Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
53b6ee19
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
53b6ee19
编写于
2月 07, 2018
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into ssd_target_assign
上级
ee7d8421
20c4a4cb
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
470 addition
and
97 deletion
+470
-97
doc/design/switch.md
doc/design/switch.md
+1
-2
paddle/inference/tests/book/CMakeLists.txt
paddle/inference/tests/book/CMakeLists.txt
+6
-0
paddle/inference/tests/book/test_helper.h
paddle/inference/tests/book/test_helper.h
+104
-0
paddle/inference/tests/book/test_inference_label_semantic_roles.cc
...ference/tests/book/test_inference_label_semantic_roles.cc
+81
-0
paddle/inference/tests/book/test_inference_recognize_digits.cc
...e/inference/tests/book/test_inference_recognize_digits.cc
+1
-80
paddle/operators/conditional_block_op.cc
paddle/operators/conditional_block_op.cc
+38
-6
python/paddle/v2/fluid/layers/control_flow.py
python/paddle/v2/fluid/layers/control_flow.py
+64
-2
python/paddle/v2/fluid/layers/ops.py
python/paddle/v2/fluid/layers/ops.py
+4
-0
python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py
...n/paddle/v2/fluid/tests/book/test_label_semantic_roles.py
+107
-7
python/paddle/v2/fluid/tests/test_switch.py
python/paddle/v2/fluid/tests/test_switch.py
+64
-0
未找到文件。
doc/design/switch.md
浏览文件 @
53b6ee19
...
...
@@ -10,8 +10,7 @@ The following example shows the usage of `fluid.switch`.
a
=
fluid
.
Var
(
10
)
b
=
fluid
.
Var
(
0
)
switch
=
fluid
.
switch
()
with
switch
.
block
():
with
switch
()
as
switch
:
with
switch
.
case
(
fluid
.
less_equal
(
a
,
10
)):
fluid
.
print
(
"Case 1"
)
with
switch
.
case
(
fluid
.
larger
(
a
,
0
)):
...
...
paddle/inference/tests/book/CMakeLists.txt
浏览文件 @
53b6ee19
...
...
@@ -11,9 +11,15 @@ cc_test(test_inference_image_classification_resnet
SRCS test_inference_image_classification.cc
DEPS ARCHIVE_START paddle_fluid ARCHIVE_END
ARGS --dirname=
${
PYTHON_TESTS_DIR
}
/book/image_classification_resnet.inference.model
)
cc_test
(
test_inference_label_semantic_roles
SRCS test_inference_label_semantic_roles.cc
DEPS ARCHIVE_START paddle_fluid ARCHIVE_END
ARGS --dirname=
${
PYTHON_TESTS_DIR
}
/book/label_semantic_roles.inference.model
)
set_tests_properties
(
test_inference_recognize_digits_mlp
PROPERTIES DEPENDS test_recognize_digits
)
set_tests_properties
(
test_inference_image_classification_vgg
PROPERTIES DEPENDS test_image_classification_train
)
set_tests_properties
(
test_inference_image_classification_resnet
PROPERTIES DEPENDS test_image_classification_train
)
set_tests_properties
(
test_inference_label_semantic_roles
PROPERTIES DEPENDS test_label_semantic_roles
)
paddle/inference/tests/book/test_helper.h
0 → 100644
浏览文件 @
53b6ee19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/lod_tensor.h"
#include "paddle/inference/io.h"
template
<
typename
T
>
void
SetupTensor
(
paddle
::
framework
::
LoDTensor
&
input
,
paddle
::
framework
::
DDim
dims
,
T
lower
,
T
upper
)
{
srand
(
time
(
0
));
T
*
input_ptr
=
input
.
mutable_data
<
T
>
(
dims
,
paddle
::
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
input
.
numel
();
++
i
)
{
input_ptr
[
i
]
=
(
static_cast
<
T
>
(
rand
())
/
static_cast
<
T
>
(
RAND_MAX
))
*
(
upper
-
lower
)
+
lower
;
}
}
template
<
typename
T
>
void
SetupLoDTensor
(
paddle
::
framework
::
LoDTensor
&
input
,
paddle
::
framework
::
LoD
&
lod
,
T
lower
,
T
upper
)
{
input
.
