提交 5383f3c4 编写于 作者: F fengjiayi

pass test_machine_translation.py

上级 4d59b5ac
...@@ -79,7 +79,7 @@ class Optimizer(object): ...@@ -79,7 +79,7 @@ class Optimizer(object):
def minimize(self, loss, parameter_list): def minimize(self, loss, parameter_list):
"""Add operations to minimize `loss` by updating `parameter_list`. """Add operations to minimize `loss` by updating `parameter_list`.
This method combines interface `append_backward_ops()` and This method combines interface `append_backward()` and
`create_optimization_pass()` into one. `create_optimization_pass()` into one.
""" """
params_grads = self.create_backward_pass(loss, parameter_list) params_grads = self.create_backward_pass(loss, parameter_list)
......
...@@ -3,7 +3,7 @@ from . import core ...@@ -3,7 +3,7 @@ from . import core
import collections import collections
import pdb import pdb
__all__ = ['append_backward_ops'] __all__ = ['append_backward']
def _rename_arg_(op_desc_list, old_name, new_name, begin_idx=None, def _rename_arg_(op_desc_list, old_name, new_name, begin_idx=None,
...@@ -57,12 +57,11 @@ def _append_grad_suffix_(name): ...@@ -57,12 +57,11 @@ def _append_grad_suffix_(name):
return name + core.grad_var_suffix() return name + core.grad_var_suffix()
def _backward_impl_(target, def _append_backward_ops_(target,
block, block,
target_block, target_block,
no_grad_set, no_grad_set,
grad_info_map, callback=None):
callback=None):
grad_op_descs = [] grad_op_descs = []
grad_to_var = dict() grad_to_var = dict()
program = block.program program = block.program
...@@ -71,11 +70,10 @@ def _backward_impl_(target, ...@@ -71,11 +70,10 @@ def _backward_impl_(target,
if each_op.has_attr("sub_block"): if each_op.has_attr("sub_block"):
sub_block_idx = each_op.block_attr("sub_block") sub_block_idx = each_op.block_attr("sub_block")
sub_block = program.block(sub_block_idx) sub_block = program.block(sub_block_idx)
original_block_idx = program.current_block_idx
grad_sub_block = program.create_block(parent_idx=sub_block_idx) grad_sub_block = program.create_block(parent_idx=sub_block_idx)
program.current_block_idx = original_block_idx sub_grad_to_var = _append_backward_ops_(
_backward_impl_(target, sub_block, grad_sub_block, no_grad_set, target, sub_block, grad_sub_block, no_grad_set, callback)
grad_info_map, callback) grad_to_var = dict(grad_to_var, **sub_grad_to_var)
grad_sub_block_list.append(grad_sub_block.desc) grad_sub_block_list.append(grad_sub_block.desc)
grad_op_desc, op_grad_to_var = core.get_grad_op_desc( grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
each_op.desc, no_grad_set[block.idx], grad_sub_block_list) each_op.desc, no_grad_set[block.idx], grad_sub_block_list)
...@@ -143,20 +141,7 @@ def _backward_impl_(target, ...@@ -143,20 +141,7 @@ def _backward_impl_(target,
"fill_zeros_like", {"X": [_strip_grad_suffix_(arg)]}, {"Y": [arg]}, "fill_zeros_like", {"X": [_strip_grad_suffix_(arg)]}, {"Y": [arg]},
{}) {})
grad_op_descs.insert(ele[1], fill_zeros_like_op) grad_op_descs.insert(ele[1], fill_zeros_like_op)
# create new gradient variables in the target block desc
new_vars = set()
for op_desc in grad_op_descs:
for grad_var_name in op_desc.output_arg_names():
grad_var_name = grad_var_name.encode("ascii")
if target_block.desc.has_var_recursive(
grad_var_name) or grad_var_name == core.empty_var_name():
continue
target_block.desc.var(grad_var_name)
new_vars.add(grad_var_name)
if not grad_to_var.has_key(grad_var_name):
continue
grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name,
target_block)
if target_block.idx == 0: if target_block.idx == 0:
grad_target_name = _append_grad_suffix_(target.name) grad_target_name = _append_grad_suffix_(target.name)
target_block.desc.var(grad_target_name.encode("ascii")) target_block.desc.var(grad_target_name.encode("ascii"))
...@@ -171,20 +156,40 @@ def _backward_impl_(target, ...@@ -171,20 +156,40 @@ def _backward_impl_(target,
"value": 1.0, "value": 1.0,
"dtype": core.DataType.FP32 "dtype": core.DataType.FP32
})) }))
# insert backward operators to target_block
for op_desc in grad_op_descs: for op_desc in grad_op_descs:
op_desc.infer_var_type(target_block.desc)
op_desc.infer_shape(target_block.desc)
for arg in op_desc.output_arg_names():
