConverter : public OpConverter {
engine_
,
MatrixMultiply
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input1
),
false
,
*
const_cast
<
nvinfer1
::
ITensor
*>
(
input2
),
false
);
engine_
->
DeclareOutput
(
layer
,
0
,
op_desc
.
Output
(
"Out"
)[
0
]);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
engine_
->
SetITensor
(
output_name
,
layer
->
getOutput
(
0
));
if
(
test_mode
)
{
// the test framework can not determine which is the
// output, so place the declaration inside.
engine_
->
DeclareOutput
(
output_name
);
}
}
};
REGISTER_TRT_OP_CONVERTER
(
mul
,
MulOpConverter
);
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
USE_OP
(
mul
);
REGISTER_TRT_OP_CONVERTER
(
mul
,
MulOpConverter
);
paddle/fluid/inference/tensorrt/convert/op_converter.h
浏览文件 @
59d75bda
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
...
...
@@ -34,12 +35,15 @@ class OpConverter {
// Converter logic for an op.
virtual
void
operator
()(
const
framework
::
proto
::
OpDesc
&
op
,
const
framework
::
Scope
&
scope
)
{}
const
framework
::
Scope
&
scope
,
bool
test_mode
=
false
)
{}
// Convert a single fluid operaotr and add the corresponding layer to TRT.
// Convert a single fluid operator and add the corresponding layer to TRT.
// test_mode: whether the instance executes in an unit test.
void
ConvertOp
(
const
framework
::
proto
::
OpDesc
&
op
,
const
std
::
unordered_set
<
std
::
string
>&
parameters
,
const
framework
::
Scope
&
scope
,
TensorRTEngine
*
engine
)
{
const
framework
::
Scope
&
scope
,
TensorRTEngine
*
engine
,
bool
test_mode
=
false
)
{
framework
::
OpDesc
op_desc
(
op
,
nullptr
);
OpConverter
*
it
{
nullptr
};
...
...
@@ -57,7 +61,7 @@ class OpConverter {
PADDLE_ENFORCE_NOT_NULL
(
it
,
"no OpConverter for optype [%s]"
,
op_desc
.
Type
());
it
->
SetEngine
(
engine
);
(
*
it
)(
op
,
scope
);
(
*
it
)(
op
,
scope
,
test_mode
);
}
// convert fluid block to tensorrt network
...
...
@@ -77,6 +81,9 @@ class OpConverter {
// TensorRT engine
TensorRTEngine
*
engine_
{
nullptr
};
protected:
bool
test_mode_
;
private:
// registered op converter map, whose key is the fluid op type, and value is
// the pointer position of corresponding OpConverter class.
...
...
@@ -85,13 +92,24 @@ class OpConverter {
framework
::
Scope
*
scope_
{
nullptr
};
};
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__) \
struct trt_##op_type__##_converter { \
trt_##op_type__##_converter() { \
Registry<OpConverter>::Register<Converter__>(#op_type__); \
} \
}; \
trt_##op_type__##_converter trt_##op_type__##_converter__;
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__) \
struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
trt_##op_type__##_converter() { \
::paddle::inference:: \
Registry<paddle::inference::tensorrt::OpConverter>::Register< \
::paddle::inference::tensorrt::Converter__>(#op_type__); \
} \
}; \
trt_##op_type__##_converter trt_##op_type__##_converter__; \
int TouchConverterRegister_##op_type__() { \
trt_##op_type__##_converter__.Touch(); \
return 0; \
}
#define USE_TRT_CONVERTER(op_type__) \
extern int TouchConverterRegister_##op_type__(); \
static int use_op_converter_trt_##op_type__ __attribute__((unused)) = \
TouchConverterRegister_##op_type__();
}
// namespace tensorrt
}
// namespace inference
...
...
paddle/fluid/inference/tensorrt/convert/test_op_converter.cc
浏览文件 @
59d75bda
...
...
@@ -36,3 +36,5 @@ TEST(OpConverter, ConvertBlock) {
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
USE_TRT_CONVERTER
(
conv2d
)
paddle/fluid/inference/tensorrt/convert/ut_helper.h
浏览文件 @
59d75bda
...
...
@@ -27,6 +27,7 @@ limitations under the License. */
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -104,8 +105,8 @@ class TRTConvertValidation {
void
SetOp
(
const
framework
::
proto
::
OpDesc
&
desc
)
{
op_
=
framework
::
OpRegistry
::
CreateOp
(
desc
);
OpConverter
op_converter
;
op_converter
.
ConvertOp
(
desc
,
parameters_
,
scope_
,
engine_
.
get
()
);
Singleton
<
OpConverter
>::
Global
().
ConvertOp
(
desc
,
parameters_
,
scope_
,
engine_
.
get
(),
true
/*test_mode*/
);
engine_
->
FreezeNetwork
();
...
...
paddle/fluid/inference/tensorrt/engine.cc
浏览文件 @
59d75bda
...
...
@@ -43,9 +43,10 @@ void TensorRTEngine::Execute(int batch_size) {
}
TensorRTEngine
::~
TensorRTEngine
()
{
cudaStreamSynchronize
(
*
stream_
);
// clean buffer
for
(
auto
&
buf
:
buffers_
)
{
if
(
buf
.
buffer
!=
nullptr
)
{
if
(
buf
.
device
==
DeviceType
::
GPU
&&
buf
.
buffer
!=
nullptr
)
{
PADDLE_ENFORCE_EQ
(
0
,
cudaFree
(
buf
.
buffer
));
buf
.
buffer
=
nullptr
;
buf
.
max_size
=
0
;
...
...
@@ -80,6 +81,8 @@ void TensorRTEngine::FreezeNetwork() {
auto
&
buf
=
buffer
(
item
.
first
);
CHECK
(
buf
.
buffer
==
nullptr
);
// buffer should be allocated only once.
PADDLE_ENFORCE_EQ
(
0
,
cudaMalloc
(
&
buf
.
buffer
,
item
.
second
));
VLOG
(
4
)
<<
"buffer malloc "
<<
item
.
first
<<
" "
<<
item
.
second
<<
" "
<<
buf
.
buffer
;
buf
.
size
=
buf
.
max_size
=
item
.
second
;
buf
.
device
=
DeviceType
::
GPU
;
}
...
...
@@ -96,6 +99,7 @@ nvinfer1::ITensor* TensorRTEngine::DeclareInput(const std::string& name,
PADDLE_ENFORCE
(
input
,
"infer network add input %s failed"
,
name
);
buffer_sizes_
[
name
]
=
kDataTypeSize
[
static_cast
<
int
>
(
dtype
)]
*
analysis
::
AccuDims
(
dims
.
d
,
dims
.
nbDims
);
PADDLE_ENFORCE
(
input
->
isNetworkInput
());
TensorRTEngine
::
SetITensor
(
name
,
input
);
return
input
;
}
...
...
@@ -109,7 +113,9 @@ void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer* layer, int offset,
SetITensor
(
name
,
output
);
PADDLE_ENFORCE
(
output
!=
nullptr
);
output
->
setName
(
name
.
c_str
());
PADDLE_ENFORCE
(
!
output
->
isNetworkInput
());
infer_network_
->
markOutput
(
*
output
);
PADDLE_ENFORCE
(
output
->
isNetworkOutput
());
// output buffers' size can only be decided latter, set zero here to mark this
// and will reset latter.
buffer_sizes_
[
name
]
=
0
;
...
...
@@ -122,6 +128,7 @@ void TensorRTEngine::DeclareOutput(const std::string& name) {
auto
*
output
=
TensorRTEngine
::
GetITensor
(
name
);
PADDLE_ENFORCE
(
output
!=
nullptr
);
output
->
setName
(
name
.
c_str
());
PADDLE_ENFORCE
(
!
output
->
isNetworkInput
());
infer_network_
->
markOutput
(
*
output
);
// output buffers' size can only be decided latter, set zero here to mark this
// and will reset latter.
...
...
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
59d75bda
...
...
@@ -21,6 +21,7 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/inference/utils/singleton.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -131,7 +132,11 @@ class TensorRTEngine : public EngineBase {
// TensorRT related internal members
template
<
typename
T
>
struct
Destroyer
{
void
operator
()(
T
*
x
)
{
x
->
destroy
();
}
void
operator
()(
T
*
x
)
{
if
(
x
)
{
x
->
destroy
();
}
}
};
template
<
typename
T
>
using
infer_ptr
=
std
::
unique_ptr
<
T
,
Destroyer
<
T
>>
;
...
...
@@ -155,6 +160,27 @@ class TensorRTEngine : public EngineBase {
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ARGS...) \
engine__->network()->add##layer__(ARGS);
/*
* Helper to control the TensorRT engine's creation and deletion.