set_lod
(
lod
);
int
dim
=
lod
[
0
][
lod
[
0
].
size
()
-
1
];
SetupTensor
(
input
,
{
dim
,
1
},
lower
,
upper
);
}
template
<
typename
T
>
void
CheckError
(
paddle
::
framework
::
LoDTensor
&
output1
,
paddle
::
framework
::
LoDTensor
&
output2
)
{
// Check lod information
EXPECT_EQ
(
output1
.
lod
(),
output2
.
lod
());
EXPECT_EQ
(
output1
.
dims
(),
output2
.
dims
());
EXPECT_EQ
(
output1
.
numel
(),
output2
.
numel
());
T
err
=
static_cast
<
T
>
(
0
);
if
(
typeid
(
T
)
==
typeid
(
float
))
{
err
=
1E-3
;
}
else
if
(
typeid
(
T
)
==
typeid
(
double
))
{
err
=
1E-6
;
}
else
{
err
=
0
;
}
size_t
count
=
0
;
for
(
int64_t
i
=
0
;
i
<
output1
.
numel
();
++
i
)
{
if
(
fabs
(
output1
.
data
<
T
>
()[
i
]
-
output2
.
data
<
T
>
()[
i
])
>
err
)
{
count
++
;
}
}
EXPECT_EQ
(
count
,
0
)
<<
"There are "
<<
count
<<
" different elements."
;
}
template
<
typename
Place
,
typename
T
>
void
TestInference
(
const
std
::
string
&
dirname
,
const
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>&
cpu_feeds
,
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>&
cpu_fetchs
)
{
// 1. Define place, executor and scope
auto
place
=
Place
();
auto
executor
=
paddle
::
framework
::
Executor
(
place
);
auto
*
scope
=
new
paddle
::
framework
::
Scope
();
// 2. Initialize the inference_program and load all parameters from file
auto
inference_program
=
paddle
::
inference
::
Load
(
executor
,
*
scope
,
dirname
);
// 3. Get the feed_target_names and fetch_target_names
const
std
::
vector
<
std
::
string
>&
feed_target_names
=
inference_program
->
GetFeedTargetNames
();
const
std
::
vector
<
std
::
string
>&
fetch_target_names
=
inference_program
->
GetFetchTargetNames
();
// 4. Prepare inputs: set up maps for feed targets
std
::
map
<
std
::
string
,
const
paddle
::
framework
::
LoDTensor
*>
feed_targets
;
for
(
size_t
i
=
0
;
i
<
feed_target_names
.
size
();
++
i
)
{
// Please make sure that cpu_feeds[i] is right for feed_target_names[i]
feed_targets
[
feed_target_names
[
i
]]
=
cpu_feeds
[
i
];
}
// 5. Define Tensor to get the outputs: set up maps for fetch targets
std
::
map
<
std
::
string
,
paddle
::
framework
::
LoDTensor
*>
fetch_targets
;
for
(
size_t
i
=
0
;
i
<
fetch_target_names
.
size
();
++
i
)
{
fetch_targets
[
fetch_target_names
[
i
]]
=
cpu_fetchs
[
i
];
}
// 6. Run the inference program
executor
.
Run
(
*
inference_program
,
scope
,
feed_targets
,
fetch_targets
);
delete
scope
;
}
paddle/inference/tests/book/test_inference_label_semantic_roles.cc
0 → 100644
浏览文件 @
53b6ee19
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <time.h>
#include <sstream>
#include "gflags/gflags.h"
#include "test_helper.h"
DEFINE_string
(
dirname
,
""
,
"Directory of the inference model."