if arg in new_vars:
_infer_var_data_type_(arg, target_block)
new_op_desc = target_block.desc.append_op() new_op_desc = target_block.desc.append_op()
new_op_desc.copy_from(op_desc) new_op_desc.copy_from(op_desc)
target_block.sync_with_cpp() return grad_to_var
def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
for op_idx in range(start_op_idx, block.desc.op_size()):
op_desc = block.desc.op(op_idx)
if op_desc.has_attr("sub_block"):
sub_block = block.program.block(op_desc.block_attr("sub_block"))
_append_backward_vars_(sub_block, 0, grad_to_var, grad_info_map)
new_vars = set()
# create new gradient variables
for grad_var_name in op_desc.output_arg_names():
grad_var_name = grad_var_name.encode("ascii")
if block.desc.has_var_recursive(
grad_var_name) or grad_var_name == core.empty_var_name():
continue
block.desc.var(grad_var_name)
new_vars.add(grad_var_name)
if not grad_to_var.has_key(grad_var_name):
continue
grad_info_map[grad_to_var[grad_var_name]] = (grad_var_name, block)
# infer_shape and infer_type
op_desc.infer_var_type(block.desc)
op_desc.infer_shape(block.desc)
for arg in op_desc.output_arg_names():
if arg in new_vars:
_infer_var_data_type_(arg, block)
def append_backward_ops(loss, parameter_list=None, no_grad_set=None): def append_backward(loss, parameter_list=None, no_grad_set=None):
""" """
Create and add gradient Operators in BlockDesc to compute Create and add gradient Operators in BlockDesc to compute
gradients of `loss` for parameters in parameter_list gradients of `loss` for parameters in parameter_list
...@@ -201,9 +206,9 @@ def append_backward_ops(loss, parameter_list=None, no_grad_set=None): ...@@ -201,9 +206,9 @@ def append_backward_ops(loss, parameter_list=None, no_grad_set=None):
""" """
assert isinstance(loss, framework.Variable) assert isinstance(loss, framework.Variable)
program = loss.block.program
if no_grad_set is None: if no_grad_set is None:
no_grad_set = dict() no_grad_set = dict()
program = loss.block.program
assert isinstance(program, framework.Program) assert isinstance(program, framework.Program)
for block in program.blocks: for block in program.blocks:
assert isinstance(block, framework.Block) assert isinstance(block, framework.Block)
...@@ -215,14 +220,20 @@ def append_backward_ops(loss, parameter_list=None, no_grad_set=None): ...@@ -215,14 +220,20 @@ def append_backward_ops(loss, parameter_list=None, no_grad_set=None):
no_grad_set[block.idx] = block_no_grad_set no_grad_set[block.idx] = block_no_grad_set
grad_info_map = dict() grad_info_map = dict()
root_block = loss.block.program.block(0) root_block = program.block(0)
_backward_impl_(loss, root_block, root_block, no_grad_set, grad_info_map) fwd_op_num = root_block.desc.op_size()
current_block_idx = program.current_block_idx
grad_to_var = _append_backward_ops_(loss, root_block, root_block,
no_grad_set)
_append_backward_vars_(root_block, fwd_op_num, grad_to_var, grad_info_map)
program.current_block_idx = current_block_idx
program.sync_with_cpp()
if parameter_list is not None: if parameter_list is not None:
parameters = parameter_list parameters = parameter_list
else: else:
params = loss.block.program.global_block().all_parameters() params = program.global_block().all_parameters()
parameters = [param.name for param in params] parameters = [param.name for param in params]
params_and_grads = [] params_and_grads = []
for param in parameters: for param in parameters:
...@@ -234,7 +245,7 @@ def append_backward_ops(loss, parameter_list=None, no_grad_set=None): ...@@ -234,7 +245,7 @@ def append_backward_ops(loss, parameter_list=None, no_grad_set=None):
raise ValueError("grad block[{0}] did not have grad var {1}".format( raise ValueError("grad block[{0}] did not have grad var {1}".format(
grad_info[1], grad_info[0])) grad_info[1], grad_info[0]))
# Get the param var from the global block # Get the param var from the global block
param_var = loss.block.program.global_block().var(param) param_var = program.global_block().var(param)
grad_var = grad_block.var(grad_info[0]) grad_var = grad_block.var(grad_info[0])
if loss.block.has_var(grad_info[0]): if loss.block.has_var(grad_info[0]):
params_and_grads.append((param_var, grad_var)) params_and_grads.append((param_var, grad_var))
......
