Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
5660d6a3
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5660d6a3
编写于
10月 25, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into accelerate_embedding_grad
上级
5de46197
3cab25a5
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
420 addition
and
181 deletion
+420
-181
paddle/fluid/operators/fusion_gru_op.cc
paddle/fluid/operators/fusion_gru_op.cc
+50
-98
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+2
-1
paddle/fluid/operators/math/jit_kernel.h
paddle/fluid/operators/math/jit_kernel.h
+9
-0
paddle/fluid/operators/math/jit_kernel_rnn.cc
paddle/fluid/operators/math/jit_kernel_rnn.cc
+180
-55
paddle/fluid/operators/math/sequence_pooling.cc
paddle/fluid/operators/math/sequence_pooling.cc
+32
-7
paddle/fluid/operators/math/sequence_pooling_test.cc
paddle/fluid/operators/math/sequence_pooling_test.cc
+126
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+3
-3
python/paddle/fluid/tests/unittests/dist_transformer.py
python/paddle/fluid/tests/unittests/dist_transformer.py
+8
-15
python/paddle/fluid/tests/unittests/test_dist_transformer.py
python/paddle/fluid/tests/unittests/test_dist_transformer.py
+4
-2
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
+6
-0
未找到文件。
paddle/fluid/operators/fusion_gru_op.cc
浏览文件 @
5660d6a3
...
@@ -16,10 +16,9 @@ limitations under the License. */
...
@@ -16,10 +16,9 @@ limitations under the License. */
#include <cstring> // for memcpy
#include <cstring> // for memcpy
#include <string>
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/fc_compute.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -174,58 +173,44 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -174,58 +173,44 @@ class FusionGRUKernel : public framework::OpKernel<T> {
}
}
}
}
#define INIT_VEC_FUNC \
#define INIT_BASE_DEFINES \
std::function<void(const int, const T *, T *)> act_gate, act_state; \
auto* x = ctx.Input<LoDTensor>("X"); \
std::function<void(const int, const T*, const T*, const T*, T*)> cross; \
auto* wh = ctx.Input<Tensor>("WeightH"); \
auto& act_gate_str = ctx.Attr<std::string>("gate_activation"); \
auto* xx = ctx.Output<LoDTensor>("XX"); \
auto& act_state_str = ctx.Attr<std::string>("activation"); \
auto x_lod = x->lod(); \
if (platform::jit::MayIUse(platform::jit::avx)) { \
auto x_dims = x->dims();
/* T x M*/
\
math::VecActivations<T, platform::jit::avx> act_functor; \
auto wh_dims = wh->dims();
/* D x 3D*/
\
act_gate = act_functor(act_gate_str); \
const int total_T = x_dims[0]; \
act_state = act_functor(act_state_str); \
const int D3 = wh_dims[1]
cross = math::vec_cross<T, platform::jit::avx>; \
} else { \
#define INIT_OTHER_DEFINES \
math::VecActivations<T, platform::jit::isa_any> act_functor; \
auto* h0 = ctx.Input<Tensor>("H0"); \
act_gate = act_functor(act_gate_str); \
auto* wx = ctx.Input<Tensor>("WeightX"); \
act_state = act_functor(act_state_str); \
auto* bias = ctx.Input<Tensor>("Bias"); \
cross = math::vec_cross<T, platform::jit::isa_any>; \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
}
bool is_reverse = ctx.Attr<bool>("is_reverse"); \
const int M = x_dims[1]; \
#define INIT_BASE_INPUT_OUTPUT \
const int D = wh_dims[0]; \
auto* h0 = ctx.Input<Tensor>("H0"); \
const int D2 = D * 2; \
auto* wx = ctx.Input<Tensor>("WeightX"); \
const auto& ker = math::jitkernel::KernelPool::Instance() \
auto* wh = ctx.Input<Tensor>("WeightH"); \
.template Get<math::jitkernel::GRUKernel<T>, \
auto* bias = ctx.Input<Tensor>("Bias"); \
const std::string&, const std::string&>( \
auto* xx = ctx.Output<LoDTensor>("XX"); \
ctx.Attr<std::string>("gate_activation"), \
auto* hidden_out = ctx.Output<LoDTensor>("Hidden"); \
ctx.Attr<std::string>("activation"), D); \
bool is_reverse = ctx.Attr<bool>("is_reverse");
const T* x_data = x->data<T>(); \
const T* wx_data = wx->data<T>(); \
#define INIT_BASE_SIZES \
const T* wh_data = wh->data<T>(); \
auto x_dims = x->dims();
/* T x M*/
\
auto place = ctx.GetPlace(); \
auto wh_dims = wh->dims();
/* D x 3D*/
\
T* xx_data = xx->mutable_data<T>(place)
const int total_T = x_dims[0]; \
const int M = x_dims[1]; \
const int D = wh_dims[0]; \
const int D3 = wh_dims[1]; \
const int D2 = D * 2;
void
SeqCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
SeqCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
INIT_BASE_DEFINES
;
INIT_BASE_INPUT_OUTPUT
INIT_OTHER_DEFINES
;
INIT_BASE_SIZES
INIT_VEC_FUNC
auto
x_lod
=
x
->
lod
();
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
nullptr
;
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
nullptr
;
const
T
*
wx_data
=
wx
->
data
<
T
>
();
const
T
*
wh_data
=
wh
->
data
<
T
>
();
const
T
*
wh_state_data
=
wh_data
+
D
*
D2
;
const
T
*
wh_state_data
=
wh_data
+
D
*
D2
;
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
hidden_out_data
=
hidden_out
->
mutable_data
<
T
>
(
place
);
T
*
hidden_out_data
=
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
D3
,
M
,
x_data
,
wx_data
,
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
total_T
,
D3
,
M
,
x_data
,
wx_data
,
xx_data
,
xx_data
,
...
