提交 53619a79 编写于 作者: M minqiyang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into accelerate_lstm

...@@ -208,6 +208,7 @@ paddle.fluid.layers.bilinear_tensor_product ArgSpec(args=['x', 'y', 'size', 'act ...@@ -208,6 +208,7 @@ paddle.fluid.layers.bilinear_tensor_product ArgSpec(args=['x', 'y', 'size', 'act
paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1)) paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1))
paddle.fluid.layers.py_func ArgSpec(args=['func', 'x', 'out', 'backward_func', 'skip_vars_in_backward_input'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.psroi_pool ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.psroi_pool ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.huber_loss ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.huber_loss ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True)) paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
...@@ -350,6 +351,22 @@ paddle.fluid.contrib.QuantizeTranspiler.__init__ ArgSpec(args=['self', 'weight_b ...@@ -350,6 +351,22 @@ paddle.fluid.contrib.QuantizeTranspiler.__init__ ArgSpec(args=['self', 'weight_b
paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.QuantizeTranspiler.freeze_program ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None)) paddle.fluid.contrib.QuantizeTranspiler.freeze_program ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.contrib.QuantizeTranspiler.training_transpile ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.contrib.QuantizeTranspiler.training_transpile ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.contrib.load_persistables_for_increment ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var', 'lookup_table_var_path'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.load_persistables_for_inference ArgSpec(args=['dirname', 'executor', 'program', 'lookup_table_var_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.convert_dist_to_sparse_program ArgSpec(args=['program'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.HDFSClient.__init__ ArgSpec(args=['self', 'hadoop_home', 'configs'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.HDFSClient.delete ArgSpec(args=['self', 'hdfs_path'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.HDFSClient.download ArgSpec(args=['self', 'hdfs_path', 'local_path', 'overwrite', 'unzip'], varargs=None, keywords=None, defaults=(False, False))
paddle.fluid.contrib.HDFSClient.is_dir ArgSpec(args=['self', 'hdfs_path'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.HDFSClient.is_exist ArgSpec(args=['self', 'hdfs_path'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.HDFSClient.ls ArgSpec(args=['self', 'hdfs_path'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.HDFSClient.lsr ArgSpec(args=['self', 'hdfs_path', 'only_file', 'sort'], varargs=None, keywords=None, defaults=(True, True))
paddle.fluid.contrib.HDFSClient.make_local_dirs ArgSpec(args=['local_path'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.HDFSClient.makedirs ArgSpec(args=['self', 'hdfs_path'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.HDFSClient.rename ArgSpec(args=['self', 'hdfs_src_path', 'hdfs_dst_path', 'overwrite'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.contrib.HDFSClient.upload ArgSpec(args=['self', 'hdfs_path', 'local_path', 'overwrite', 'retry_times'], varargs=None, keywords=None, defaults=(False, 5))
paddle.fluid.contrib.multi_download ArgSpec(args=['client', 'hdfs_path', 'local_path', 'trainer_id', 'trainers', 'multi_processes'], varargs=None, keywords=None, defaults=(5,))
paddle.fluid.contrib.multi_upload ArgSpec(args=['client', 'hdfs_path', 'local_path', 'multi_processes', 'overwrite', 'sync'], varargs=None, keywords=None, defaults=(5, False, True))
paddle.fluid.transpiler.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.transpiler.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None) paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None) paddle.fluid.transpiler.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
......