);
TEST
(
inference
,
label_semantic_roles
)
{
if
(
FLAGS_dirname
.
empty
())
{
LOG
(
FATAL
)
<<
"Usage: ./example --dirname=path/to/your/model"
;
}
LOG
(
INFO
)
<<
"FLAGS_dirname: "
<<
FLAGS_dirname
<<
std
::
endl
;
std
::
string
dirname
=
FLAGS_dirname
;
// 0. Call `paddle::framework::InitDevices()` initialize all the devices
// In unittests, this is done in paddle/testing/paddle_gtest_main.cc
paddle
::
framework
::
LoDTensor
word
,
predicate
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
,
mark
;
paddle
::
framework
::
LoD
lod
{{
0
,
4
,
10
}};
SetupLoDTensor
(
word
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
predicate
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
ctx_n2
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
ctx_n1
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
ctx_0
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
ctx_p1
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
ctx_p2
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
SetupLoDTensor
(
mark
,
lod
,
static_cast
<
int64_t
>
(
0
),
static_cast
<
int64_t
>
(
1
));
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
cpu_feeds
;
cpu_feeds
.
push_back
(
&
word
);
cpu_feeds
.
push_back
(
&
predicate
);
cpu_feeds
.
push_back
(
&
ctx_n2
);
cpu_feeds
.
push_back
(
&
ctx_n1
);
cpu_feeds
.
push_back
(
&
ctx_0
);
cpu_feeds
.
push_back
(
&
ctx_p1
);
cpu_feeds
.
push_back
(
&
ctx_p2
);
cpu_feeds
.
push_back
(
&
mark
);
paddle
::
framework
::
LoDTensor
output1
;
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
cpu_fetchs1
;
cpu_fetchs1
.
push_back
(
&
output1
);
// Run inference on CPU
TestInference
<
paddle
::
platform
::
CPUPlace
,
float
>
(
dirname
,
cpu_feeds
,
cpu_fetchs1
);
LOG
(
INFO
)
<<
output1
.
lod
();
LOG
(
INFO
)
<<
output1
.
dims
();
#ifdef PADDLE_WITH_CUDA
paddle
::
framework
::
LoDTensor
output2
;
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>
cpu_fetchs2
;
cpu_fetchs2
.
push_back
(
&
output2
);
// Run inference on CUDA GPU
TestInference
<
paddle
::
platform
::
CUDAPlace
,
float
>
(
dirname
,
cpu_feeds
,
cpu_fetchs2
);
LOG
(
INFO
)
<<
output2
.
lod
();
LOG
(
INFO
)
<<
output2
.
dims
();
CheckError
<
float
>
(
output1
,
output2
);
#endif
}
paddle/inference/tests/book/test_inference_recognize_digits.cc
浏览文件 @
53b6ee19
...
...
@@ -16,89 +16,10 @@ limitations under the License. */
#include <time.h>
#include <sstream>
#include "gflags/gflags.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/inference/io.h"
#include "test_helper.h"
DEFINE_string
(
dirname
,
""
,
"Directory of the inference model."
);
template
<
typename
Place
,
typename
T
>
void
TestInference
(
const
std
::
string
&
dirname
,
const
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>&
cpu_feeds
,
std
::
vector
<
paddle
::
framework
::
LoDTensor
*>&
cpu_fetchs
)
{
// 1. Define place, executor and scope
auto
place
=
Place
();
auto
executor
=
paddle
::
framework
::
Executor
(
place
);
auto
*
scope
=
new
paddle
::
framework
::
Scope
();
// 2. Initialize the inference_program and load all parameters from file
auto
inference_program
=
paddle
::
inference
::
Load
(
executor
,
*
scope
,
dirname
);
// 3. Get the feed_target_names and fetch_target_names
const
std
::
vector
<
std
::
string
>&
feed_target_names
=
inference_program
->
GetFeedTargetNames
();
const
std
::
vector
<
std
::
string
>&
fetch_target_names
=
inference_program
->
GetFetchTargetNames
();
// 4. Prepare inputs: set up maps for feed targets
std
::
map
<
std
::
string
,
const
paddle
::
framework
::
LoDTensor
*>
feed_targets
;
for
(
size_t
i
=
0
;
i
<
feed_target_names
.
size
();
++
i
)
{
// Please make sure that cpu_feeds[i] is right for feed_target_names[i]
feed_targets
[
feed_target_names
[
i
]]
=
cpu_feeds
[
i
];
}
// 5. Define Tensor to get the outputs: set up maps for fetch targets
std
::
map
<
std
::
string
,
paddle
::
framework
::
LoDTensor
*>
fetch_targets
;
for
(
size_t
i
=
0
;
i
<
fetch_target_names
.
size
();
++
i
)
{
fetch_targets
[
fetch_target_names
[
i
]]
=
cpu_fetchs
[
i
];
}
// 6. Run the inference program
executor
.