*/
class
TRT_EngineManager
{
public:
TensorRTEngine
*
Create
(
int
max_batch
,
int
max_workspace
,
cudaStream_t
*
stream
)
{
engines_
.
emplace_back
(
new
TensorRTEngine
(
max_batch
,
max_workspace
,
stream
));
return
engines_
.
back
().
get
();
}
void
DeleteALl
()
{
for
(
auto
&
ptr
:
engines_
)
{
ptr
.
reset
(
nullptr
);
}
}
private:
std
::
vector
<
std
::
unique_ptr
<
TensorRTEngine
>>
engines_
;
};
}
// namespace tensorrt
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/tests/book/test_inference_nlp.cc
浏览文件 @
59d75bda
...
...
@@ -101,23 +101,22 @@ void SplitData(
}
void
ThreadRunInfer
(
const
int
tid
,
paddle
::
framework
::
Executor
*
executor
,
paddle
::
framework
::
Scope
*
scope
,
const
std
::
unique_ptr
<
paddle
::
framework
::
ProgramDesc
>&
inference_program
,
const
int
tid
,
paddle
::
framework
::
Scope
*
scope
,
const
std
::
vector
<
std
::
vector
<
const
paddle
::
framework
::
LoDTensor
*>>&
jobs
)
{
auto
copy_program
=
std
::
unique_ptr
<
paddle
::
framework
::
ProgramDesc
>
(
new
paddle
::
framework
::
ProgramDesc
(
*
inference_program
));
// maybe framework:ProgramDesc is not thread-safe
auto
&
sub_scope
=
scope
->
NewScope
();
auto
place
=
paddle
::
platform
::
CPUPlace
();
auto
executor
=
paddle
::
framework
::
Executor
(
place
);
auto
inference_program
=
paddle
::
inference
::
Load
(
&
executor
,
scope
,
FLAGS_model_path
);
std
::
string
feed_holder_name
=
"feed_"
+
paddle
::
string
::
to_string
(
tid
);
std
::
string
fetch_holder_name
=
"fetch_"
+
paddle
::
string
::
to_string
(
tid
);
copy_program
->
SetFeedHolderName
(
feed_holder_name
);
copy_program
->
SetFetchHolderName
(
fetch_holder_name
);
auto
ctx
=
executor
.
Prepare
(
*
inference_program
,
/*block_id*/
0
);
executor
.
CreateVariables
(
*
inference_program
,
&
sub_scope
,
/*block_id*/
0
);
const
std
::
vector
<
std
::
string
>&
feed_target_names
=
copy
_program
->
GetFeedTargetNames
();
inference
_program
->
GetFeedTargetNames
();
const
std
::
vector
<
std
::
string
>&
fetch_target_names
=
copy
_program
->
GetFetchTargetNames
();
inference
_program
->
GetFetchTargetNames
();
PADDLE_ENFORCE_EQ
(
fetch_target_names
.
size
(),
1UL
);
std
::
map
<
std
::
string
,
paddle
::
framework
::
LoDTensor
*>
fetch_targets
;
...
...
@@ -131,9 +130,8 @@ void ThreadRunInfer(
auto
start_ms
=
GetCurrentMs
();
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
feed_targets
[
feed_target_names
[
0
]]
=
inputs
[
i
];
executor
->
Run
(
*
copy_program
,
&
sub_scope
,
&
feed_targets
,
&
fetch_targets
,
true
/*create_local_scope*/
,
true
/*create_vars*/
,
feed_holder_name
,
fetch_holder_name
);
executor
.
RunPreparedContext
(
ctx
.
get
(),
&
sub_scope
,
&
feed_targets
,
&
fetch_targets
,
false
/*create_local_scope*/
);
}
auto
stop_ms
=
GetCurrentMs
();
scope
->
DeleteScope
(
&
sub_scope
);
...
...
@@ -158,22 +156,10 @@ TEST(inference, nlp) {
LOG
(
INFO
)
<<
"Number of samples (seq_len<1024): "
<<
datasets
.
size
();
LOG
(
INFO
)
<<
"Total number of words: "
<<
num_total_words
;
const
bool
model_combined
=
false
;
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// 1. Define place, executor, scope
auto
place
=
paddle
::
platform
::
CPUPlace
();
auto
executor
=
paddle
::
framework
::
Executor
(
place
);
std
::
unique_ptr
<
paddle
::
framework
::
Scope
>
scope
(
new
paddle
::
framework
::
Scope
());
// 2. Initialize the inference_program and load parameters
std
::
unique_ptr
<
paddle
::
framework
::
ProgramDesc
>
inference_program
;
inference_program
=
InitProgram
(
&
executor
,
scope
.
get
(),
FLAGS_model_path
,
model_combined
);
if
(
FLAGS_use_mkldnn
)
{
EnableMKLDNN
(
inference_program
);
}
#ifdef PADDLE_WITH_MKLML
// only use 1 thread number per std::thread
omp_set_dynamic
(
0
);
...
...
@@ -189,21 +175,30 @@ TEST(inference, nlp) {
start_ms
=
GetCurrentMs
();
for
(
int
i
=
0
;
i
<
FLAGS_num_threads
;
++
i
)
{
threads
.
emplace_back
(
new
std
::
thread
(
ThreadRunInfer
,
i
,
&
executor
,
scope
.
get
(),
std
::
ref
(
inference_program
),
std
::
ref
(
jobs
)));
new
std
::
thread
(
ThreadRunInfer
,
i
,
scope
.
get
(),
std
::
ref
(
jobs
)));
}
for
(
int
i
=
0
;
i
<
FLAGS_num_threads
;
++
i
)
{
threads
[
i
]
->
join
();
}
stop_ms
=
GetCurrentMs
();
}
else
{
if
(
FLAGS_prepare_vars
)
{
executor
.
CreateVariables
(
*
inference_program
,
scope
.
get
(),
0
);
// 1. Define place, executor, scope
auto
place
=
paddle
::
platform
::
CPUPlace
();
auto
executor
=
paddle
::
framework
::
Executor
(
place
);
// 2. Initialize the inference_program and load parameters
std
::
unique_ptr
<
paddle
::
framework
::
ProgramDesc
>
inference_program
;
inference_program
=
InitProgram
(
&
executor
,
scope
.
get
(),
FLAGS_model_path
,
/*model combined*/
false
);
if
(
FLAGS_use_mkldnn
)
{
EnableMKLDNN
(
inference_program
);
}
// always prepare context
std
::
unique_ptr
<
paddle
::
framework
::
ExecutorPrepareContext
>
ctx
;
ctx
=
executor
.
Prepare
(
*
inference_program
,
0
);
if
(
FLAGS_prepare_vars
)
{
executor
.
CreateVariables
(
*
inference_program
,
scope
.
get
(),
0
);
}
// preapre fetch
const
std
::
vector
<
std
::
string
>&
fetch_target_names
=
inference_program
->
GetFetchTargetNames
();
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
59d75bda
...
...
@@ -227,6 +227,8 @@ op_library(softmax_op DEPS softmax)
op_library
(
sequence_softmax_op DEPS softmax
)
if
(
WITH_GPU AND TENSORRT_FOUND
)
op_library
(
tensorrt_engine_op DEPS tensorrt_engine
)
nv_test
(
test_tensorrt_engine_op SRCS tensorrt_engine_op_test.cc
DEPS tensorrt_engine_op tensorrt_engine tensorrt_converter
)
else
()
set
(
DEPS_OPS
${
DEPS_OPS
}
tensorrt_engine_op
)
endif
()
...
...
paddle/fluid/operators/detail/CMakeLists.txt
浏览文件 @
59d75bda
if
(
WITH_DISTRIBUTE
)
grpc_library
(
sendrecvop_grpc SRCS bytebuffer_stream.cc sendrecvop_utils.cc grpc_client.cc
request_handler_impl.cc rpc_server.cc grpc_server.cc variable_response.cc PROTO send_recv.proto DEPS lod_tensor
request_handler_impl.cc rpc_
client.cc rpc_
server.cc grpc_server.cc variable_response.cc PROTO send_recv.proto DEPS lod_tensor
selected_rows memory
)
set
(
DISTRIBUTE_COMPILE_FLAGS
"-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor"
)
set_source_files_properties
(
serde_test.cc grpc_server_test.cc PROPERTIES COMPILE_FLAGS
${
DISTRIBUTE_COMPILE_FLAGS
}
)
...
...
paddle/fluid/operators/detail/grpc_client.cc
浏览文件 @
59d75bda
...
...