@@ -252,14 +237,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -252,14 +237,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
if
(
h0_data
)
{
if
(
h0_data
)
{
prev_hidden_data
=
h0_data
+
bid
*
D
;
prev_hidden_data
=
h0_data
+
bid
*
D
;
}
else
{
}
else
{
// W: {W_update, W_reset; W_state}
ker
->
ComputeH1
(
xx_data
,
hidden_out_data
);
// update gate
act_gate
(
D
,
xx_data
,
xx_data
);
// state gate
act_state
(
D
,
xx_data
+
D2
,
xx_data
+
D2
);
// out = a*b
blas
.
VMUL
(
D
,
xx_data
,
xx_data
+
D2
,
hidden_out_data
);
// save prev
prev_hidden_data
=
hidden_out_data
;
prev_hidden_data
=
hidden_out_data
;
tstart
=
1
;
tstart
=
1
;
move_step
();
move_step
();
...
@@ -269,17 +247,12 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -269,17 +247,12 @@ class FusionGRUKernel : public framework::OpKernel<T> {
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D2
,
D
,
static_cast
<
T
>
(
1
),
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D2
,
D
,
static_cast
<
T
>
(
1
),
prev_hidden_data
,
D
,
wh_data
,
D2
,
static_cast
<
T
>
(
1
),
xx_data
,
prev_hidden_data
,
D
,
wh_data
,
D2
,
static_cast
<
T
>
(
1
),
xx_data
,
D3
);
D3
);
act_gate
(
D2
,
xx_data
,
xx_data
);
ker
->
ComputeHtPart1
(
xx_data
,
prev_hidden_data
,
hidden_out_data
);
// rt = rt*ht_1 inplace result
blas
.
VMUL
(
D
,
prev_hidden_data
,
xx_data
+
D
,
hidden_out_data
);
// gemm rt * Ws
// gemm rt * Ws
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D
,
D
,
static_cast
<
T
>
(
1
),
blas
.
GEMM
(
CblasNoTrans
,
CblasNoTrans
,
1
,
D
,
D
,
static_cast
<
T
>
(
1
),
hidden_out_data
,
D
,
wh_state_data
,
D
,
static_cast
<
T
>
(
1
),
hidden_out_data
,
D
,
wh_state_data
,
D
,
static_cast
<
T
>
(
1
),
xx_data
+
D2
,
D3
);
xx_data
+
D2
,
D3
);
act_state
(
D
,
xx_data
+
D2
,
xx_data
+
D2
);
ker
->
ComputeHtPart2
(
xx_data
,
prev_hidden_data
,
hidden_out_data
);
// out = zt*ht~ + (1-zt)*ht_1
cross
(
D
,
xx_data
,
xx_data
+
D2
,
prev_hidden_data
,
hidden_out_data
);
// save prev
// save prev
prev_hidden_data
=
hidden_out_data
;
prev_hidden_data
=
hidden_out_data
;
move_step
();
move_step
();
...
@@ -289,28 +262,19 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -289,28 +262,19 @@ class FusionGRUKernel : public framework::OpKernel<T> {
void
BatchCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
void
BatchCompute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
using
DeviceContext
=
paddle
::
platform
::
CPUDeviceContext
;
auto
*
x
=
ctx
.
Input
<
LoDTensor
>
(
"X"
);
INIT_BASE_DEFINES
;
INIT_BASE_INPUT_OUTPUT
if
(
x_lod
[
0
].
size
()
==
2
)
{
INIT_BASE_SIZES
if
(
x
->
lod
()[
0
].
size
()
==
2
)
{
xx
->
Resize
({
total_T
,
D3
});
xx
->
Resize
({
total_T
,
D3
});
SeqCompute
(
ctx
);
SeqCompute
(
ctx
);
return
;
return
;
}
}
INIT_VEC_FUNC
INIT_OTHER_DEFINES
;
auto
*
reordered_h0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedH0"
);
auto
*
reordered_h0
=
ctx
.
Output
<
Tensor
>
(
"ReorderedH0"
);
auto
*
batched_input
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedInput"
);
auto
*
batched_input
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedInput"
);
auto
*
batched_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedOut"
);
auto
*
batched_out
=
ctx
.
Output
<
LoDTensor
>
(
"BatchedOut"
);
T
*
batched_input_data
=
batched_input
->
mutable_data
<
T
>
(
place
);
const
T
*
x_data
=
x
->
data
<
T
>
();
T
*
batched_out_data
=
batched_out
->
mutable_data
<
T
>
(
place
);
const
T
*
wx_data
=
wx
->
data
<
T
>
();
hidden_out
->
mutable_data
<
T
>
(
place
);
const
T
*
wh_data
=
wh
->
data
<
T
>
();
T
*
xx_data
=
xx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
batched_input_data
=
batched_input
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
batched_out_data
=
batched_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
hidden_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
dev_ctx
);
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
math
::
LoDTensor2BatchFunctor
<
DeviceContext
,
T
>
to_batch
;
...
@@ -336,7 +300,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -336,7 +300,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T
*
prev_hidden_data
=
nullptr
;
T
*
prev_hidden_data
=
nullptr
;
if
(
h0
)
{
if
(
h0
)
{
// reorder h0
// reorder h0
T
*
reordered_h0_data
=
reordered_h0
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()
);
T
*
reordered_h0_data
=
reordered_h0
->
mutable_data
<
T
>
(
place
);
const
T
*
h0_data
=
h0
->
data
<
T
>
();
const
T
*
h0_data
=
h0
->
data
<
T
>
();
prev_hidden_data
=
reordered_h0_data
;
prev_hidden_data
=
reordered_h0_data
;
size_t
sz
=
sizeof
(
T
)
*
D
;
size_t
sz
=
sizeof
(
T
)
*
D
;
...