from collections import defaultdict from collections import defaultdict
import framework import framework
from backward import append_backward_ops from backward import append_backward
from framework import unique_name from framework import unique_name
from initializer import Constant from initializer import Constant
from layer_helper import LayerHelper from layer_helper import LayerHelper
...@@ -195,10 +195,10 @@ class Optimizer(object): ...@@ -195,10 +195,10 @@ class Optimizer(object):
no_grad_set=None): no_grad_set=None):
"""Add operations to minimize `loss` by updating `parameter_list`. """Add operations to minimize `loss` by updating `parameter_list`.
This method combines interface `append_backward_ops()` and This method combines interface `append_backward()` and
`create_optimization_pass()` into one. `create_optimization_pass()` into one.
""" """
params_grads = append_backward_ops(loss, parameter_list, no_grad_set) params_grads = append_backward(loss, parameter_list, no_grad_set)
# Add regularization if any # Add regularization if any
params_grads = append_regularization_ops(params_grads, params_grads = append_regularization_ops(params_grads,
self.regularization) self.regularization)
......
...@@ -4,7 +4,7 @@ import random ...@@ -4,7 +4,7 @@ import random
import itertools import itertools
import paddle.v2.fluid.core as core import paddle.v2.fluid.core as core
import collections import collections
from paddle.v2.fluid.backward import append_backward_ops from paddle.v2.fluid.backward import append_backward
from paddle.v2.fluid.op import Operator from paddle.v2.fluid.op import Operator
from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.framework import Program, OpProtoHolder from paddle.v2.fluid.framework import Program, OpProtoHolder
...@@ -493,7 +493,7 @@ class OpTest(unittest.TestCase): ...@@ -493,7 +493,7 @@ class OpTest(unittest.TestCase):
op_loss.desc.infer_var_type(block.desc) op_loss.desc.infer_var_type(block.desc)
op_loss.desc.infer_shape(block.desc) op_loss.desc.infer_shape(block.desc)
param_grad_list = append_backward_ops( param_grad_list = append_backward(
loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set) loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)
feed_dict = { feed_dict = {
......
...@@ -2,7 +2,7 @@ import unittest ...@@ -2,7 +2,7 @@ import unittest
import paddle.v2.fluid.core as core import paddle.v2.fluid.core as core
import paddle.v2.fluid.layers as layers import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.backward import append_backward_ops from paddle.v2.fluid.backward import append_backward
from paddle.v2.fluid.framework import default_main_program from paddle.v2.fluid.framework import default_main_program
import numpy import numpy
...@@ -64,7 +64,7 @@ class TestArrayReadWrite(unittest.TestCase): ...@@ -64,7 +64,7 @@ class TestArrayReadWrite(unittest.TestCase):
total_sum = layers.sums(input=[a_sum, x_sum]) total_sum = layers.sums(input=[a_sum, x_sum])
total_sum_scaled = layers.scale(x=total_sum, scale=1 / 6.0) total_sum_scaled = layers.scale(x=total_sum, scale=1 / 6.0)
append_backward_ops(total_sum_scaled) append_backward(total_sum_scaled)
g_vars = map(default_main_program().global_block().var, g_vars = map(default_main_program().global_block().var,
[each_x.name + "@GRAD" for each_x in x]) [each_x.name + "@GRAD" for each_x in x])
......
...@@ -3,7 +3,7 @@ import paddle.v2.fluid.layers as layers ...@@ -3,7 +3,7 @@ import paddle.v2.fluid.layers as layers
import paddle.v2.fluid.core as core import paddle.v2.fluid.core as core
from paddle.v2.fluid.framework import default_startup_program, default_main_program from paddle.v2.fluid.framework import default_startup_program, default_main_program
from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.backward import append_backward_ops from paddle.v2.fluid.backward import append_backward
import numpy import numpy
...@@ -26,7 +26,7 @@ class ConditionalBlock(unittest.TestCase): ...@@ -26,7 +26,7 @@ class ConditionalBlock(unittest.TestCase):
outs = exe.run(feed={'X': x}, fetch_list=[out])[0] outs = exe.run(feed={'X': x}, fetch_list=[out])[0]
print outs print outs
loss = layers.mean(x=out) loss = layers.mean(x=out)
append_backward_ops(loss=loss) append_backward(loss=loss)
outs = exe.run( outs = exe.run(
feed={'X': x}, feed={'X': x},
fetch_list=[ fetch_list=[
......