@@ -25,29 +25,15 @@ namespace paddle {
namespace
operators
{
namespace
detail
{
std
::
once_flag
RPCClient
::
init_flag_
;
void
GRPCClient
::
InitImpl
()
{
InitEventLoop
();
}
std
::
unique_ptr
<
RPCClient
>
RPCClient
::
rpc_client_
(
nullptr
);
RPCClient
*
RPCClient
::
GetInstance
()
{
std
::
call_once
(
init_flag_
,
&
RPCClient
::
Init
);
return
rpc_client_
.
get
();
}
void
RPCClient
::
Init
()
{
if
(
rpc_client_
.
get
()
==
nullptr
)
{
rpc_client_
.
reset
(
new
RPCClient
());
}
rpc_client_
->
InitEventLoop
();
}
void
RPCClient
::
InitEventLoop
()
{
void
GRPCClient
::
InitEventLoop
()
{
// start the client process thread
// TODO(wuyi): can make this in a threadpool
client_thread_
.
reset
(
new
std
::
thread
(
std
::
bind
(
&
RPCClient
::
Proceed
,
this
)));
client_thread_
.
reset
(
new
std
::
thread
(
std
::
bind
(
&
G
RPCClient
::
Proceed
,
this
)));
}
RPCClient
::~
RPCClient
()
{
GRPCClient
::~
G
RPCClient
()
{
Wait
();
cq_
.
Shutdown
();
{
...
...
@@ -59,11 +45,10 @@ RPCClient::~RPCClient() {
client_thread_
->
join
();
}
bool
RPCClient
::
AsyncSendVariable
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
bool
GRPCClient
::
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
const
platform
::
DeviceContext
*
p_ctx
=
&
ctx
;
const
std
::
string
ep_val
=
ep
;
const
std
::
string
var_name_val
=
var_name
;
...
...
@@ -113,11 +98,10 @@ void RequestToByteBuffer(const T& proto, ::grpc::ByteBuffer* result) {
result
->
Swap
(
&
tmp
);
}
bool
RPCClient
::
AsyncGetVariable
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
bool
GRPCClient
::
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
)
{
const
platform
::
DeviceContext
*
p_ctx
=
&
ctx
;
const
std
::
string
ep_val
=
ep
;
const
std
::
string
var_name_val
=
var_name
;
...
...
@@ -155,12 +139,12 @@ bool RPCClient::AsyncGetVariable(const std::string& ep,
return
true
;
}
bool
RPCClient
::
AsyncPrefetchVariable
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
)
{
bool
GRPCClient
::
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
)
{
const
platform
::
DeviceContext
*
p_ctx
=
&
ctx
;
const
std
::
string
ep_val
=
ep
;
const
std
::
string
in_var_name_val
=
in_var_name
;
...
...
@@ -198,7 +182,8 @@ bool RPCClient::AsyncPrefetchVariable(const std::string& ep,
return
true
;
}
void
RPCClient
::
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
void
GRPCClient
::
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
BatchBarrierProcessor
*
s
=
new
BatchBarrierProcessor
(
ch
);
...
...
@@ -211,7 +196,8 @@ void RPCClient::AsyncSendBatchBarrier(const std::string& ep, int64_t time_out) {
req_count_
++
;
}
void
RPCClient
::
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
void
GRPCClient
::
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
)
{
const
auto
ch
=
GetChannel
(
ep
);
FetchBarrierProcessor
*
s
=
new
FetchBarrierProcessor
(
ch
);
s
->
Prepare
(
time_out
);
...
...
@@ -223,12 +209,12 @@ void RPCClient::AsyncSendFetchBarrier(const std::string& ep, int64_t time_out) {
req_count_
++
;
}
void
RPCClient
::
Wait
()
{
void
G
RPCClient
::
Wait
()
{
std
::
unique_lock
<
std
::
mutex
>
lk
(
sync_mutex_
);
sync_cond_
.
wait
(
lk
,
[
this
]
{
return
req_count_
==
0
;
});
}
void
RPCClient
::
Proceed
()
{
void
G
RPCClient
::
Proceed
()
{
void
*
tag
=
nullptr
;
bool
ok
=
false
;
...
...
@@ -251,7 +237,7 @@ void RPCClient::Proceed() {
}
}
std
::
shared_ptr
<
grpc
::
Channel
>
RPCClient
::
GetChannel
(
const
std
::
string
&
ep
)
{
std
::
shared_ptr
<
grpc
::
Channel
>
G
RPCClient
::
GetChannel
(
const
std
::
string
&
ep
)
{
// TODO(Yancey1989): make grpc client completely thread-safe
std
::
lock_guard
<
std
::
mutex
>
guard
(
chan_mutex_
);
auto
it
=
channels_
.
find
(
ep
);
...
...
paddle/fluid/operators/detail/grpc_client.h
浏览文件 @
59d75bda
...
...
@@ -38,6 +38,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/detail/rpc_client.h"
#include "paddle/fluid/operators/detail/sendrecvop_utils.h"
#include "paddle/fluid/platform/macros.h" // for DISABLE_COPY_AND_ASSIGN
...
...
@@ -164,47 +165,46 @@ class FetchBarrierProcessor : public BaseProcessor {
std
::
unique_ptr
<
sendrecv
::
SendRecvService
::
Stub
>
stub_
;
};
class
RPCClient
{
class
GRPCClient
:
public
RPCClient
{
public:
RPCClient
()
{}
~
RPCClient
();
G
RPCClient
()
{}
virtual
~
G
RPCClient
();
static
RPCClient
*
GetInstance
();
bool
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
bool
AsyncSendVariable
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
600
*
1000
);
bool
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
bool
Async
GetVariable
(
const
std
::
string
&
ep
,
bool
Async
PrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
600
*
1000
);
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
bool
AsyncPrefetchVariable
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
=
600
*
1000
);
void
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
void
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
600
*
1000
);
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
RPCClient
::
rpc_time_out
)
override
;
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
600
*
1000
);
void
Wait
()
override
;
void
Wait
();
protected:
void
InitImpl
()
override
;
private:
// InitEventLoop should only be called by Init()
void
InitEventLoop
();
private:
void
Proceed
();
std
::
shared_ptr
<
grpc
::
Channel
>
GetChannel
(
const
std
::
string
&
ep
);
// Init is called by GetInstance.
static
void
Init
();
private:
grpc
::
CompletionQueue
cq_
;
...
...
@@ -218,9 +218,7 @@ class RPCClient {
// mutex for GetChannel thread safety
std
::
mutex
chan_mutex_
;
static
std
::
unique_ptr
<
RPCClient
>
rpc_client_
;
static
std
::
once_flag
init_flag_
;
DISABLE_COPY_AND_ASSIGN
(
RPCClient
);
DISABLE_COPY_AND_ASSIGN
(
GRPCClient
);
};
}
// namespace detail
...
...
paddle/fluid/operators/detail/grpc_server_test.cc
浏览文件 @
59d75bda
...
...
@@ -19,6 +19,7 @@ limitations under the License. */
#include "gtest/gtest.h"
#include "paddle/fluid/operators/detail/grpc_client.h"
#include "paddle/fluid/operators/detail/grpc_server.h"
#include "paddle/fluid/operators/detail/rpc_client.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -123,7 +124,8 @@ TEST(PREFETCH, CPU) {
std
::
thread
server_thread
(
StartServer
);
g_rpc_service
->
WaitServerReady
();
detail
::
RPCClient
*
client
=
detail
::
RPCClient
::
GetInstance
();
detail
::
RPCClient
*
client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
int
port
=
g_rpc_service
->
GetSelectedPort
();
std
::
string
ep
=
paddle
::
string
::
Sprintf
(
"127.0.0.1:%d"
,
port
);
...
...
@@ -137,7 +139,7 @@ TEST(PREFETCH, CPU) {
std
::
string
in_var_name
(
"ids"
);
std
::
string
out_var_name
(
"out"
);
client
->
AsyncPrefetchVar
iable
(
ep
,
ctx
,
scope
,
in_var_name
,
out_var_name
);
client
->
AsyncPrefetchVar
(
ep
,
ctx
,
scope
,
in_var_name
,
out_var_name
);
client
->
Wait
();
auto
var
=
scope
.
Var
(
out_var_name
);
auto
value
=
var
->
GetMutable
<
framework
::
SelectedRows
>
()
->
value
();
...