Run
(
*
inference_program
,
scope
,
feed_targets
,
fetch_targets
);
delete
scope
;
}
template
<
typename
T
>
void
SetupTensor
(
paddle
::
framework
::
LoDTensor
&
input
,
paddle
::
framework
::
DDim
dims
,
T
lower
,
T
upper
)
{
srand
(
time
(
0
));
float
*
input_ptr
=
input
.
mutable_data
<
T
>
(
dims
,
paddle
::
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
input
.
numel
();
++
i
)
{
input_ptr
[
i
]
=
(
static_cast
<
T
>
(
rand
())
/
static_cast
<
T
>
(
RAND_MAX
))
*
(
upper
-
lower
)
+
lower
;
}
}
template
<
typename
T
>
void
CheckError
(
paddle
::
framework
::
LoDTensor
&
output1
,
paddle
::
framework
::
LoDTensor
&
output2
)
{
// Check lod information
EXPECT_EQ
(
output1
.
lod
(),
output2
.
lod
());
EXPECT_EQ
(
output1
.
dims
(),
output2
.
dims
());
EXPECT_EQ
(
output1
.
numel
(),
output2
.
numel
());
T
err
=
static_cast
<
T
>
(
0
);
if
(
typeid
(
T
)
==
typeid
(
float
))
{
err
=
1E-3
;
}
else
if
(
typeid
(
T
)
==
typeid
(
double
))
{
err
=
1E-6
;
}
else
{
err
=
0
;
}
size_t
count
=
0
;
for
(
int64_t
i
=
0
;
i
<
output1
.
numel
();
++
i
)
{
if
(
fabs
(
output1
.
data
<
T
>
()[
i
]
-
output2
.
data
<
T
>
()[
i
])
>
err
)
{
count
++
;
}
}
EXPECT_EQ
(
count
,
0
)
<<
"There are "
<<
count
<<
" different elements."
;
}
TEST
(
inference
,
recognize_digits
)
{
if
(
FLAGS_dirname
.
empty
())
{
LOG
(
FATAL
)
<<
"Usage: ./example --dirname=path/to/your/model"
;
...
...
paddle/operators/conditional_block_op.cc
浏览文件 @
53b6ee19
...
...
@@ -41,6 +41,21 @@ class ConditionalOp : public framework::OperatorBase {
});
return
retv
;
}
bool
ScalarCondition
(
const
std
::
vector
<
const
framework
::
LoDTensor
*>
&
ips
)
const
{
if
(
!
(
ips
.
size
()
==
1UL
&&
ips
[
0
]
->
IsInitialized
()))
{
PADDLE_THROW
(
"should have one initialized input as condition"
);
}
if
(
!
(
ips
[
0
]
->
type
().
hash_code
()
==
typeid
(
bool
).
hash_code
()
&&
ips
[
0
]
->
numel
()
==
1
))
{
PADDLE_THROW
(
"condition input's data type should be bool, "
"numel should be 1, actual numel is %d"
,
ips
[
0
]
->
numel
());
}
return
ips
[
0
]
->
data
<
bool
>
()[
0
];
}
};
class
ConditionalBlockOp
:
public
ConditionalOp
{
...
...
@@ -53,9 +68,15 @@ class ConditionalBlockOp : public ConditionalOp {
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
xs
=
InputTensors
(
scope
);
bool
need_run
=
std
::
all_of
(
xs
.
begin
(),
xs
.
end
(),
[](
const
framework
::
LoDTensor
*
t
)
{
return
t
->
numel
()
!=
0
;
});
bool
need_run
;
if
(
Attr
<
bool
>
(
"is_scalar_condition"
))
{
need_run
=
ScalarCondition
(
xs
);
}
else
{
need_run
=
std
::
all_of
(
xs
.
begin
(),
xs
.
end
(),
[](
const
framework
::
LoDTensor
*
t
)
{
return
t
->
numel
()
!=
0
;
});
}
if
(
need_run
)
{
auto
*
scope_var
=
scope
.