...@@ -4,7 +4,7 @@ import numpy ...@@ -4,7 +4,7 @@ import numpy
import paddle.v2.fluid.layers as layers import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.framework import Program from paddle.v2.fluid.framework import Program
from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.backward import append_backward_ops from paddle.v2.fluid.backward import append_backward
class TestCPULoDTensorArrayOps(unittest.TestCase): class TestCPULoDTensorArrayOps(unittest.TestCase):
...@@ -172,7 +172,7 @@ class TestCPULoDTensorArrayOpGrad(unittest.TestCase): ...@@ -172,7 +172,7 @@ class TestCPULoDTensorArrayOpGrad(unittest.TestCase):
mean = layers.mean(x=result, main_program=program) mean = layers.mean(x=result, main_program=program)
append_backward_ops(mean) append_backward(mean)
tensor = core.LoDTensor() tensor = core.LoDTensor()
tensor.set(numpy.arange(10).reshape(10, 1).astype('float32'), place) tensor.set(numpy.arange(10).reshape(10, 1).astype('float32'), place)
......
...@@ -2,7 +2,7 @@ import unittest ...@@ -2,7 +2,7 @@ import unittest
import paddle.v2.fluid.framework as framework import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.optimizer as optimizer import paddle.v2.fluid.optimizer as optimizer
from paddle.v2.fluid.backward import append_backward_ops from paddle.v2.fluid.backward import append_backward
class TestOptimizer(unittest.TestCase): class TestOptimizer(unittest.TestCase):
...@@ -102,7 +102,7 @@ class TestMomentumOptimizer(unittest.TestCase): ...@@ -102,7 +102,7 @@ class TestMomentumOptimizer(unittest.TestCase):
dtype="float32", shape=[1], lod_level=0, name="mean.out") dtype="float32", shape=[1], lod_level=0, name="mean.out")
block.append_op( block.append_op(
type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
params_grads = append_backward_ops(mean_out) params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1) self.assertEqual(len(params_grads), 1)
self.assertEqual(len(momentum_optimizer.get_accumulators()), 0) self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
opts = momentum_optimizer.create_optimization_pass( opts = momentum_optimizer.create_optimization_pass(
...@@ -151,7 +151,7 @@ class TestMomentumOptimizer(unittest.TestCase): ...@@ -151,7 +151,7 @@ class TestMomentumOptimizer(unittest.TestCase):
learning_rate = 0.01 learning_rate = 0.01
momentum_optimizer = self.MockMomentum( momentum_optimizer = self.MockMomentum(
learning_rate=learning_rate, momentum=0.2, use_nesterov=True) learning_rate=learning_rate, momentum=0.2, use_nesterov=True)
params_grads = append_backward_ops(mean_out) params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1) self.assertEqual(len(params_grads), 1)
self.assertEqual(len(momentum_optimizer.get_accumulators()), 0) self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
opts = momentum_optimizer.create_optimization_pass( opts = momentum_optimizer.create_optimization_pass(
...@@ -209,7 +209,7 @@ class TestAdagradOptimizer(unittest.TestCase): ...@@ -209,7 +209,7 @@ class TestAdagradOptimizer(unittest.TestCase):
learning_rate = 0.01 learning_rate = 0.01
adagrad_optimizer = self.MockAdagrad( adagrad_optimizer = self.MockAdagrad(
learning_rate=learning_rate, epsilon=1.0e-6) learning_rate=learning_rate, epsilon=1.0e-6)
params_grads = append_backward_ops(mean_out) params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1) self.assertEqual(len(params_grads), 1)
self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0) self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
opts = adagrad_optimizer.create_optimization_pass(params_grads, mul_out, opts = adagrad_optimizer.create_optimization_pass(params_grads, mul_out,
...@@ -269,7 +269,7 @@ class TestAdamOptimizer(unittest.TestCase): ...@@ -269,7 +269,7 @@ class TestAdamOptimizer(unittest.TestCase):
learning_rate = 0.01 learning_rate = 0.01
adam_optimizer = self.MockAdam( adam_optimizer = self.MockAdam(
learning_rate=learning_rate, beta1=0.9, beta2=0.999) learning_rate=learning_rate, beta1=0.9, beta2=0.999)
params_grads = append_backward_ops(mean_out) params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1) self.assertEqual(len(params_grads), 1)
self.assertEqual(len(adam_optimizer.get_accumulators()), 0) self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
opts = adam_optimizer.create_optimization_pass(params_grads, mul_out, opts = adam_optimizer.create_optimization_pass(params_grads, mul_out,