...
paddle/fluid/operators/detail/rpc_client.cc
0 → 100644
浏览文件 @
59d75bda
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/detail/rpc_client.h"
namespace
paddle
{
namespace
operators
{
namespace
detail
{
std
::
once_flag
RPCClient
::
init_flag_
;
std
::
unique_ptr
<
RPCClient
>
RPCClient
::
rpc_client_
(
nullptr
);
}
// namespace detail
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/detail/rpc_client.h
0 → 100644
浏览文件 @
59d75bda
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/scope.h"
namespace
paddle
{
namespace
operators
{
namespace
detail
{
class
RPCClient
{
public:
virtual
bool
AsyncSendVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
virtual
bool
AsyncGetVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
var_name
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
virtual
bool
AsyncPrefetchVar
(
const
std
::
string
&
ep
,
const
platform
::
DeviceContext
&
ctx
,
const
framework
::
Scope
&
scope
,
const
std
::
string
&
in_var_name
,
const
std
::
string
&
out_var_name
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
virtual
void
AsyncSendBatchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
virtual
void
AsyncSendFetchBarrier
(
const
std
::
string
&
ep
,
int64_t
time_out
=
rpc_time_out
)
=
0
;
virtual
void
Wait
()
=
0
;
static
constexpr
int64_t
rpc_time_out
=
120
*
1000
;
template
<
typename
T
>
static
RPCClient
*
GetInstance
()
{
std
::
call_once
(
init_flag_
,
&
RPCClient
::
Init
<
T
>
);
return
rpc_client_
.
get
();
}
// Init is called by GetInstance.
template
<
typename
T
>
static
void
Init
()
{
if
(
rpc_client_
.
get
()
==
nullptr
)
{
rpc_client_
.
reset
(
new
T
());
rpc_client_
->
InitImpl
();
}
}
protected:
virtual
void
InitImpl
()
{}
private:
static
std
::
once_flag
init_flag_
;
static
std
::
unique_ptr
<
RPCClient
>
rpc_client_
;
};
}
// namespace detail
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/fetch_barrier_op.cc
浏览文件 @
59d75bda
...
...
@@ -21,6 +21,7 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/grpc_client.h"
#include "paddle/fluid/operators/detail/rpc_client.h"
#include "paddle/fluid/platform/profiler.h"
namespace
paddle
{
...
...
@@ -43,7 +44,8 @@ class FetchBarrierOp : public framework::OperatorBase {
// For profiling
platform
::
RecordEvent
record_event
(
Type
(),
&
ctx
);
auto
rpc_client
=
detail
::
RPCClient
::
GetInstance
();
detail
::
RPCClient
*
rpc_client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
rpc_client
->
Wait
();
...
...
paddle/fluid/operators/gen_nccl_id_op.cc
浏览文件 @
59d75bda
...
...
@@ -61,12 +61,13 @@ class GenNCCLIdOp : public framework::OperatorBase {
std
::
vector
<
std
::
string
>
endpoint_list
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"endpoint_list"
);
detail
::
RPCClient
client
;
detail
::
RPCClient
*
client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
for
(
auto
&
ep
:
endpoint_list
)
{
VLOG
(
3
)
<<
"sending nccl id to "
<<
ep
;
client
.
AsyncSendVariable
(
ep
,
dev_ctx
,
*
scope
,
NCCL_ID_VARNAME
);
client
->
AsyncSendVar
(
ep
,
dev_ctx
,
*
scope
,
NCCL_ID_VARNAME
);
}
client
.
Wait
();
client
->
Wait
();
VLOG
(
3
)
<<
"sending completed..."
;
}
...
...
paddle/fluid/operators/prefetch_op.cc
浏览文件 @
59d75bda
...
...
@@ -41,14 +41,14 @@ class PrefetchOp : public framework::OperatorBase {
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
ctx
=
*
pool
.
Get
(
place
);
auto
rpc_client
=
detail
::
RPCClient
::
GetInstance
();
detail
::
RPCClient
*
rpc_client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
if
(
NeedSend
(
scope
,
ins
[
i
]))
{
VLOG
(
3
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
]
<<
" to get "
<<
outs
[
i
]
<<
" back"
;
rpc_client
->
AsyncPrefetchVariable
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
],
outs
[
i
]);
rpc_client
->
AsyncPrefetchVar
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
],
outs
[
i
]);
}
else
{
VLOG
(
3
)
<<
"don't send no-initialied variable: "
<<
ins
[
i
];
}
...
...
paddle/fluid/operators/recv_op.cc
浏览文件 @
59d75bda
...
...
@@ -44,11 +44,12 @@ class RecvOp : public framework::OperatorBase {
// For profiling
platform
::
RecordEvent
record_event
(
Type
(),
&
ctx
);
auto
rpc_client
=
detail
::
RPCClient
::
GetInstance
();
detail
::
RPCClient
*
rpc_client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
for
(
size_t
i
=
0
;
i
<
outs
.
size
();
i
++
)
{
VLOG
(
3
)
<<
"getting "
<<
outs
[
i
]
<<
" from "
<<
epmap
[
i
];
rpc_client
->
AsyncGetVar
iable
(
epmap
[
i
],
ctx
,
scope
,
outs
[
i
]);
rpc_client
->
AsyncGetVar
(
epmap
[
i
],
ctx
,
scope
,
outs
[
i
]);
}
if
(
sync_mode
)
{
rpc_client
->
Wait
();
...
...
paddle/fluid/operators/reverse_op.cc
0 → 100644
浏览文件 @
59d75bda
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reverse_op.h"
#include <vector>
namespace
paddle
{
namespace
operators
{
class
ReverseOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) should not be null"
);
const
auto
&
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
auto
&
axis
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"axis"
);
PADDLE_ENFORCE
(
!
axis
.
empty
(),
"'axis' can not be empty."
);
for
(
int
a
:
axis
)
{
PADDLE_ENFORCE_LT
(
a
,
x_dims
.
size
(),
"The axis must be less than input tensor's rank."
);
}
ctx
->
SetOutputDim
(
"Out"
,
x_dims
);
}
};
class
ReverseOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The LoDTensor to be flipped."
);
AddOutput
(
"Out"
,
"The LoDTensor after flipping."
);
AddAttr
<
std
::
vector
<
int
>>
(
"axis"
,
"The axises that along which order of elements is reversed."
);
AddComment
(
R"DOC(
Reverse Operator.
Reverse the order of elements in the input LoDTensor along given axises.
Case 1:
Given
X = [[1, 2, 3, 4, 5]
[6, 7, 8, 9, 10]
[11, 12, 13, 14, 15]],
and
axis = [0],
we get:
Out = [[11, 12, 13, 14, 15]
[6, 7, 8, 9, 10]
[1, 2, 3, 4, 5]].
Case 2:
Given
X = [[[1, 2, 3, 4]
[5, 6, 7, 8]]
[[9, 10, 11, 12]
[13, 14, 15, 16]]],
and
axis = [0, 2],
we get:
Out = [[[12, 11, 10, 9]
[16, 15, 14, 13]]
[[4, 3, 2, 1]
[8, 7, 6, 5]]],
)DOC"
);
}
};
class
ReverseGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
grad_op
=
new
framework
::
OpDesc
();
grad_op
->
SetType
(
"reverse"
);
grad_op
->
SetInput
(
"X"
,
OutputGrad
(
"Out"
));
grad_op
->
SetOutput
(
"Out"
,
InputGrad
(
"X"
));
grad_op
->
SetAttr
(
"axis"
,
GetAttr
(
"axis"
));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
grad_op
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
reverse
,
ops
::
ReverseOp
,
ops
::
ReverseOpMaker
,
ops
::
ReverseGradMaker
);
REGISTER_OPERATOR
(
reverse_grad
,
ops
::
ReverseOp
);
REGISTER_OP_CPU_KERNEL
(
reverse
,
ops
::
ReverseKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int
>
,
ops
::
ReverseKernel
<
paddle
::
platform
::
CPUDeviceContext
,
uint8_t
>
,
ops
::
ReverseKernel
<
paddle
::
platform
::
CPUDeviceContext
,
int64_t
>
,
ops
::
ReverseKernel
<
paddle
::
platform
::
CPUDeviceContext
,
bool
>
,
ops
::
ReverseKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
ReverseKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
)
paddle/fluid/operators/reverse_op.cu
0 → 100644
浏览文件 @
59d75bda
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/reverse_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
reverse
,
ops
::
ReverseKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int
>
,
ops
::
ReverseKernel
<
paddle
::
platform
::
CUDADeviceContext
,
uint8_t
>
,
ops
::
ReverseKernel
<
paddle
::
platform
::
CUDADeviceContext
,
int64_t
>
,
ops
::
ReverseKernel
<
paddle
::
platform
::
CUDADeviceContext
,
bool
>
,
ops
::
ReverseKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ReverseKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
)
paddle/fluid/operators/reverse_op.h
0 → 100644
浏览文件 @
59d75bda
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
,
int
Rank
>
struct
ReverseFunctor
{
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
LoDTensor
&
in
,
framework
::
LoDTensor
*
out
,
const
std
::
vector
<
int
>&
axis
)
{
Eigen
::
array
<
bool
,
Rank
>
reverse_axis
;
for
(
int
i
=
0
;
i
<
Rank
;
++
i
)
{
reverse_axis
[
i
]
=
false
;
}
for
(
int
a
:
axis
)
{
reverse_axis
[
a
]
=
true
;
}
auto
in_eigen
=
framework
::
EigenTensor
<
T
,
Rank
>::
From
(
in
);
auto
out_eigen
=
framework
::
EigenTensor
<
T
,
Rank
>::
From
(
*
out
);
auto
*
dev
=
context
.