FindVar
(
Output
(
"Scope"
));
...
...
@@ -88,6 +109,10 @@ class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
"scope is std::vector<Scope*>"
);
AddAttr
<
framework
::
BlockDesc
*>
(
"sub_block"
,
"The step block of conditional block operator"
);
AddAttr
<
bool
>
(
"is_scalar_condition"
,
"the input X is used as scalar "
"condition"
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(Conditional block operator
Run the sub-block if X is not empty. Params is the other inputs and Out is the
...
...
@@ -106,9 +131,15 @@ class ConditionalBlockGradOp : public ConditionalOp {
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
xs
=
this
->
InputTensors
(
scope
);
bool
need_run
=
std
::
all_of
(
xs
.
begin
(),
xs
.
end
(),
[](
const
framework
::
LoDTensor
*
t
)
{
return
t
->
numel
()
!=
0
;
});
bool
need_run
;
if
(
Attr
<
bool
>
(
"is_scalar_condition"
))
{
need_run
=
ScalarCondition
(
xs
);
}
else
{
need_run
=
std
::
all_of
(
xs
.
begin
(),
xs
.
end
(),
[](
const
framework
::
LoDTensor
*
t
)
{
return
t
->
numel
()
!=
0
;
});
}
if
(
need_run
)
{
auto
*
scope_var
=
scope
.
FindVar
(
Input
(
"Scope"
));
...
...
@@ -182,6 +213,7 @@ class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker {
grad_op
->
SetOutput
(
framework
::
GradVarName
(
"Params"
),
InputGrad
(
"Params"
,
false
));
grad_op
->
SetBlockAttr
(
"sub_block"
,
*
this
->
grad_block_
[
0
]);
grad_op
->
SetAttr
(
"is_scalar_condition"
,
GetAttr
(
"is_scalar_condition"
));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
grad_op
);
}
};
...
...
python/paddle/v2/fluid/layers/control_flow.py
浏览文件 @
53b6ee19
...
...
@@ -18,6 +18,7 @@ from tensor import assign, fill_constant
from
..
import
core
from
..framework
import
Program
,
Variable
,
Operator
from
..layer_helper
import
LayerHelper
,
unique_name
from
ops
import
logical_and
,
logical_not
,
logical_or
__all__
=
[
'split_lod_tensor'
,
...
...
@@ -27,6 +28,7 @@ __all__ = [
'StaticRNNMemoryLink'
,
'WhileGuard'
,
'While'
,
'Switch'
,
'lod_rank_table'
,
'max_sequence_len'
,
'topk'
,
...
...
@@ -1063,11 +1065,12 @@ class ConditionalBlockGuard(BlockGuard):
class
ConditionalBlock
(
object
):
def
__init__
(
self
,
inputs
,
name
=
None
):
def
__init__
(
self
,
inputs
,
is_scalar_condition
=
False
,
name
=
None
):
for
each_input
in
inputs
:
if
not
isinstance
(
each_input
,
Variable
):
raise
TypeError
(
"Each input should be variable"
)
self
.
inputs
=
inputs
self
.
is_scalar_condition
=
is_scalar_condition
self
.
helper
=
LayerHelper
(
'conditional_block'
,
name
=
name
)
def
block
(
self
):
...
...
@@ -1112,7 +1115,66 @@ class ConditionalBlock(object):
},
outputs
=
{
'Out'
:
out_list
,
'Scope'
:
[
step_scope
]},
attrs
=
{
'sub_block'
:
inside_block
})
attrs
=
{
'sub_block'
:
inside_block
,
'is_scalar_condition'
:
self
.
is_scalar_condition
})
class
Switch
(
object
):
def
__init__
(
self
,
name
=
None
):
self
.
helper
=
LayerHelper
(
'switch'
,
name
=
name
)
self
.
inside_scope
=
False
self
.
pre_not_conditions
=
[]
def
case
(
self
,
condition
):
"""create a new block for this condition
"""
if
not
self
.
inside_scope
:
raise
ValueError
(
"case should be called inside with"
)
if
len
(
self
.