...@@ -331,7 +331,7 @@ class TestAdamaxOptimizer(unittest.TestCase): ...@@ -331,7 +331,7 @@ class TestAdamaxOptimizer(unittest.TestCase):
learning_rate = 0.01 learning_rate = 0.01
adamax_optimizer = self.MockAdamax( adamax_optimizer = self.MockAdamax(
learning_rate=learning_rate, beta1=0.9, beta2=0.999) learning_rate=learning_rate, beta1=0.9, beta2=0.999)
params_grads = append_backward_ops(mean_out) params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1) self.assertEqual(len(params_grads), 1)
self.assertEqual(len(adamax_optimizer.get_accumulators()), 0) self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
opts = adamax_optimizer.create_optimization_pass(params_grads, mul_out, opts = adamax_optimizer.create_optimization_pass(params_grads, mul_out,
...@@ -390,7 +390,7 @@ class TestDecayedAdagradOptimizer(unittest.TestCase): ...@@ -390,7 +390,7 @@ class TestDecayedAdagradOptimizer(unittest.TestCase):
learning_rate = 0.01 learning_rate = 0.01
decayed_adagrad_optimizer = self.MockDecayedAdagrad( decayed_adagrad_optimizer = self.MockDecayedAdagrad(
learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6) learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6)
params_grads = append_backward_ops(mean_out) params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1) self.assertEqual(len(params_grads), 1)
self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0) self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0)
opts = decayed_adagrad_optimizer.create_optimization_pass( opts = decayed_adagrad_optimizer.create_optimization_pass(
......
...@@ -3,7 +3,7 @@ import unittest ...@@ -3,7 +3,7 @@ import unittest
import paddle.v2.fluid.layers as layers import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.framework import Program from paddle.v2.fluid.framework import Program
from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.backward import append_backward_ops from paddle.v2.fluid.backward import append_backward
import numpy as np import numpy as np
import paddle.v2.fluid.core as core import paddle.v2.fluid.core as core
...@@ -177,7 +177,7 @@ class RecurrentOpTest1(unittest.TestCase): ...@@ -177,7 +177,7 @@ class RecurrentOpTest1(unittest.TestCase):
def test_backward(self): def test_backward(self):
self.check_forward() self.check_forward()
append_backward_ops(self.output) append_backward(self.output)
ana_grad = [np.array(x) for x in self.backward()] ana_grad = [np.array(x) for x in self.backward()]
......
...@@ -3,7 +3,7 @@ import unittest ...@@ -3,7 +3,7 @@ import unittest
import paddle.v2.fluid.framework as framework import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.optimizer as optimizer import paddle.v2.fluid.optimizer as optimizer
import paddle.v2.fluid.regularizer as regularizer import paddle.v2.fluid.regularizer as regularizer
from paddle.v2.fluid.backward import append_backward_ops from paddle.v2.fluid.backward import append_backward
class TestL2DecayRegularizer(unittest.TestCase): class TestL2DecayRegularizer(unittest.TestCase):
...@@ -33,7 +33,7 @@ class TestL2DecayRegularizer(unittest.TestCase): ...@@ -33,7 +33,7 @@ class TestL2DecayRegularizer(unittest.TestCase):
dtype="float32", shape=[1], lod_level=0, name="mean.out") dtype="float32", shape=[1], lod_level=0, name="mean.out")
block.append_op( block.append_op(
type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
params_grads = append_backward_ops(mean_out) params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1) self.assertEqual(len(params_grads), 1)
count_ops = len(block.ops) count_ops = len(block.ops)
params_grads = optimizer.append_regularization_ops(params_grads) params_grads = optimizer.append_regularization_ops(params_grads)
...@@ -70,7 +70,7 @@ class TestL1DecayRegularizer(unittest.TestCase): ...@@ -70,7 +70,7 @@ class TestL1DecayRegularizer(unittest.TestCase):
dtype="float32", shape=[1], lod_level=0, name="mean.out") dtype="float32", shape=[1], lod_level=0, name="mean.out")
block.append_op( block.append_op(
type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
params_grads = append_backward_ops(mean_out) params_grads = append_backward(mean_out)
self.assertEqual(len(params_grads), 1) self.assertEqual(len(params_grads), 1)
count_ops = len(block.ops) count_ops = len(block.ops)
params_grads = optimizer.append_regularization_ops(params_grads) params_grads = optimizer.append_regularization_ops(params_grads)
......