eigen_device
();
out_eigen
.
device
(
*
dev
)
=
in_eigen
.
reverse
(
reverse_axis
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
ReverseKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
auto
&
axis
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"axis"
);
int
rank
=
x
->
dims
().
size
();
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
switch
(
rank
)
{
case
1
:
ReverseFunctor
<
DeviceContext
,
T
,
1
>
functor1
;
functor1
(
dev_ctx
,
*
x
,
out
,
axis
);
break
;
case
2
:
ReverseFunctor
<
DeviceContext
,
T
,
2
>
functor2
;
functor2
(
dev_ctx
,
*
x
,
out
,
axis
);
break
;
case
3
:
ReverseFunctor
<
DeviceContext
,
T
,
3
>
functor3
;
functor3
(
dev_ctx
,
*
x
,
out
,
axis
);
break
;
case
4
:
ReverseFunctor
<
DeviceContext
,
T
,
4
>
functor4
;
functor4
(
dev_ctx
,
*
x
,
out
,
axis
);
break
;
case
5
:
ReverseFunctor
<
DeviceContext
,
T
,
5
>
functor5
;
functor5
(
dev_ctx
,
*
x
,
out
,
axis
);
break
;
case
6
:
ReverseFunctor
<
DeviceContext
,
T
,
6
>
functor6
;
functor6
(
dev_ctx
,
*
x
,
out
,
axis
);
break
;
default:
PADDLE_THROW
(
"Reserve operator doesn't supports tensors whose ranks are greater "
"than 6."
);
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/send_barrier_op.cc
浏览文件 @
59d75bda
...
...
@@ -44,7 +44,8 @@ class SendBarrierOp : public framework::OperatorBase {
// For profiling
platform
::
RecordEvent
record_event
(
Type
(),
&
ctx
);
auto
rpc_client
=
detail
::
RPCClient
::
GetInstance
();
detail
::
RPCClient
*
rpc_client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
VLOG
(
3
)
<<
"SendBarrierOp sync_mode:"
<<
sync_mode
;
...
...
paddle/fluid/operators/send_op.cc
浏览文件 @
59d75bda
...
...
@@ -49,12 +49,13 @@ class SendOp : public framework::OperatorBase {
// For profiling
platform
::
RecordEvent
record_event
(
Type
(),
&
ctx
);
auto
rpc_client
=
detail
::
RPCClient
::
GetInstance
();
detail
::
RPCClient
*
rpc_client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
if
(
NeedSend
(
scope
,
ins
[
i
]))
{
VLOG
(
3
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
];
rpc_client
->
AsyncSendVar
iable
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
]);
rpc_client
->
AsyncSendVar
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
]);
}
else
{
VLOG
(
3
)
<<
"don't send no-initialied variable: "
<<
ins
[
i
];
}
...
...
@@ -72,7 +73,7 @@ class SendOp : public framework::OperatorBase {
if
(
outs
.
size
()
>
0
)
{
for
(
size_t
i
=
0
;
i
<
outs
.
size
();
i
++
)
{
VLOG
(
2
)
<<
"getting "
<<
outs
[
i
]
<<
" from "
<<
epmap
[
i
];
rpc_client
->
AsyncGetVar
iable
(
epmap
[
i
],
ctx
,
scope
,
outs
[
i
]);
rpc_client
->
AsyncGetVar
(
epmap
[
i
],
ctx
,
scope
,
outs
[
i
]);
}
rpc_client
->
Wait
();
// tell pservers that current trainer have called fetch
...
...
paddle/fluid/operators/send_vars_op.cc
浏览文件 @
59d75bda
...
...
@@ -45,14 +45,15 @@ class SendVarsOp : public framework::OperatorBase {
// For profiling
platform
::
RecordEvent
record_event
(
Type
(),
&
ctx
);
auto
rpc_client
=
detail
::
RPCClient
::
GetInstance
();
detail
::
RPCClient
*
rpc_client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
for
(
size_t
i
=
0
;
i
<
ins
.
size
();
i
++
)
{
if
(
NeedSend
(
scope
,
ins
[
i
]))
{
VLOG
(
3
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
];
// TODO(Yancey1989): we need to use an IO threadpool which has
// a larger number of threads than the computing threadpool.
rpc_client
->
AsyncSendVar
iable
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
]);
rpc_client
->
AsyncSendVar
(
epmap
[
i
],
ctx
,
scope
,
ins
[
i
]);
}
else
{
VLOG
(
3
)
<<
"don't send no-initialied variable: "
<<
ins
[
i
];
}
...
...
paddle/fluid/operators/tensorrt_engine_op.cc
浏览文件 @
59d75bda
...
...
@@ -17,23 +17,93 @@
#include "paddle/fluid/operators/tensorrt_engine_op.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/utils/singleton.h"
namespace
paddle
{
namespace
operators
{
using
inference
::
Singleton
;
using
inference
::
tensorrt
::
TRT_EngineManager
;
using
FluidDT
=
framework
::
proto
::
VarType_Type
;
using
TRT_DT
=
nvinfer1
::
DataType
;
namespace
{
TRT_DT
FluidDataType2TRT
(
FluidDT
type
)
{
switch
(
type
)
{
case
FluidDT
::
VarType_Type_FP32
:
return
TRT_DT
::
kFLOAT
;
case
FluidDT
::
VarType_Type_INT32
:
return
TRT_DT
::
kINT32
;
default:
return
TRT_DT
::
kINT32
;
}
PADDLE_THROW
(
"unkown type"
);
return
TRT_DT
::
kINT32
;
}
nvinfer1
::
Dims
Vec2TRT_Dims
(
const
std
::
vector
<
int64_t
>
&
shape
)
{
PADDLE_ENFORCE_GT
(
shape
.
size
(),
1UL
,
"TensorRT' tensor input requires at least 2 dimensions"
);
PADDLE_ENFORCE_LE
(
shape
.
size
(),
4UL
,
"TensorRT' tensor input requires at most 4 dimensions"
);
switch
(
shape
.
size
())
{
case
2
:
return
nvinfer1
::
Dims2
(
shape
[
0
],
shape
[
1
]);
case
3
:
return
nvinfer1
::
Dims3
(
shape
[
0
],
shape
[
1
],
shape
[
2
]);
case
4
:
return
nvinfer1
::
Dims4
(
shape
[
0
],
shape
[
1
],
shape
[
2
],
shape
[
3
]);
default:
return
nvinfer1
::
Dims
();
}
return
nvinfer1
::
Dims
();
}
}
// namespace
template
<
typename
DeviceContext
,
typename
T
>
void
paddle
::
operators
::
TensorRTEngineKernel
<
DeviceContext
,
T
>::
Prepare
(
const
framework
::
ExecutionContext
&
context
)
const
{
VLOG
(
4
)
<<
"Prepare engine"
;
// Get the ProgramDesc and pass to convert.
const
auto
&
block
=
context
.
Attr
<
framework
::
proto
::
BlockDesc
>
(
"subgraph"
);
framework
::
proto
::
BlockDesc
block_desc
;
block_desc
.
ParseFromString
(
context
.
Attr
<
std
::
string
>
(
"subgraph"
));
max_batch_
=
context
.
Attr
<
int
>
(
"max_batch"
);
auto
max_workspace
=
context
.
Attr
<
int
>
(
"max_workspace"
);
engine_
.
reset
(
new
inference
::
tensorrt
::
TensorRTEngine
(
max_batch_
,
max_workspace
,
nullptr
));
engine_
=
Singleton
<
TRT_EngineManager
>::
Global
().
Create
(
max_batch_
,
max_workspace
,
&
stream_
);
engine_
->
InitNetwork
();
framework
::
BlockDesc
block
(
nullptr
/*programdesc*/
,
&
block_desc
);
// Add inputs
VLOG
(
4
)
<<
"declare inputs"
;
for
(
auto
&
input
:
context
.
Inputs
(
"Xs"
))
{
VLOG
(
4
)
<<
"declare input "
<<
input
;
auto
*
var
=
block
.
FindVar
(
input
);
PADDLE_ENFORCE_EQ
(
var
->
GetType
(),
FluidDT
::
VarType_Type_LOD_TENSOR
,
"TensorRT engine only takes LoDTensor as input"
);
auto
shape
=
var
->
GetShape
();
engine_
->
DeclareInput
(
input
,
FluidDataType2TRT
(
var
->
Proto
()
->
type
().
lod_tensor
().
tensor
().
data_type
()),
Vec2TRT_Dims
(
var
->
GetShape
()));
}
// TODO(Superjomn) parameters should be passed after analysised from outside.
inference
::
Singleton
<
inference
::
tensorrt
::
OpConverter
>::
Global
().