@@ -350,12 +314,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -350,12 +314,7 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T
*
cur_out_data
=
batched_out_data
;
T
*
cur_out_data
=
batched_out_data
;
// W: {W_update, W_reset; W_state}
// W: {W_update, W_reset; W_state}
for
(
int
i
=
0
;
i
<
max_bs
;
++
i
)
{
for
(
int
i
=
0
;
i
<
max_bs
;
++
i
)
{
// update gate
ker
->
ComputeH1
(
cur_in_data
,
cur_out_data
);
act_gate
(
D
,
cur_in_data
,
cur_in_data
);
// state gate
act_state
(
D
,
cur_in_data
+
D2
,
cur_in_data
+
D2
);
// out = a*b
blas
.
VMUL
(
D
,
cur_in_data
,
cur_in_data
+
D2
,
cur_out_data
);
// add offset
// add offset
cur_in_data
+=
D3
;
cur_in_data
+=
D3
;
cur_out_data
+=
D
;
cur_out_data
+=
D
;
...
@@ -380,10 +339,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -380,10 +339,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
T
*
cur_out_data
=
batched_out_data
;
T
*
cur_out_data
=
batched_out_data
;
T
*
cur_prev_hidden_data
=
prev_hidden_data
;
T
*
cur_prev_hidden_data
=
prev_hidden_data
;
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
act_gate
(
D2
,
cur_batched_data
,
cur_batched_data
);
ker
->
ComputeHtPart1
(
cur_batched_data
,
cur_prev_hidden_data
,
// rt = rt*ht_1 inplace result
cur_out_data
);
blas
.
VMUL
(
D
,
cur_prev_hidden_data
,
cur_batched_data
+
D
,
cur_out_data
);
cur_batched_data
+=
D3
;
cur_batched_data
+=
D3
;
cur_prev_hidden_data
+=
D
;
cur_prev_hidden_data
+=
D
;
cur_out_data
+=
D
;
cur_out_data
+=
D
;
...
@@ -397,12 +354,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -397,12 +354,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
cur_prev_hidden_data
=
prev_hidden_data
;
cur_prev_hidden_data
=
prev_hidden_data
;
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
for
(
int
i
=
0
;
i
<
cur_bs
;
++
i
)
{
// ht~ = act_state(...)
ker
->
ComputeHtPart2
(
cur_batched_data
,
cur_prev_hidden_data
,
act_state
(
D
,
cur_batched_data
+
D2
,
cur_batched_data
+
D2
);
cur_out_data
);
// out = zt*ht~ + (1-zt)*ht_1
cross
(
D
,
cur_batched_data
,
cur_batched_data
+
D2
,
cur_prev_hidden_data
,
cur_out_data
);
cur_batched_data
+=
D3
;
cur_batched_data
+=
D3
;
cur_prev_hidden_data
+=
D
;
cur_prev_hidden_data
+=
D
;
cur_out_data
+=
D
;
cur_out_data
+=
D
;
...
@@ -416,9 +369,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
...
@@ -416,9 +369,8 @@ class FusionGRUKernel : public framework::OpKernel<T> {
batched_out
->
set_lod
(
batched_lod
);
batched_out
->
set_lod
(
batched_lod
);
to_seq
(
dev_ctx
,
*
batched_out
,
hidden_out
);
to_seq
(
dev_ctx
,
*
batched_out
,
hidden_out
);
}
}
#undef INIT_VEC_FUNC
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_SIZES
#undef INIT_BASE_DEFINES
#undef INIT_BASE_INPUT_OUTPUT
};
};
}
// namespace operators
}
// namespace operators
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
5660d6a3
...
@@ -68,6 +68,7 @@ cc_test(selected_rows_functor_test SRCS selected_rows_functor_test.cc DEPS selec
...
@@ -68,6 +68,7 @@ cc_test(selected_rows_functor_test SRCS selected_rows_functor_test.cc DEPS selec
cc_test
(
im2col_test SRCS im2col_test.cc DEPS im2col
)
cc_test
(
im2col_test SRCS im2col_test.cc DEPS im2col
)
cc_test
(
vol2col_test SRCS vol2col_test.cc DEPS vol2col
)
cc_test
(
vol2col_test SRCS vol2col_test.cc DEPS vol2col
)
cc_test
(
sequence_padding_test SRCS sequence_padding_test.cc DEPS sequence_padding
)
cc_test
(
sequence_padding_test SRCS sequence_padding_test.cc DEPS sequence_padding
)
cc_test
(
sequence_pooling_test SRCS sequence_pooling_test.cc DEPS sequence_pooling
)
if
(
WITH_GPU
)
if
(
WITH_GPU
)
nv_test
(
math_function_gpu_test SRCS math_function_test.cu DEPS math_function
)
nv_test
(
math_function_gpu_test SRCS math_function_test.cu DEPS math_function
)
nv_test
(
selected_rows_functor_gpu_test SRCS selected_rows_functor_test.cu DEPS selected_rows_functor math_function
)
nv_test
(
selected_rows_functor_gpu_test SRCS selected_rows_functor_test.cu DEPS selected_rows_functor math_function
)
...
@@ -75,6 +76,6 @@ endif()
...
@@ -75,6 +76,6 @@ endif()
cc_test
(
concat_test SRCS concat_test.cc DEPS concat_and_split
)
cc_test
(
concat_test SRCS concat_test.cc DEPS concat_and_split
)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
cc_library
(
jit_kernel
cc_library
(
jit_kernel
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_
lstm
.cc
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_
rnn
.cc
DEPS cpu_info cblas
)
DEPS cpu_info cblas
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
paddle/fluid/operators/math/jit_kernel.h
浏览文件 @
5660d6a3
...
@@ -142,6 +142,15 @@ class LSTMKernel : public Kernel {
...
@@ -142,6 +142,15 @@ class LSTMKernel : public Kernel {
const
T
*
wp_data
=
nullptr
)
const
=
0
;
const
T
*
wp_data
=
nullptr
)
const
=
0
;
};
};
template
<
typename
T
>
class
GRUKernel
:
public
Kernel
{
public:
// compute h1 without h0
virtual
void
ComputeH1
(
T
*
gates
,
T
*
ht
)
const
=
0
;
virtual
void
ComputeHtPart1
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
=
0
;
virtual
void
ComputeHtPart2
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
=
0
;
};
}
// namespace jitkernel
}
// namespace jitkernel
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
...