...@@ -131,9 +131,7 @@ std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy( ...@@ -131,9 +131,7 @@ std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
std::unique_ptr<ir::Graph> BuildStrategy::Apply( std::unique_ptr<ir::Graph> BuildStrategy::Apply(
const ProgramDesc &main_program, const std::vector<platform::Place> &places, const ProgramDesc &main_program, const std::vector<platform::Place> &places,
const std::string &loss_var_name, const std::string &loss_var_name, const std::vector<Scope *> &local_scopes,
const std::unordered_set<std::string> &param_names,
const std::vector<Scope *> &local_scopes,
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const bool use_cuda, platform::NCCLContextMap *nccl_ctxs) const { const bool use_cuda, platform::NCCLContextMap *nccl_ctxs) const {
#else #else
...@@ -149,9 +147,6 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply( ...@@ -149,9 +147,6 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass->SetNotOwned<const std::vector<platform::Place>>("places", &places); pass->SetNotOwned<const std::vector<platform::Place>>("places", &places);
pass->Erase("loss_var_name"); pass->Erase("loss_var_name");
pass->SetNotOwned<const std::string>("loss_var_name", &loss_var_name); pass->SetNotOwned<const std::string>("loss_var_name", &loss_var_name);
pass->Erase("params");
pass->SetNotOwned<const std::unordered_set<std::string>>("params",
&param_names);
pass->Erase("local_scopes"); pass->Erase("local_scopes");
pass->SetNotOwned<const std::vector<Scope *>>("local_scopes", pass->SetNotOwned<const std::vector<Scope *>>("local_scopes",
&local_scopes); &local_scopes);
......
...@@ -106,16 +106,15 @@ struct BuildStrategy { ...@@ -106,16 +106,15 @@ struct BuildStrategy {
// Apply the passes built by the pass_builder_. The passes will be // Apply the passes built by the pass_builder_. The passes will be
// applied to the Program and output an ir::Graph. // applied to the Program and output an ir::Graph.
std::unique_ptr<ir::Graph> Apply( std::unique_ptr<ir::Graph> Apply(const ProgramDesc &main_program,
const ProgramDesc &main_program, const std::vector<platform::Place> &places,
const std::vector<platform::Place> &places, const std::string &loss_var_name,
const std::string &loss_var_name, const std::vector<Scope *> &local_scopes,
const std::unordered_set<std::string> &param_names,
const std::vector<Scope *> &local_scopes,
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
const bool use_cuda, platform::NCCLContextMap *nccl_ctxs) const; const bool use_cuda,
platform::NCCLContextMap *nccl_ctxs) const;
#else #else
const bool use_cuda) const; const bool use_cuda) const;
#endif #endif
private: private:
......
...@@ -130,7 +130,6 @@ void AddOutputToLeafOps(ir::Graph *graph) { ...@@ -130,7 +130,6 @@ void AddOutputToLeafOps(ir::Graph *graph) {
static const char kLossVarName[] = "loss_var_name"; static const char kLossVarName[] = "loss_var_name";
static const char kPlaces[] = "places"; static const char kPlaces[] = "places";
static const char kParams[] = "params";
static const char kLocalScopes[] = "local_scopes"; static const char kLocalScopes[] = "local_scopes";
static const char kStrategy[] = "strategy"; static const char kStrategy[] = "strategy";
static const char kNumTrainers[] = "num_trainers"; static const char kNumTrainers[] = "num_trainers";
...@@ -147,9 +146,6 @@ void MultiDevSSAGraphBuilder::Init() const { ...@@ -147,9 +146,6 @@ void MultiDevSSAGraphBuilder::Init() const {
nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs"); nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs");
#endif #endif
for (auto &p : Get<const std::unordered_set<std::string>>(kParams)) {
grad_names_.insert(GradVarName(p));
}
balance_vars_.resize(places_.size(), 0); balance_vars_.resize(places_.size(), 0);
if (strategy_.enable_data_balance_ && places_.size() == 1) { if (strategy_.enable_data_balance_ && places_.size() == 1) {