ConvertBlock
(
block
,
{},
context
.
scope
(),
engine_
.
get
());
block_desc
,
{},
context
.
scope
(),
engine_
);
// Add outputs
VLOG
(
4
)
<<
"declare outputs"
;
for
(
auto
&
output
:
context
.
Outputs
(
"Ys"
))
{
VLOG
(
4
)
<<
"declare output "
<<
output
;
engine_
->
DeclareOutput
(
output
);
}
engine_
->
FreezeNetwork
();
}
...
...
@@ -42,7 +112,9 @@ class TensorRTEngineOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
override
{
AddInput
(
"Xs"
,
"A list of inputs."
).
AsDuplicable
();
AddOutput
(
"Ys"
,
"A list of outputs"
).
AsDuplicable
();
AddAttr
<
std
::
string
>
(
"subgraph"
,
"the subgraph"
);
AddAttr
<
std
::
string
>
(
"subgraph"
,
"the subgraph."
);
AddAttr
<
int
>
(
"max_batch"
,
"the maximum batch size."
);
AddAttr
<
int
>
(
"max_workspace"
,
"the maximum batch size."
);
AddComment
(
"TensorRT engine operator."
);
}
};
...
...
paddle/fluid/operators/tensorrt_engine_op.h
浏览文件 @
59d75bda
...
...
@@ -32,9 +32,12 @@ class TensorRTEngineOp : public framework::OperatorWithKernel {
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
input0
=
ctx
.
Inputs
(
"Xs"
).
front
();
framework
::
OpKernelType
kt
=
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"pre_ids"
)
->
type
()),
framework
::
ToDataType
(
ctx
.
scope
()
.
FindVar
(
input0
)
->
GetMutable
<
framework
::
LoDTensor
>
()
->
type
()),
platform
::
CPUPlace
());
return
kt
;
}
...
...
@@ -50,17 +53,16 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
auto
input_names
=
context
.
op
().
Inputs
(
"Xs"
);
PADDLE_ENFORCE
(
!
input_names
.
empty
(),
"should pass more than one inputs"
);
// Try to determine a batch_size
auto
*
tensor0
=
context
.
Input
<
framework
::
LoDTensor
>
(
input_names
.
front
());
PADDLE_ENFORCE_NOT_NULL
(
tensor0
);
int
batch_size
=
tensor0
->
dims
()[
0
];
auto
&
tensor0
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
context
.
scope
(),
input_names
.
front
()
);
int
batch_size
=
tensor0
.
dims
()[
0
];
PADDLE_ENFORCE_LE
(
batch_size
,
max_batch_
);
// Convert input tensor from fluid to engine.
for
(
const
auto
&
x
:
context
.
Inputs
(
"Xs"
))
{
// convert input and copy to TRT engine's buffer
auto
*
v
=
context
.
scope
().
FindVar
(
x
);
PADDLE_ENFORCE_NOT_NULL
(
v
,
"no variable called %s"
,
x
);
auto
&
t
=
v
->
Get
<
framework
::
LoDTensor
>
();
auto
&
t
=
inference
::
analysis
::
GetFromScope
<
framework
::
LoDTensor
>
(
context
.
scope
(),
x
);
if
(
platform
::
is_cpu_place
(
t
.
place
()))
{
engine_
->
SetInputFromCPU
(
x
,
static_cast
<
const
void
*>
(
t
.
data
<
void
>
()),
t
.
memory_size
());
...
...
@@ -86,13 +88,18 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
fluid_t
->
Resize
(
framework
::
make_ddim
(
ddim
));
auto
size
=
inference
::
analysis
::
AccuDims
(
dims
.
d
,
dims
.
nbDims
);
if
(
platform
::
is_cpu_place
(
fluid_t
->
place
()))
{
// TODO(Superjomn) change this float to dtype size.
engine_
->
GetOutputInCPU
(
y
,
fluid_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
size
);
y
,
fluid_t
->
mutable_data
<
float
>
(
platform
::
CPUPlace
()),
size
*
sizeof
(
float
));
}
else
{
engine_
->
GetOutputInGPU
(
y
,
fluid_t
->
mutable_data
<
float
>
(
platform
::
CUDAPlace
()),
size
);
y
,
fluid_t
->
mutable_data
<
float
>
(
platform
::
CUDAPlace
()),
size
*
sizeof
(
float
));
}
}
cudaStreamSynchronize
(
stream_
);
}
protected:
...
...
@@ -100,7 +107,8 @@ class TensorRTEngineKernel : public framework::OpKernel<T> {
void
Prepare
(
const
framework
::
ExecutionContext
&
context
)
const
;
private:
mutable
std
::
unique_ptr
<
inference
::
tensorrt
::
TensorRTEngine
>
engine_
;
mutable
cudaStream_t
stream_
;
mutable
inference
::
tensorrt
::
TensorRTEngine
*
engine_
{
nullptr
};
mutable
int
max_batch_
{
0
};
};
...
...
paddle/fluid/operators/tensorrt_engine_op_test.cc
0 → 100644
浏览文件 @
59d75bda
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
#include "paddle/fluid/inference/tensorrt/convert/ut_helper.h"
USE_CPU_ONLY_OP
(
tensorrt_engine
);
namespace
paddle
{
namespace
operators
{
namespace
{
void
CreateCPUTensor
(
framework
::
Scope
*
scope
,
const
std
::
string
&
name
,
const
std
::
vector
<
int64_t
>&
shape
)
{
auto
*
var
=
scope
->
Var
(
name
);
auto
*
tensor
=
var
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
dims
=
framework
::
make_ddim
(
shape
);
tensor
->
Resize
(
dims
);
platform
::
CPUPlace
place
;
platform
::
CPUDeviceContext
ctx
(
place
);
inference
::
tensorrt
::
RandomizeTensor
(
tensor
,
place
,
ctx
);
}
void
AddTensorToBlockDesc
(
framework
::
proto
::
BlockDesc
*
block
,
const
std
::
string
&
name
,
const
std
::
vector
<
int64_t
>&
shape
)
{
using
framework
::
proto
::
VarType
;
auto
*
var
=
block
->
add_vars
();
framework
::
VarDesc
desc
(
name
);
desc
.
SetType
(
VarType
::
LOD_TENSOR
);
desc
.
SetDataType
(
VarType
::
FP32
);
desc
.
SetShape
(
shape
);
*
var
=
*
desc
.
Proto
();
}
template
<
typename
T
>
void
SetAttr
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
T
&
data
);
template
<
>
void
SetAttr
<
std
::
string
>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
std
::
string
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
STRING
);
attr
->
set_s
(
data
);
}
template
<
>
void
SetAttr
<
int
>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
int
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
INT
);
attr
->
set_i
(
data
);
}
template
<
>
void
SetAttr
<
int64_t
>
(
framework
::
proto
::
OpDesc
*
op
,
const
std
::
string
&
name
,
const
int64_t
&
data
)
{
auto
*
attr
=
op
->
add_attrs
();
attr
->
set_name
(
name
);
attr
->
set_type
(
paddle
::
framework
::
proto
::
AttrType
::
LONG
);
attr
->
set_l
(
data
);
}
}
// namespace
TEST
(
TensorRTEngineOp
,
manual
)
{
framework
::
ProgramDesc
program
;
auto
*
block_
=
program
.
Proto
()
->
add_blocks
();
block_
->
set_idx
(
0
);
block_
->
set_parent_idx
(
-
1
);
LOG
(
INFO
)
<<
"create block desc"
;
framework
::
BlockDesc
block_desc
(
&
program
,
block_
);
LOG
(
INFO
)
<<
"create mul op"
;
auto
*
mul
=
block_desc
.
AppendOp
();
mul
->
SetType
(
"mul"
);
mul
->
SetInput
(
"X"
,
std
::
vector
<
std
::
string
>
({
"x"
}));
// 2 x 4
mul
->
SetInput
(
"Y"
,
std
::
vector
<
std
::
string
>
({
"y"
}));
// 4 x 6
mul
->
SetOutput
(
"Out"
,
std
::
vector
<
std
::
string
>
({
"z"
}));
// 2 x 6
LOG
(
INFO
)
<<
"create fc op"
;
auto
*
fc
=
block_desc
.