pre_not_conditions
)
==
0
:
cond_block
=
ConditionalBlock
([
condition
],
is_scalar_condition
=
True
)
not_cond
=
logical_not
(
x
=
condition
)
self
.
pre_not_conditions
.
append
(
not_cond
)
else
:
pre_cond_num
=
len
(
self
.
pre_not_conditions
)
pre_not_cond
=
self
.
pre_not_conditions
[
pre_cond_num
-
1
]
new_not_cond
=
logical_and
(
x
=
pre_not_cond
,
y
=
logical_not
(
x
=
condition
))
self
.
pre_not_conditions
.
append
(
new_not_cond
)
cond_block
=
ConditionalBlock
(
[
logical_and
(
x
=
pre_not_cond
,
y
=
condition
)],
is_scalar_condition
=
True
)
return
ConditionalBlockGuard
(
cond_block
)
def
default
(
self
):
"""create a default case for this switch
"""
pre_cond_num
=
len
(
self
.
pre_not_conditions
)
if
pre_cond_num
==
0
:
raise
ValueError
(
"there should be at least one condition"
)
cond_block
=
ConditionalBlock
(
[
self
.
pre_not_conditions
[
pre_cond_num
-
1
]],
is_scalar_condition
=
True
)
return
ConditionalBlockGuard
(
cond_block
)
def
__enter__
(
self
):
"""
set flag that now is inside switch.block {}
:return:
"""
self
.
inside_scope
=
True
return
self
def
__exit__
(
self
,
exc_type
,
exc_val
,
exc_tb
):
self
.
inside_scope
=
False
if
exc_type
is
not
None
:
return
False
# re-raise exception
return
True
class
IfElseBlockGuard
(
object
):
...
...
python/paddle/v2/fluid/layers/ops.py
浏览文件 @
53b6ee19
...
...
@@ -61,6 +61,10 @@ __all__ = [
'clip_by_norm'
,
'softmax'
,
'sequence_softmax'
,
'logical_and'
,
'logical_or'
,
'logical_xor'
,
'logical_not'
,
]
+
__activations__
for
_OP
in
set
(
__all__
):
...
...
python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py
浏览文件 @
53b6ee19
...
...
@@ -18,7 +18,9 @@ import numpy as np
import
paddle.v2
as
paddle
import
paddle.v2.dataset.conll05
as
conll05
import
paddle.v2.fluid
as
fluid
import
contextlib
import
time
import
unittest
word_dict
,
verb_dict
,
label_dict
=
conll05
.
get_dict
()
word_dict_len
=
len
(
word_dict
)
...
...
@@ -127,7 +129,15 @@ def to_lodtensor(data, place):
return
res
def
main
():
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
data
=
np
.
random
.
random_integers
(
low
,
high
,
[
lod
[
-
1
],
1
]).
astype
(
"int64"
)
res
=
fluid
.
LoDTensor
()
res
.
set
(
data
,
place
)
res
.
set_lod
([
lod
])
return
res
def
train
(
use_cuda
,
save_dirname
=
None
):
# define network topology
word
=
fluid
.
layers
.
data
(
name
=
'word_data'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
...
...
@@ -175,8 +185,8 @@ def main():
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
conll05
.
test
(),
buf_size
=
8192
),
batch_size
=
BATCH_SIZE
)
# place = fluid.CPUPlace()
place
=
fluid
.
CUDAPlace
(
0
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
word
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
,
predicate
,
mark
,
target
...
...
@@ -211,12 +221,102 @@ def main():
if
batch_id
!=
0
:
print
(
"second per batch: "
+
str
((
time
.