...
paddle/fluid/operators/math/jit_kernel_
lstm
.cc
→
paddle/fluid/operators/math/jit_kernel_
rnn
.cc
浏览文件 @
5660d6a3
...
@@ -136,6 +136,23 @@ static std::shared_ptr<const VActKernel<T>> GetActKernel(
...
@@ -136,6 +136,23 @@ static std::shared_ptr<const VActKernel<T>> GetActKernel(
return
nullptr
;
return
nullptr
;
}
}
#ifdef __AVX__
template
<
jit
::
cpu_isa_t
isa
>
static
std
::
unique_ptr
<
AVXAct
>
GetAVXAct
(
const
std
::
string
&
type
)
{
if
(
type
==
"sigmoid"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kSigmoid
,
isa
>
());
}
else
if
(
type
==
"relu"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kRelu
,
isa
>
());
}
else
if
(
type
==
"tanh"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kTanh
,
isa
>
());
}
else
if
(
type
==
"identity"
||
type
==
""
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kIdentity
,
isa
>
());
}
PADDLE_THROW
(
"Not support type: %s"
,
type
);
return
nullptr
;
}
#endif
/* LSTM JitKernel */
/* LSTM JitKernel */
template
<
typename
T
,
jit
::
cpu_isa_t
isa
,
jit_block
>
template
<
typename
T
,
jit
::
cpu_isa_t
isa
,
jit_block
>
class
LSTMKernelImpl
:
public
LSTMKernel
<
T
>
{
class
LSTMKernelImpl
:
public
LSTMKernel
<
T
>
{
...
@@ -192,61 +209,49 @@ class LSTMKernelImpl : public LSTMKernel<T> {
...
@@ -192,61 +209,49 @@ class LSTMKernelImpl : public LSTMKernel<T> {
#endif
#endif
};
};
#define INTRI8_FLOAT(isa) \
#define INTRI8_FLOAT(isa) \
template <> \
template <> \
LSTMKernelImpl<float, isa, kEQ8>::LSTMKernelImpl( \
LSTMKernelImpl<float, isa, kEQ8>::LSTMKernelImpl( \
const std::string& act_gate, const std::string& act_cand, \
const std::string& act_gate, const std::string& act_cand, \
const std::string& act_cell, int d) \
const std::string& act_cell, int d) \
: LSTMKernel<float>() { \
: LSTMKernel<float>() { \
auto GetAVXAct = [&](const std::string& type) -> std::unique_ptr<AVXAct> { \
avx_act_gate_ = GetAVXAct<isa>(act_gate); \
if (type == "sigmoid") { \
avx_act_cand_ = GetAVXAct<isa>(act_cand); \
return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid, isa>()); \
avx_act_cell_ = GetAVXAct<isa>(act_cell); \
} else if (type == "relu") { \
} \
return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu, isa>()); \
template <> \
} else if (type == "tanh") { \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt( \
return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh, isa>()); \
float* gates, const float* ct_1, float* ct, float* ht, \
} else if (type == "identity" || type == "") { \
const float* wp_data, float* checked) const { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity, isa>()); \
/* gates: W_ch, W_ih, W_fh, W_oh */
\
} \
__m256 c, i, f, o; \
PADDLE_THROW("Not support type: %s", type); \
c = _mm256_loadu_ps(gates); \
}; \
i = _mm256_loadu_ps(gates + 8); \
avx_act_gate_ = GetAVXAct(act_gate); \
f = _mm256_loadu_ps(gates + 16); \
avx_act_cand_ = GetAVXAct(act_cand); \
o = _mm256_loadu_ps(gates + 24); \
avx_act_cell_ = GetAVXAct(act_cell); \
/* C_t = C_t-1 * fgated + cand_gated * igated*/
\
} \
c = _mm256_mul_ps(avx_act_cand_->Compute(c), avx_act_gate_->Compute(i)); \
template <> \
i = _mm256_loadu_ps(ct_1); \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt( \
f = _mm256_mul_ps(i, avx_act_gate_->Compute(f)); \
float* gates, const float* ct_1, float* ct, float* ht, \
f = _mm256_add_ps(c, f); \
const float* wp_data, float* checked) const { \
_mm256_storeu_ps(ct, f); \
/* gates: W_ch, W_ih, W_fh, W_oh */
\
/* H_t = act_cell(C_t) * ogated */
\
__m256 c, i, f, o; \
o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
c = _mm256_loadu_ps(gates); \
_mm256_storeu_ps(ht, o); \
i = _mm256_loadu_ps(gates + 8); \
} \
f = _mm256_loadu_ps(gates + 16); \
template <> \
o = _mm256_loadu_ps(gates + 24); \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeC1H1( \
/* C_t = C_t-1 * fgated + cand_gated * igated*/
\
float* gates, float* ct, float* ht, const float* wp_data) const { \
c = _mm256_mul_ps(avx_act_cand_->Compute(c), avx_act_gate_->Compute(i)); \
__m256 c, i, o; \
i = _mm256_loadu_ps(ct_1); \
c = _mm256_loadu_ps(gates); \
f = _mm256_mul_ps(i, avx_act_gate_->Compute(f)); \
i = _mm256_loadu_ps(gates + 8); \
f = _mm256_add_ps(c, f); \
o = _mm256_loadu_ps(gates + 24); \
_mm256_storeu_ps(ct, f); \
/* C_t = igated * cgated*/
\
/* H_t = act_cell(C_t) * ogated */
\
c = _mm256_mul_ps(avx_act_gate_->Compute(i), avx_act_cand_->Compute(c)); \
o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ct, c); \
_mm256_storeu_ps(ht, o); \
/* H_t = act_cell(C_t) * ogated */
\
} \
o = _mm256_mul_ps(avx_act_cell_->Compute(c), avx_act_gate_->Compute(o)); \
template <> \
_mm256_storeu_ps(ht, o); \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeC1H1( \
float* gates, float* ct, float* ht, const float* wp_data) const { \
__m256 c, i, o; \
c = _mm256_loadu_ps(gates); \
i = _mm256_loadu_ps(gates + 8); \
o = _mm256_loadu_ps(gates + 24); \
/* C_t = igated * cgated*/
\
c = _mm256_mul_ps(avx_act_gate_->Compute(i), avx_act_cand_->Compute(c)); \
_mm256_storeu_ps(ct, c); \
/* H_t = act_cell(C_t) * ogated */
\
o = _mm256_mul_ps(avx_act_cell_->Compute(c), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ht, o); \
}
}
// TODO(TJ): optimize keq16
// TODO(TJ): optimize keq16
...