AppendOp
();
fc
->
SetType
(
"mul"
);
fc
->
SetInput
(
"X"
,
std
::
vector
<
std
::
string
>
({
"z"
}));
fc
->
SetInput
(
"Y"
,
std
::
vector
<
std
::
string
>
({
"y0"
}));
// 6 x 8
fc
->
SetOutput
(
"Out"
,
std
::
vector
<
std
::
string
>
({
"z0"
}));
// 2 x 8
// Set inputs' variable shape in BlockDesc
AddTensorToBlockDesc
(
block_
,
"x"
,
std
::
vector
<
int64_t
>
({
2
,
4
}));
AddTensorToBlockDesc
(
block_
,
"y"
,
std
::
vector
<
int64_t
>
({
4
,
6
}));
AddTensorToBlockDesc
(
block_
,
"y0"
,
std
::
vector
<
int64_t
>
({
6
,
8
}));
AddTensorToBlockDesc
(
block_
,
"z"
,
std
::
vector
<
int64_t
>
({
2
,
6
}));
// It is wired, need to copy manually.
*
block_
->
add_ops
()
=
*
mul
->
Proto
();
*
block_
->
add_ops
()
=
*
fc
->
Proto
();
ASSERT_EQ
(
block_
->
ops_size
(),
2
);
LOG
(
INFO
)
<<
"create tensorrt desc"
;
framework
::
OpDesc
engine_op_desc
(
nullptr
);
engine_op_desc
.
SetType
(
"tensorrt_engine"
);
engine_op_desc
.
SetInput
(
"Xs"
,
std
::
vector
<
std
::
string
>
({
"x"
,
"y"
,
"y0"
}));
engine_op_desc
.
SetOutput
(
"Ys"
,
std
::
vector
<
std
::
string
>
({
"z0"
}));
SetAttr
<
std
::
string
>
(
engine_op_desc
.
Proto
(),
"subgraph"
,
block_
->
SerializeAsString
());
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_batch"
,
30
);
SetAttr
<
int
>
(
engine_op_desc
.
Proto
(),
"max_workspace"
,
1
<<
10
);
LOG
(
INFO
)
<<
"create engine op"
;
auto
engine_op
=
framework
::
OpRegistry
::
CreateOp
(
*
engine_op_desc
.
Proto
());
framework
::
Scope
scope
;
platform
::
CPUPlace
place
;
platform
::
CPUDeviceContext
ctx
(
place
);
// Prepare variables.
CreateCPUTensor
(
&
scope
,
"x"
,
std
::
vector
<
int64_t
>
({
2
,
4
}));
CreateCPUTensor
(
&
scope
,
"y"
,
std
::
vector
<
int64_t
>
({
4
,
6
}));
CreateCPUTensor
(
&
scope
,
"z"
,
std
::
vector
<
int64_t
>
({
2
,
6
}));
CreateCPUTensor
(
&
scope
,
"y0"
,
std
::
vector
<
int64_t
>
({
6
,
8
}));
CreateCPUTensor
(
&
scope
,
"z0"
,
std
::
vector
<
int64_t
>
({
2
,
8
}));
// Execute them.
LOG
(
INFO
)
<<
"engine_op run"
;
engine_op
->
Run
(
scope
,
place
);
}
}
// namespace operators
}
// namespace paddle
USE_TRT_CONVERTER
(
mul
)
USE_TRT_CONVERTER
(
fc
)
paddle/fluid/operators/test_send_nccl_id.cc
浏览文件 @
59d75bda
...
...
@@ -87,9 +87,10 @@ TEST(SendNcclId, GrpcServer) {
int
port
=
g_rpc_service
->
GetSelectedPort
();
std
::
string
ep
=
string
::
Sprintf
(
"127.0.0.1:%d"
,
port
);
detail
::
RPCClient
*
client
=
detail
::
RPCClient
::
GetInstance
();
LOG
(
INFO
)
<<
"connect to server "
<<
ep
;
client
->
AsyncSendVariable
(
ep
,
dev_ctx
,
scope
,
NCCL_ID_VARNAME
);
detail
::
RPCClient
*
client
=
detail
::
RPCClient
::
GetInstance
<
detail
::
GRPCClient
>
();
LOG
(
INFO
)
<<
"connect to server"
<<
ep
;
client
->
AsyncSendVar
(
ep
,
dev_ctx
,
scope
,
NCCL_ID_VARNAME
);
client
->
Wait
();
client
->
AsyncSendBatchBarrier
(
ep
);
client
->
Wait
();
...
...
paddle/fluid/platform/assert.h
浏览文件 @
59d75bda
...
...
@@ -17,7 +17,7 @@ limitations under the License. */
#define STRINGIFY(x) #x
#define TOSTRING(x) STRINGIFY(x)
#if defined(__
APPLE__) && defined(__CUDA_ARCH__) && !defined(NDEBUG
)
#if defined(__
CUDA_ARCH__
)
#include <stdio.h>
#define PADDLE_ASSERT(e) \
do { \
...
...
@@ -38,6 +38,9 @@ limitations under the License. */
} while (0)
#else
#include <assert.h>
#define PADDLE_ASSERT(e) assert(e)
// For cuda, the assertions can affect performance and it is therefore
// recommended to disable them in production code
// https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#assertion
#define PADDLE_ASSERT(e) assert((e))
#define PADDLE_ASSERT_MSG(e, m) assert((e) && (m))
#endif
paddle/fluid/platform/cudnn_helper.h
浏览文件 @
59d75bda
...
...
@@ -81,6 +81,27 @@ enum class PoolingMode {
kMaximumDeterministic
,
};
#if CUDNN_VERSION < 6000
#pragma message "CUDNN version under 6.0 is supported at best effort."
#pragma message "We strongly encourage you to move to 6.0 and above."
#pragma message "This message is intended to annoy you enough to update."
#pragma message \
"please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/"
inline
cudnnPoolingMode_t
GetPoolingMode
(
const
PoolingMode
&
mode
)
{
switch
(
mode
)
{
case
PoolingMode
::
kMaximumDeterministic
:
return
CUDNN_POOLING_MAX
;
case
PoolingMode
::
kAverage
:
return
CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING
;
case
PoolingMode
::
kMaximum
:
return
CUDNN_POOLING_MAX
;
default:
PADDLE_THROW
(
"Unexpected pooling mode."
);
}
}
#else
inline
cudnnPoolingMode_t
GetPoolingMode
(
const
PoolingMode
&
mode
)
{
switch
(
mode
)
{
case
PoolingMode
::
kMaximumDeterministic
:
...
...
@@ -93,6 +114,7 @@ inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
PADDLE_THROW
(
"Unexpected pooling mode."
);
}
}
#endif // CUDNN_VERSION < 6000
template
<
typename
T
>
class
CudnnDataType
;
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
59d75bda
...
...
@@ -553,6 +553,12 @@ All parameter, weight, gradient are variables in Paddle.
[](
BuildStrategy
&
self
,
BuildStrategy
::
GradientScaleStrategy
strategy
)
{
self
.
gradient_scale_
=
strategy
;
})
.
def_property
(
"debug_graphviz_path"
,
[](
const
BuildStrategy
&
self
)
{
return
self
.
debug_graphviz_path_
;
},
[](
BuildStrategy
&
self
,
const
std
::
string
&
path
)
{
self
.
debug_graphviz_path_
=
path
;
});
pe
.
def
(
py
::
init
<
const
std
::
vector
<
platform
::
Place
>
&
,
...
...
paddle/scripts/paddle_build.sh
浏览文件 @
59d75bda
...
...
@@ -447,7 +447,7 @@ EOF
# run paddle version to install python packages first
RUN apt-get update &&
\
${
NCCL_DEPS
}
\
apt-get install -y wget python-pip dmidecode python-tk && easy_install -U pip &&
\
apt-get install -y wget python-pip
python-opencv libgtk2.0-dev
dmidecode python-tk && easy_install -U pip &&
\
pip install /*.whl; apt-get install -f -y &&
\
apt-get clean -y &&
\
rm -f /*.whl &&
\
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
59d75bda
...
...
@@ -1210,19 +1210,19 @@ def conv2d(input,
- Input:
Input shape:
$(N, C_{in}, H_{in}, W_{in})$
Input shape:
:math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape:
$(C_{out}, C_{in}, H_f, W_f)$
Filter shape:
:math:`(C_{out}, C_{in}, H_f, W_f)`
- Output:
Output shape:
$(N, C_{out}, H_{out}, W_{out})$
Output shape:
:math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H_{out}&=
\\
frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1
\\\\
W_{out}&=
\\
frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
H_{out}&=
\\
frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1
\\\\
W_{out}&=
\\
frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
Args:
input(Variable): The input image with [N, C, H, W] format.
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
59d75bda
...
...
@@ -363,6 +363,40 @@ def zeros(shape, dtype, force_cpu=False):
return
fill_constant
(
value
=
0.0
,
**
locals
())
def
reverse
(
x
,
axis
):
"""
**reverse**
This function reverse the input 'x' along given axises.
Args:
x(Vairbale): the input to be reversed.
axis(int|tuple|list): Axis that along which order of elements
is reversed. If it is a tuple or a list, reversing
will be apply on each axis in the tuple or list.