time
()
-
start_time
)
/
batch_id
))
# exit early for CI
exit
(
0
)
# Set the threshold low to speed up the CI test
if
float
(
pass_precision
)
>
0.05
:
if
save_dirname
is
not
None
:
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
'word_data'
,
'verb_data'
,
'ctx_n2_data'
,
'ctx_n1_data'
,
'ctx_0_data'
,
'ctx_p1_data'
,
'ctx_p2_data'
,
'mark_data'
],
[
feature_out
],
exe
)
return
batch_id
=
batch_id
+
1
def
infer
(
use_cuda
,
save_dirname
=
None
):
if
save_dirname
is
None
:
return
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
lod
=
[
0
,
4
,
10
]
ts_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_pred
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_n2
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_n1
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_0
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_p1
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_ctx_p2
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
ts_mark
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
1
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert
feed_target_names
[
0
]
==
'word_data'
assert
feed_target_names
[
1
]
==
'verb_data'
assert
feed_target_names
[
2
]
==
'ctx_n2_data'
assert
feed_target_names
[
3
]
==
'ctx_n1_data'
assert
feed_target_names
[
4
]
==
'ctx_0_data'
assert
feed_target_names
[
5
]
==
'ctx_p1_data'
assert
feed_target_names
[
6
]
==
'ctx_p2_data'
assert
feed_target_names
[
7
]
==
'mark_data'
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
ts_word
,
feed_target_names
[
1
]:
ts_pred
,
feed_target_names
[
2
]:
ts_ctx_n2
,
feed_target_names
[
3
]:
ts_ctx_n1
,
feed_target_names
[
4
]:
ts_ctx_0
,
feed_target_names
[
5
]:
ts_ctx_p1
,
feed_target_names
[
6
]:
ts_ctx_p2
,
feed_target_names
[
7
]:
ts_mark
},
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference Shape: "
,
np_data
.
shape
)
print
(
"Inference results: "
,
np_data
)
def
main
(
use_cuda
):
if
use_cuda
and
not
fluid
.
core
.
is_compiled_with_cuda
():
return
# Directory for saving the trained model
save_dirname
=
"label_semantic_roles.inference.model"
train
(
use_cuda
,
save_dirname
)
infer
(
use_cuda
,
save_dirname
)
class
TestLabelSemanticRoles
(
unittest
.
TestCase
):
def
test_cuda
(
self
):
with
self
.
scope_prog_guard
():
main
(
use_cuda
=
True
)
def
test_cpu
(
self
):
with
self
.
scope_prog_guard
():
main
(
use_cuda
=
False
)
@
contextlib
.
contextmanager
def
scope_prog_guard
(
self
):
prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
scope
=
fluid
.
core
.
Scope
()
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
program_guard
(
prog
,
startup_prog
):
yield
if
__name__
==
'__main__'
:
main
()
unittest
.
main
()
python/paddle/v2/fluid/tests/test_switch.py
0 → 100644
浏览文件 @
53b6ee19
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle.v2.fluid.core
as
core
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.framework
as
framework
from
paddle.v2.fluid.executor
import
Executor
from
paddle.v2.fluid.framework
import
default_startup_program
class
TestSwitch
(
unittest
.
TestCase
):
def
check_switch
(
self
,
value
):
x
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
value
)
zero_var
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.0
)
one_var
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
1.0
)
two_var
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
2.0
)
three_var
=
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
3.0
)
result
=
layers
.
create_global_var
(
shape
=
[
1
],
value
=-
1.0
,
dtype
=
'float32'
,
persistable
=
True
)
with
layers
.
Switch
()
as
switch
:
with
switch
.
case
(
layers
.
less_than
(
x
,
zero_var
)):
layers
.
assign
(
zero_var
,
result
)
with
switch
.
case
(
layers
.
less_than
(
x
,
one_var
)):
layers
.
assign
(
one_var
,
result
)
with
switch
.
case
(
layers
.
less_than
(
x
,
two_var
)):
layers
.
assign
(
two_var
,
result
)
with
switch
.
default
():
layers
.
assign
(
three_var
,
result
)
cpu
=
core
.
CPUPlace
()
exe
=
Executor
(
cpu
)
exe
.
run
(
default_startup_program
())
out
=
exe
.
run
(
feed
=
{},
fetch_list
=
[
result
])[
0
][
0
]
return
out
def
test_switch
(
self
):
test_data
=
{(
-
0.1
,
0
),
(
0.1
,
1
),
(
1.1
,
2
),
(
2.1
,
3
)}
for
x
,
expected_result
in
test_data
:
main_program
=
framework
.
Program
()
startup_program
=
framework
.
Program
()
with
framework
.
program_guard
(
main_program
,
startup_program
):
result
=
self
.
check_switch
(
x
)
self
.
assertEqual
(
result
,
expected_result
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录