LOG(WARNING) << "It is no need to enable data balance when there is only " LOG(WARNING) << "It is no need to enable data balance when there is only "
...@@ -896,7 +892,6 @@ REGISTER_PASS(multi_devices_pass, ...@@ -896,7 +892,6 @@ REGISTER_PASS(multi_devices_pass,
paddle::framework::details::MultiDevSSAGraphBuilder) paddle::framework::details::MultiDevSSAGraphBuilder)
.RequirePassAttr(paddle::framework::details::kLossVarName) .RequirePassAttr(paddle::framework::details::kLossVarName)
.RequirePassAttr(paddle::framework::details::kPlaces) .RequirePassAttr(paddle::framework::details::kPlaces)
.RequirePassAttr(paddle::framework::details::kParams)
.RequirePassAttr(paddle::framework::details::kLocalScopes) .RequirePassAttr(paddle::framework::details::kLocalScopes)
.RequirePassAttr(paddle::framework::details::kStrategy) .RequirePassAttr(paddle::framework::details::kStrategy)
.RequirePassAttr(paddle::framework::details::kNumTrainers); .RequirePassAttr(paddle::framework::details::kNumTrainers);
...@@ -102,7 +102,6 @@ class MultiDevSSAGraphBuilder : public ir::Pass { ...@@ -102,7 +102,6 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
mutable std::string loss_var_name_; mutable std::string loss_var_name_;
mutable std::vector<platform::Place> places_; mutable std::vector<platform::Place> places_;
mutable std::vector<Scope *> local_scopes_; mutable std::vector<Scope *> local_scopes_;
mutable std::unordered_set<std::string> grad_names_;
mutable BuildStrategy strategy_; mutable BuildStrategy strategy_;
mutable std::unordered_map<std::string, VarDesc *> all_vars_; mutable std::unordered_map<std::string, VarDesc *> all_vars_;
......
...@@ -110,22 +110,125 @@ class CompileTimeInferShapeContext : public InferShapeContext { ...@@ -110,22 +110,125 @@ class CompileTimeInferShapeContext : public InferShapeContext {
} }
} }
std::vector<InferShapeVarPtr> GetInputVarPtrs(
const std::string &name) override {
const std::vector<std::string> arg_names = Inputs(name);
std::vector<InferShapeVarPtr> res;
res.reserve(arg_names.size());
std::transform(arg_names.begin(), arg_names.end(), std::back_inserter(res),
[this](const std::string &name) {
return block_.FindVarRecursive(name);
});
return res;
}
std::vector<InferShapeVarPtr> GetOutputVarPtrs(
const std::string &name) override {
const std::vector<std::string> arg_names = Outputs(name);
std::vector<InferShapeVarPtr> res;
res.reserve(arg_names.size());
std::transform(arg_names.begin(), arg_names.end(), std::back_inserter(res),
[this](const std::string &name) {
return block_.FindVarRecursive(name);
});
return res;
}
DDim GetInputDim(const std::string &name) const override {
const std::vector<std::string> &arg_names = Inputs(name);
PADDLE_ENFORCE_EQ(arg_names.size(), 1UL,
"Input(%s) should hold one element, but now it holds %d",
name, arg_names.size());
return this->GetDim(arg_names[0]);
}
std::vector<DDim> GetInputsDim(const std::string &name) const override {
const std::vector<std::string> &arg_names = Inputs(name);
return GetDims(arg_names);
}
bool IsRuntime() const override; bool IsRuntime() const override;
std::vector<proto::VarType::Type> GetInputsVarType(
const std::string &name) const override {
return GetVarTypes(Inputs(name));
}
std::vector<proto::VarType::Type> GetOutputsVarType(
const std::string &name) const override {
return GetVarTypes(Outputs(name));
}
void SetOutputDim(const std::string &name, const DDim &dim) override {
auto &arg_names = Outputs(name);
PADDLE_ENFORCE_EQ(arg_names.size(), 1UL,
"Output(%s) should hold one element, but now it holds %d",
name, arg_names.size());
SetDim(arg_names[0], dim);
}
void SetOutputsDim(const std::string &name,
const std::vector<DDim> &dims) override {
auto &names = Outputs(name);
SetDims(names, dims);
}
protected: protected:
proto::VarType::Type GetVarType(const std::string &name) const override; std::vector<proto::VarType::Type> GetVarTypes(
const std::vector<std::string> &names) const {