...@@ -2,7 +2,7 @@ import unittest ...@@ -2,7 +2,7 @@ import unittest
from paddle.v2.fluid.framework import Program from paddle.v2.fluid.framework import Program
from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.backward import append_backward_ops from paddle.v2.fluid.backward import append_backward
import numpy as np import numpy as np
import paddle.v2.fluid.core as core import paddle.v2.fluid.core as core
......
...@@ -2,7 +2,7 @@ import unittest ...@@ -2,7 +2,7 @@ import unittest
import paddle.v2.fluid.core as core import paddle.v2.fluid.core as core
from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.executor import Executor
import paddle.v2.fluid.layers as layers import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.backward import append_backward_ops from paddle.v2.fluid.backward import append_backward
from paddle.v2.fluid.framework import default_main_program from paddle.v2.fluid.framework import default_main_program
import numpy import numpy
...@@ -35,7 +35,7 @@ class TestShrinkRNNMemory(unittest.TestCase): ...@@ -35,7 +35,7 @@ class TestShrinkRNNMemory(unittest.TestCase):
self.assertTrue(numpy.allclose(tensor_np[0:1], outs[2])) self.assertTrue(numpy.allclose(tensor_np[0:1], outs[2]))
mem3_mean = layers.mean(x=mem3) mem3_mean = layers.mean(x=mem3)
append_backward_ops(loss=mem3_mean) append_backward(loss=mem3_mean)
x_grad = exe.run( x_grad = exe.run(
feed={'x': tensor}, feed={'x': tensor},
fetch_list=[main_program.global_block().var('x@GRAD')])[0] fetch_list=[main_program.global_block().var('x@GRAD')])[0]
......
...@@ -4,7 +4,7 @@ import numpy as np ...@@ -4,7 +4,7 @@ import numpy as np
import paddle.v2.fluid.layers as layers import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.framework import Program from paddle.v2.fluid.framework import Program
from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.backward import append_backward_ops from paddle.v2.fluid.backward import append_backward
class TestCPULoDTensorArrayOps(unittest.TestCase): class TestCPULoDTensorArrayOps(unittest.TestCase):
...@@ -150,7 +150,7 @@ class TestCPUSplitMergeLoDTensorGrad(unittest.TestCase): ...@@ -150,7 +150,7 @@ class TestCPUSplitMergeLoDTensorGrad(unittest.TestCase):
main_program=program) main_program=program)
mean = layers.mean(x=out, main_program=program) mean = layers.mean(x=out, main_program=program)
append_backward_ops(mean) append_backward(mean)
tensor = core.LoDTensor() tensor = core.LoDTensor()
tensor.set(np.arange(10).reshape(10, 1).astype('float32'), place) tensor.set(np.arange(10).reshape(10, 1).astype('float32'), place)
......
...@@ -2,7 +2,7 @@ import unittest ...@@ -2,7 +2,7 @@ import unittest
import paddle.v2.fluid.layers as layers import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.executor import Executor
import paddle.v2.fluid.core as core import paddle.v2.fluid.core as core
from paddle.v2.fluid.backward import append_backward_ops from paddle.v2.fluid.backward import append_backward
import numpy import numpy
...@@ -46,7 +46,7 @@ class TestWhileOp(unittest.TestCase): ...@@ -46,7 +46,7 @@ class TestWhileOp(unittest.TestCase):
sum_result = layers.array_read(array=mem_array, i=i) sum_result = layers.array_read(array=mem_array, i=i)
loss = layers.mean(x=sum_result) loss = layers.mean(x=sum_result)
append_backward_ops(loss) append_backward(loss)
cpu = core.CPUPlace() cpu = core.CPUPlace()
exe = Executor(cpu) exe = Executor(cpu)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册