@@ -354,6 +359,126 @@ REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
...
@@ -354,6 +359,126 @@ REGISTER_JITKERNEL_ARGS(lstm, LSTMKernel, JITKERNEL_DECLARE_LSTM,
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_DECLARE_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_KEY_LSTM
#undef JITKERNEL_NEW_LSTM_IMPL
#undef JITKERNEL_NEW_LSTM_IMPL
/* GRU JitKernel */
template
<
typename
T
,
jit
::
cpu_isa_t
isa
,
jit_block
>
class
GRUKernelImpl
:
public
GRUKernel
<
T
>
{
public:
explicit
GRUKernelImpl
(
const
std
::
string
&
act_gate
,
const
std
::
string
&
act_state
,
int
d
)
:
GRUKernel
<
T
>
()
{
d_
=
d
;
d2_
=
d
*
2
;
act_gate_d2_
=
GetActKernel
<
T
>
(
act_gate
,
d2_
);
act_gate_d_
=
GetActKernel
<
T
>
(
act_gate
,
d
);
act_state_d_
=
GetActKernel
<
T
>
(
act_state
,
d
);
vmul_d_
=
KernelPool
::
Instance
().
template
Get
<
VMulKernel
<
T
>
>
(
d
);
}
void
ComputeH1
(
T
*
gates
,
T
*
ht
)
const
override
{
act_gate_d_
->
Compute
(
gates
,
gates
);
act_state_d_
->
Compute
(
gates
+
d2_
,
gates
+
d2_
);
vmul_d_
->
Compute
(
gates
,
gates
+
d2_
,
ht
);
}
void
ComputeHtPart1
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
override
{
// W: {W_update, W_reset; W_state}
act_gate_d2_
->
Compute
(
gates
,
gates
);
vmul_d_
->
Compute
(
ht_1
,
gates
+
d_
,
ht
);
}
void
ComputeHtPart2
(
T
*
gates
,
const
T
*
ht_1
,
T
*
ht
)
const
override
{
T
*
y
=
gates
+
d2_
;
act_state_d_
->
Compute
(
y
,
y
);
// out = zt*ht~ + (1-zt)*ht_1
for
(
int
i
=
0
;
i
<
d_
;
++
i
)
{
ht
[
i
]
=
gates
[
i
]
*
y
[
i
]
+
(
static_cast
<
T
>
(
1
)
-
gates
[
i
])
*
ht_1
[
i
];
}
}
private:
int
d_
,
d2_
;
std
::
shared_ptr
<
const
VActKernel
<
T
>>
act_gate_d2_
,
act_gate_d_
,
act_state_d_
;
std
::
shared_ptr
<
const
VMulKernel
<
T
>>
vmul_d_
;
#ifdef __AVX__
std
::
unique_ptr
<
const
AVXAct
>
avx_act_gate_
,
avx_act_state_
;
#endif
};
#define INTRI8_FLOAT(isa) \
template <> \
GRUKernelImpl<float, isa, kEQ8>::GRUKernelImpl( \
const std::string& act_gate, const std::string& act_state, int d) \
: GRUKernel<float>() { \
avx_act_gate_ = GetAVXAct<isa>(act_gate); \
avx_act_state_ = GetAVXAct<isa>(act_state); \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeH1(float* gates, float* ht) \
const { \
__m256 u, s; \
/* W: {W_update, W_reset; W_state} */
\
u = _mm256_loadu_ps(gates); \
s = _mm256_loadu_ps(gates + 16); \
s = _mm256_mul_ps(avx_act_gate_->Compute(u), avx_act_state_->Compute(s)); \
_mm256_storeu_ps(ht, s); \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeHtPart1( \
float* gates, const float* ht_1, float* ht) const { \
/* not exactly equal the any implementation */
\
__m256 r, ht0; \
r = _mm256_loadu_ps(gates + 8); \
ht0 = _mm256_loadu_ps(ht_1); \
r = _mm256_mul_ps(avx_act_gate_->Compute(r), ht0); \
_mm256_storeu_ps(ht, r); \
} \
template <> \
void GRUKernelImpl<float, isa, kEQ8>::ComputeHtPart2( \
float* gates, const float* ht_1, float* ht) const { \
/* not exactly equal the any implementation */
\
__m256 u, s, ht0; \
u = _mm256_loadu_ps(gates); \
s = _mm256_loadu_ps(gates + 16); \
ht0 = _mm256_loadu_ps(ht_1); \
u = avx_act_gate_->Compute(u); \
s = _mm256_mul_ps(u, avx_act_state_->Compute(s)); \
u = _mm256_sub_ps(_mm256_set1_ps(1.f), u); \
u = _mm256_mul_ps(u, ht0); \
u = _mm256_add_ps(s, u); \
_mm256_storeu_ps(ht, u); \
}
#ifdef __AVX__
INTRI8_FLOAT
(
jit
::
avx
);
#endif
#ifdef __AVX2__
INTRI8_FLOAT
(
jit
::
avx2
);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT
(
jit
::
avx512f
);
#endif
#define JITKERNEL_DECLARE_GRU(ker_class, ker_dtype) \
template <> \
std::shared_ptr<const GRUKernel<ker_dtype>> KernelPool::Get< \
GRUKernel<ker_dtype>, const std::string&, const std::string&, int>( \
const std::string& act_gate, const std::string& act_state, int d)
#define JITKERNEL_KEY_GRU(ker_key, dtype_key) \
#ker_key #dtype_key + std::to_string(d) + act_gate + act_state
#define JITKERNEL_NEW_GRU_IMPL(ker, dtype, isa, k) \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype, isa, k>>(act_gate, act_state, d));
REGISTER_JITKERNEL_ARGS
(
gru
,
GRUKernel
,
JITKERNEL_DECLARE_GRU
,
JITKERNEL_KEY_GRU
,
JITKERNEL_NEW_GRU_IMPL
);
#undef INTRI8_FLOAT
#undef JITKERNEL_NEW_GRU_IMPL
#undef JITKERNEL_KEY_GRU
#undef JITKERNEL_DECLARE_GRU
}
// namespace jitkernel
}
// namespace jitkernel
}
// namespace math
}
// namespace math
}
// namespace operators
}
// namespace operators
...