Returns:
Variable: The reversed tensor.
Examples:
.. code-block:: python
out = fluid.layers.reverse(x=in, axis=0)
# or:
out = fluid.layers.reverse(x=in, axis=[0,1])
"""
if
isinstance
(
axis
,
int
):
axis
=
[
axis
]
helper
=
LayerHelper
(
"reverse"
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
x
.
dtype
)
helper
.
append_op
(
type
=
'reverse'
,
inputs
=
{
'Input'
:
x
},
outputs
=
{
'Out'
:
[
out
]},
attrs
=
{
'axis'
:
axis
})
return
out
def
save
(
x
,
file_path
,
overwrite
=
True
):
"""
Saves a variable as a file.
...
...
python/paddle/fluid/tests/test_concurrency.py
→
python/paddle/fluid/tests/
no_
test_concurrency.py
浏览文件 @
59d75bda
文件已移动
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
59d75bda
...
...
@@ -43,12 +43,10 @@ list(REMOVE_ITEM TEST_OPS test_warpctc_op)
list
(
REMOVE_ITEM TEST_OPS test_dist_train
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_executor_crf
)
list
(
REMOVE_ITEM TEST_OPS test_parallel_executor_fetch_feed
)
# TODO(wuyi): this test hungs on CI, will add it back later
list
(
REMOVE_ITEM TEST_OPS test_listen_and_serv_op
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
(
TEST_OP
)
py_test_modules
(
test_warpctc_op MODULES test_warpctc_op ENVS FLAGS_warpctc_dir=
${
WARPCTC_LIB_DIR
}
SERIAL
)
py_test_modules
(
test_dist_train MODULES test_dist_train SERIAL
)
# FIXME(Yancey1989): this test would cost much more time on CUDAPlace
# since load cudnn libraries, so we use a longer timeout to make this
# unit test stability.
set_tests_properties
(
test_listen_and_serv_op PROPERTIES TIMEOUT 30
)
python/paddle/fluid/tests/unittests/test_elementwise_add_op.py
浏览文件 @
59d75bda
...
...
@@ -252,5 +252,25 @@ class TestFP16ElementwiseAddOp_rowwise_add_1(TestFP16ElementwiseAddOp):
self
.
axis
=
1
class
TestElementwiseAddOp_channelwise_add
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
3
,
20
,
20
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
3
,
1
,
1
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
def
init_axis
(
self
):
self
.
axis
=
-
1
class
TestFP16ElementwiseAddOp_channelwise_add
(
TestFP16ElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
rand
(
3
,
10
,
20
).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
rand
(
3
,
1
,
1
).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
def
init_axis
(
self
):
self
.
axis
=
-
1
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_mul_op.py
浏览文件 @
59d75bda
...
...
@@ -22,8 +22,8 @@ class TestMulOp(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
84
,
100
)).
astype
(
"float32"
)
'X'
:
np
.
random
.
random
((
2
,
5
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
5
,
3
)).
astype
(
"float32"
)
}
self
.
outputs
=
{
'Out'
:
np
.
dot
(
self
.
inputs
[
'X'
],
self
.
inputs
[
'Y'
])}
...
...
@@ -46,13 +46,16 @@ class TestMulOp2(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"mul"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
15
,
4
,
12
,
10
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
4
,
30
,
8
,
2
,
9
)).
astype
(
"float32"
)
'X'
:
np
.
random
.
random
((
3
,
4
,
4
,
3
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
2
,
6
,
1
,
2
,
3
)).
astype
(
"float32"
)
}
self
.
attrs
=
{
'x_num_col_dims'
:
2
,
'y_num_col_dims'
:
2
}
result
=
np
.
dot
(
self
.
inputs
[
'X'
].
reshape
(
15
*
4
,
12
*
10
),
self
.
inputs
[
'Y'
].
reshape
(
4
*
30
,
8
*
2
*
9
))
result
=
result
.
reshape
(
15
,
4
,
8
,
2
,
9
)
self
.
attrs
=
{
'x_num_col_dims'
:
2
,
'y_num_col_dims'
:
2
,
}
result
=
np
.
dot
(
self
.
inputs
[
'X'
].
reshape
(
3
*
4
,
4
*
3
),
self
.
inputs
[
'Y'
].
reshape
(
2
*
6
,
1
*
2
*
3
))
result
=
result
.
reshape
(
3
,
4
,
1
,
2
,
3
)
self
.
outputs
=
{
'Out'
:
result
}
def
test_check_output
(
self
):
...
...
@@ -73,9 +76,9 @@ class TestMulOp2(OpTest):
class
TestFP16MulOp1
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mul"
x
=
np
.
random
.
random
((
3
2
,
84
)).
astype
(
"float16"
)
y
=
np
.
random
.
random
((
84
,
100
)).
astype
(
"float16"
)
self
.
inputs
=
{
'X'
:
x
.
view
(
np
.
uint16
),
'Y'
:
y
.
view
(
np
.
uin
t16
)}
x
=
np
.
random
.
random
((
3
,
5
)).
astype
(
"float16"
)
y
=
np
.
random
.
random
((
5
,
4
)).
astype
(
"float16"
)
self
.
inputs
=
{
'X'
:
x
.
view
(
np
.
float16
),
'Y'
:
y
.
view
(
np
.
floa
t16
)}
self
.
outputs
=
{
'Out'
:
np
.
dot
(
x
,
y
)}
def
test_check_output
(
self
):
...
...
@@ -88,13 +91,15 @@ class TestFP16MulOp1(OpTest):
class
TestFP16MulOp2
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"mul"
x
=
np
.
random
.
random
((
15
,
4
,
12
,
10
)).
astype
(
"float16"
)
y
=
np
.
random
.
random
((
4
,
30
,
8
,
2
,
9
)).
astype
(
"float16"
)
self
.
inputs
=
{
'X'
:
x
.
view
(
np
.
uint16
),
'Y'
:
y
.
view
(
np
.
uint16
)}
self
.
attrs
=
{
'x_num_col_dims'
:
2
,
'y_num_col_dims'
:
2
}
result
=
np
.
dot
(
x
.
reshape
(
15
*
4
,
12
*
10
),
y
.
reshape
(
4
*
30
,
8
*
2
*
9
))
result
=
result
.
reshape
(
15
,
4
,
8
,
2
,
9
)
x
=
np
.
random
.
random
((
3
,
4
,
4
,
3
)).
astype
(
"float16"
)
y
=
np
.
random
.
random
((
2
,
6
,
1
,
2
,
3
)).
astype
(
"float16"
)
self
.
inputs
=
{
'X'
:
x
.
view
(
np
.
float16
),
'Y'
:
y
.
view
(
np
.
float16
)}
self
.
attrs
=
{
'x_num_col_dims'
:
2
,
'y_num_col_dims'
:
2
,
}
result
=
np
.
dot
(
x
.
reshape
(
3
*
4
,
4
*
3
),
y
.
reshape
(
2
*
6
,
1
*
2
*
3
))
result
=
result
.
reshape
(
3
,
4
,
1
,
2
,
3
)
self
.
outputs
=
{
'Out'
:
result
}
def
test_check_output
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_reverse_op.py
0 → 100644
浏览文件 @
59d75bda
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestReverseOp
(
OpTest
):
def
initTestCase
(
self
):
self
.
x
=
np
.
random
.
random
((
3
,
4
)).
astype
(
'float32'
)
self
.
axis
=
[
0
]
def
setUp
(
self
):
self
.
initTestCase
()
self
.
op_type
=
"reverse"
self
.
inputs
=
{
"X"
:
self
.
x
}
self
.
attrs
=
{
'axis'
:
self
.
axis
}
out
=
self
.
x
for
a
in
self
.
axis
:
out
=
np
.
flip
(
out
,
axis
=
a
)
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
],
'Out'
)
class
TestCase0
(
TestReverseOp
):
def
initTestCase
(
self
):
self
.
x
=
np
.
random
.
random
((
3
,
4
)).
astype
(
'float32'
)
self
.
axis
=
[
1
]
class
TestCase1
(
TestReverseOp
):
def
initTestCase
(
self
):
self
.
x
=
np
.
random
.
random
((
3
,
4
)).
astype
(
'float32'
)
self
.
axis
=
[
0
,
1
]
class
TestCase2
(
TestReverseOp
):
def
initTestCase
(
self
):
self
.
x
=
np
.
random
.
random
((
3
,
4
,
5
)).
astype
(
'float32'
)
self
.
axis
=
[
0
,
2
]
class
TestCase3
(
TestReverseOp
):
def
initTestCase
(
self
):
self
.
x
=
np
.
random
.
random
((
3
,
4
,
5
)).
astype
(
'float32'
)
self
.
axis
=
[
1
,
2
]
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录