...
paddle/fluid/operators/math/sequence_pooling.cc
浏览文件 @
5660d6a3
...
@@ -157,6 +157,31 @@ class FirstSeqPoolFunctor {
...
@@ -157,6 +157,31 @@ class FirstSeqPoolFunctor {
}
}
};
};
template
<
typename
T
>
class
SumSeqPoolGradFunctor
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
Tensor
&
out_grad
,
framework
::
LoDTensor
*
in_grad
)
{
auto
lod
=
in_grad
->
lod
()[
0
];
int64_t
out_w
=
out_grad
.
numel
()
/
out_grad
.
dims
()[
0
];
int64_t
in_w
=
in_grad
->
numel
()
/
in_grad
->
dims
()[
0
];
PADDLE_ENFORCE
(
in_w
==
out_w
);
const
T
*
out_g_data
=
out_grad
.
data
<
T
>
();
T
*
in_g_data
=
in_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
int64_t
h
=
static_cast
<
int64_t
>
(
lod
[
i
+
1
]
-
lod
[
i
]);
int64_t
in_offset
=
lod
[
i
]
*
in_w
;
const
T
*
out_pos
=
out_g_data
+
i
*
out_w
;
T
*
in_pos
=
in_g_data
+
in_offset
;
for
(
int
r
=
0
;
r
!=
h
;
++
r
)
{
blas
.
VCOPY
(
in_w
,
out_pos
,
in_pos
+
r
*
in_w
);
}
}
}
};
template
<
typename
T
>
template
<
typename
T
>
class
SequencePoolFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
class
SequencePoolFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
public:
public:
...
@@ -231,9 +256,15 @@ class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
...
@@ -231,9 +256,15 @@ class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
functor
;
math
::
SetConstant
<
platform
::
CPUDeviceContext
,
T
>
functor
;
functor
(
context
,
in_grad
,
0
);
functor
(
context
,
in_grad
,
0
);
}
}
if
(
pooltype
==
"SUM"
)
{
math
::
SumSeqPoolGradFunctor
<
T
>
sum_pool_grad
;
sum_pool_grad
(
context
,
out_grad
,
in_grad
);
return
;
}
auto
lod
=
in_grad
->
lod
()[
0
];
auto
lod
=
in_grad
->
lod
()[
0
];
auto
&
place
=
*
context
.
eigen_device
();
auto
&
place
=
*
context
.
eigen_device
();
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
auto
in_g_t
=
in_grad
->
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
auto
in_g_t
=
in_grad
->
Slice
(
static_cast
<
int
>
(
lod
[
i
]),
static_cast
<
int
>
(
lod
[
i
+
1
]));
static_cast
<
int
>
(
lod
[
i
+
1
]));
...
@@ -247,12 +278,6 @@ class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
...
@@ -247,12 +278,6 @@ class SequencePoolGradFunctor<platform::CPUDeviceContext, T> {
if
(
pooltype
==
"AVERAGE"
)
{
if
(
pooltype
==
"AVERAGE"
)
{
in_g_e
.
device
(
place
)
=
(
out_g_e
/
static_cast
<
T
>
(
h
)).
broadcast
(
bcast
);
in_g_e
.
device
(
place
)
=
(
out_g_e
/
static_cast
<
T
>
(
h
)).
broadcast
(
bcast
);
}
else
if
(
pooltype
==
"SUM"
)
{
const
T
*
out_g_data
=
out_g_t
.
data
<
T
>
();
T
*
in_g_data
=
in_g_t
.
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int
r
=
0
;
r
!=
h
;
++
r
)
{
blas
.
VCOPY
(
w
,
out_g_data
,
in_g_data
+
r
*
w
);
}
}
else
if
(
pooltype
==
"SQRT"
)
{
}
else
if
(
pooltype
==
"SQRT"
)
{
in_g_e
.
device
(
place
)
=
in_g_e
.
device
(
place
)
=
(
out_g_e
/
std
::
sqrt
(
static_cast
<
T
>
(
h
))).
broadcast
(
bcast
);
(
out_g_e
/
std
::
sqrt
(
static_cast
<
T
>
(
h
))).
broadcast
(
bcast
);
...
...
paddle/fluid/operators/math/sequence_pooling_test.cc
0 → 100644
浏览文件 @
5660d6a3
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/math/sequence_pooling.h"
#include <gtest/gtest.h>
#include <vector>
template
<
typename
DeviceContext
,
typename
Place
,
typename
T
>
void
TestSequencePoolingSum
(
const
paddle
::
framework
::
LoD
&
lod
)
{
paddle
::
framework
::
LoDTensor
cpu_out_grad
;
paddle
::
framework
::
LoDTensor
cpu_in_grad
;
paddle
::
framework
::
LoDTensor
out_grad
;
paddle
::
framework
::
LoDTensor
in_grad
;
const
size_t
second_dim
=
128u
;
// construct out_grad's tensor in cpu
const
size_t
out_first_dim
=
lod
[
0
].
size
()
-
1
;
auto
out_dims
=
paddle
::
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
out_first_dim
),
static_cast
<
int64_t
>
(
second_dim
)});
cpu_out_grad
.
mutable_data
<
T
>
(
out_dims
,
paddle
::
platform
::
CPUPlace
());
for
(
int64_t
i
=
0
;
i
<
cpu_out_grad
.
numel
();
++
i
)
{
cpu_out_grad
.
data
<
T
>
()[
i
]
=
static_cast
<
T
>
(
i
);
}
// copy to dst out_grad
auto
*
place
=
new
Place
();
DeviceContext
*
context
=
new
DeviceContext
(
*
place
);
if
(
paddle
::
platform
::
is_cpu_place
(
*
place
))
{
out_grad
=
cpu_out_grad
;
}
else
{
TensorCopySync
(
cpu_out_grad
,
*
place
,
&
out_grad
);
}
// construct in_grad
in_grad
.
set_lod
(
lod
);
auto
in_dims
=
paddle
::
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
lod
[
0
].
back
()),
static_cast
<
int64_t
>
(
second_dim
)});
in_grad
.
mutable_data
<
T
>
(
in_dims
,
context
->
GetPlace
());
// check tensor contruction result
PADDLE_ENFORCE_EQ
(
in_grad
.
dims
().
size
(),
out_grad
.
dims
().
size
());
for
(
int64_t
i
=
1
;
i
<
out_grad
.
dims
().
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
in_grad
.
dims
()[
i
],
out_grad
.
dims
()[
i
]);
}
// call functor
paddle
::
operators
::
math
::
SequencePoolGradFunctor
<
DeviceContext
,
T
>
()(
*
context
,
"SUM"
,
out_grad
,
&
in_grad
);
if
(
paddle
::
platform
::
is_cpu_place
(
*
place
))
{
cpu_in_grad
=
in_grad
;
}
else
{
TensorCopySync
(
in_grad
,
paddle
::
platform
::
CPUPlace
(),
&
cpu_in_grad
);
cpu_in_grad
.
set_lod
(
in_grad
.
lod
());
}
EXPECT_EQ
(
in_grad
.
numel
(),
lod
[
0
].
back
()
*
second_dim
);
EXPECT_EQ
(
in_grad
.
lod
(),
lod
);
if
(
paddle
::
platform
::
is_cpu_place
(
*
place
))
{
for
(
int64_t
i
=
0
;
i
<
in_grad
.
lod
()[
0
].
size
()
-
1
;
++
i
)
{
int64_t
begin
=
in_grad
.
lod
()[
0
][
i
];
int64_t
end
=
in_grad
.
lod
()[
0
][
i
+
1
];
paddle
::
framework
::
Tensor
tmp
=
in_grad
.
Slice
(
begin
,
end
);
for
(
int64_t
j
=
0
;
j
!=
tmp
.
numel
()
/
second_dim
;
++
j
)
{
for
(
int64_t
m
=
0
;
m
!=
second_dim
;
++
m
)
{
EXPECT_EQ
(
tmp
.
data
<
T
>
()[
m
+
j
*
second_dim
],
out_grad
.
data
<
T
>
()[
m
+
i
*
second_dim
]);
}
}
}
}
else
{
for
(
int64_t
i
=
0
;
i
<
cpu_in_grad
.
lod
()[
0
].
size
()
-
1
;
++
i
)
{
int64_t
begin
=
cpu_in_grad
.
lod
()[
0
][
i
];
int64_t
end
=
cpu_in_grad
.
lod
()[
0
][
i
+
1
];
paddle
::
framework
::
Tensor
tmp
=
cpu_in_grad
.
Slice
(
begin
,
end
);
for
(
int64_t
j
=
0
;
j
!=
tmp
.
numel
()
/
second_dim
;
++
j
)
{
for
(
int64_t
m
=
0
;
m
!=
second_dim
;
++
m
)
{
EXPECT_EQ
(
tmp
.
data
<
T
>
()[
m
+
j
*
second_dim
],
cpu_out_grad
.
data
<
T
>
()[
m
+
i
*
second_dim
]);
}
}
}
}
delete
place
;
delete
context
;
}
TEST
(
SequencePoolingGrad
,
CPU_SUM
)
{
paddle
::
framework
::
LoD
lod1
;
lod1
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
10
});
TestSequencePoolingSum
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
CPUPlace
,
float
>
(
lod1
);
paddle
::
framework
::
LoD
lod2
;
lod2
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
,
7
,
10
});
TestSequencePoolingSum
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
CPUPlace
,
float
>
(
lod2
);
}
#ifdef PADDLE_WITH_CUDA
TEST
(
SequencePoolingGrad
,
CUDA_SUM
)
{
paddle
::
framework
::
LoD
lod1
;
lod1
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
10
});
TestSequencePoolingSum
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
CUDAPlace
,
float
>
(
lod1
);
paddle
::
framework
::
LoD
lod2
;
lod2
.
push_back
(
std
::
vector
<
size_t
>
{
0
,
2
,
7
,
10
});
TestSequencePoolingSum
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
CUDAPlace
,
float
>
(
lod2
);
}
#endif
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
5660d6a3
...
@@ -78,9 +78,9 @@ if(WITH_DISTRIBUTE)
...
@@ -78,9 +78,9 @@ if(WITH_DISTRIBUTE)
set_tests_properties
(
test_dist_word2vec PROPERTIES TIMEOUT 200
)
set_tests_properties
(
test_dist_word2vec PROPERTIES TIMEOUT 200
)
py_test_modules
(
test_dist_se_resnext MODULES test_dist_se_resnext
)
py_test_modules
(
test_dist_se_resnext MODULES test_dist_se_resnext
)
set_tests_properties
(
test_dist_se_resnext PROPERTIES TIMEOUT 1000
)
set_tests_properties
(
test_dist_se_resnext PROPERTIES TIMEOUT 1000
)
# TODO: fix this test
#
py_test_modules(test_dist_transformer MODULES test_dist_transformer)
py_test_modules
(
test_dist_transformer MODULES test_dist_transformer
)
#
set_tests_properties(test_dist_transformer PROPERTIES TIMEOUT 1000)
set_tests_properties
(
test_dist_transformer PROPERTIES TIMEOUT 1000
)
endif
(
NOT APPLE
)
endif
(
NOT APPLE
)
py_test_modules
(
test_dist_transpiler MODULES test_dist_transpiler
)
py_test_modules
(
test_dist_transpiler MODULES test_dist_transpiler
)
endif
()
endif
()
...
...
python/paddle/fluid/tests/unittests/dist_transformer.py
浏览文件 @
5660d6a3
...
@@ -35,7 +35,7 @@ import paddle
...
@@ -35,7 +35,7 @@ import paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.layers
as
layers
from
paddle.fluid
import
core
from
paddle.fluid
import
core
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
from
test_dist_base
import
TestDistRunnerBase
,
runtime_main
,
RUN_STEP
import
paddle.compat
as
cpt
import
paddle.compat
as
cpt
from
paddle.compat
import
long_type
from
paddle.compat
import
long_type
...
@@ -562,18 +562,12 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
...
@@ -562,18 +562,12 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
for
pass_id
in
six
.
moves
.
xrange
(
TrainTaskConfig
.
pass_num
):
for
pass_id
in
six
.
moves
.
xrange
(
TrainTaskConfig
.
pass_num
):
pass_start_time
=
time
.
time
()
pass_start_time
=
time
.
time
()
for
batch_id
,
data
in
enumerate
(
train_data
()):
for
batch_id
,
data
in
enumerate
(
train_data
()):
if
batch_id
>=
5
:
if
batch_id
>=
RUN_STEP
:
break
break
feed_list
=
[]
feed_list
=
[]
total_num_token
=
0
total_num_token
=
0
#if TrainTaskConfig.local:
# lr_rate = lr_scheduler.update_learning_rate()
#for place_id, data_buffer in enumerate(
# split_data(
# data, num_part=dev_count)):
if
TrainTaskConfig
.
local
:
if
TrainTaskConfig
.
local
:
lr_rate
=
lr_scheduler
.
update_learning_rate
()
lr_rate
=
lr_scheduler
.
update_learning_rate
()
...
@@ -619,12 +613,11 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
...
@@ -619,12 +613,11 @@ def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler,
init
=
True
init
=
True
# Validate and save the model for inference.
# Validate and save the model for inference.
if
batch_id
==
0
or
batch_id
==
4
:
if
TrainTaskConfig
.
val_file_pattern
is
not
None
:
if
TrainTaskConfig
.
val_file_pattern
is
not
None
:
val_avg_cost
,
val_ppl
=
test
()
val_avg_cost
,
val_ppl
=
test
()
print
(
"[%f]"
%
val_avg_cost
)
print
(
"[%f]"
%
val_avg_cost
)
else
:
else
:
assert
(
False
)
assert
(
False
)
#import transformer_reader as reader
#import transformer_reader as reader
...
@@ -1701,7 +1694,7 @@ class DistTransformer2x2(TestDistRunnerBase):
...
@@ -1701,7 +1694,7 @@ class DistTransformer2x2(TestDistRunnerBase):
def
run_trainer
(
self
,
args
):
def
run_trainer
(
self
,
args
):
TrainTaskConfig
.
use_gpu
=
args
.
use_cuda
TrainTaskConfig
.
use_gpu
=
args
.
use_cuda
sum_cost
,
avg_cost
,
predict
,
token_num
,
local_lr_scheduler
=
get_model
(
sum_cost
,
avg_cost
,
predict
,
token_num
,
local_lr_scheduler
,
test_program
=
get_model
(
args
.
is_dist
,
not
args
.
sync_mode
)
args
.
is_dist
,
not
args
.
sync_mode
)
if
args
.
is_dist
:
if
args
.
is_dist
:
...
...
python/paddle/fluid/tests/unittests/test_dist_transformer.py
浏览文件 @
5660d6a3
...
@@ -61,7 +61,8 @@ class TestDistTransformer2x2Sync(TestDistBase):
...
@@ -61,7 +61,8 @@ class TestDistTransformer2x2Sync(TestDistBase):
def
test_dist_train
(
self
):
def
test_dist_train
(
self
):
download_files
()
download_files
()
self
.
check_with_place
(
"dist_transformer.py"
,
delta
=
1e-5
)
self
.
check_with_place
(
"dist_transformer.py"
,
delta
=
1e-5
,
check_error_log
=
False
)
class
TestDistTransformer2x2Async
(
TestDistBase
):
class
TestDistTransformer2x2Async
(
TestDistBase
):
...
@@ -70,7 +71,8 @@ class TestDistTransformer2x2Async(TestDistBase):
...
@@ -70,7 +71,8 @@ class TestDistTransformer2x2Async(TestDistBase):
def
test_dist_train
(
self
):
def
test_dist_train
(
self
):
download_files
()
download_files
()
self
.
check_with_place
(
"dist_transformer.py"
,
delta
=
1.0
)
self
.
check_with_place
(
"dist_transformer.py"
,
delta
=
1.0
,
check_error_log
=
False
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_fusion_gru_op.py
浏览文件 @
5660d6a3
...
@@ -125,6 +125,12 @@ class TestFusionGRUOpMD2(TestFusionGRUOp):
...
@@ -125,6 +125,12 @@ class TestFusionGRUOpMD2(TestFusionGRUOp):
self
.
D
=
8
self
.
D
=
8
class
TestFusionGRUOpMD3
(
TestFusionGRUOp
):
def
set_confs
(
self
):
self
.
M
=
17
self
.
D
=
15
class
TestFusionGRUOpBS1
(
TestFusionGRUOp
):
class
TestFusionGRUOpBS1
(
TestFusionGRUOp
):
def
set_confs
(
self
):
def
set_confs
(
self
):
self
.
lod
=
[[
3
]]
self
.
lod
=
[[
3
]]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录