std::vector<proto::VarType::Type> retv;
retv.resize(names.size());
std::transform(
names.begin(), names.end(), retv.begin(),
std::bind(std::mem_fn(&CompileTimeInferShapeContext::GetVarType), this,
std::placeholders::_1));
return retv;
}
proto::VarType::Type GetVarType(const std::string &name) const;
DDim GetDim(const std::string &name) const {
auto var = block_.FindVarRecursive(name);
PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", name);
DDim res;
try {
auto shape = var->GetShape();
res = shape.empty() ? make_ddim({0UL}) : make_ddim(shape);
} catch (...) {
VLOG(5) << "GetDim of variable " << name << " error";
std::rethrow_exception(std::current_exception());
}
return res;
}
DDim GetDim(const std::string &name) const override; std::vector<DDim> GetDims(const std::vector<std::string> &names) const {
std::vector<DDim> ret;
ret.reserve(names.size());
std::transform(
names.begin(), names.end(), std::back_inserter(ret),
[this](const std::string &name) { return this->GetDim(name); });
return ret;
}
void SetDim(const std::string &name, const DDim &dim);
void SetDim(const std::string &name, const DDim &dim) override; void SetDims(const std::vector<std::string> &names,
const std::vector<DDim> &dims) {
size_t length = names.size();
PADDLE_ENFORCE_EQ(length, dims.size());
for (size_t i = 0; i < length; ++i) {
if (names[i] == framework::kEmptyVarName) {
continue;
}
SetDim(names[i], dims[i]);
}
}
std::vector<DDim> GetRepeatedDims(const std::string &name) const override; std::vector<DDim> GetRepeatedDims(const std::string &name) const override;
void SetRepeatedDims(const std::string &name, void SetRepeatedDims(const std::string &name,
const std::vector<DDim> &dims) override; const std::vector<DDim> &dims) override;
InferShapeVarPtr GetVarPtr(const std::string &name) override;
const OpDesc &op_; const OpDesc &op_;
const BlockDesc &block_; const BlockDesc &block_;
}; };
...@@ -644,20 +747,6 @@ const std::vector<std::string> &CompileTimeInferShapeContext::Outputs( ...@@ -644,20 +747,6 @@ const std::vector<std::string> &CompileTimeInferShapeContext::Outputs(
return op_.Output(name); return op_.Output(name);
} }
DDim CompileTimeInferShapeContext::GetDim(const std::string &name) const {
auto var = block_.FindVarRecursive(name);
PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", name);
DDim res;
try {
auto shape = var->GetShape();
res = shape.empty() ? make_ddim({0UL}) : make_ddim(shape);
} catch (...) {
VLOG(5) << "GetDim of variable " << name << " error";
std::rethrow_exception(std::current_exception());
}
return res;
}
std::vector<DDim> CompileTimeInferShapeContext::GetRepeatedDims( std::vector<DDim> CompileTimeInferShapeContext::GetRepeatedDims(
const std::string &name) const { const std::string &name) const {
auto var = block_.FindVarRecursive(name); auto var = block_.FindVarRecursive(name);
...@@ -696,10 +785,5 @@ proto::VarType::Type CompileTimeInferShapeContext::GetVarType( ...@@ -696,10 +785,5 @@ proto::VarType::Type CompileTimeInferShapeContext::GetVarType(
return block_.FindVarRecursive(name)->GetType(); return block_.FindVarRecursive(name)->GetType();
} }
InferShapeVarPtr CompileTimeInferShapeContext::GetVarPtr(
const std::string &name) {
return block_.FindVarRecursive(name);
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -123,6 +123,8 @@ class OpDesc { ...@@ -123,6 +123,8 @@ class OpDesc {
BlockDesc *Block() { return this->block_; } BlockDesc *Block() { return this->block_; }
const BlockDesc *Block() const { return this->block_; }
private: private:
template <typename MapType> template <typename MapType>
static std::vector<typename MapType::key_type> MapKeys(const MapType &map) { static std::vector<typename MapType::key_type> MapKeys(const MapType &map) {
......
...@@ -142,12 +142,14 @@ RuntimeContext::RuntimeContext(const VariableNameMap& innames, ...@@ -142,12 +142,14 @@ RuntimeContext::RuntimeContext(const VariableNameMap& innames,
const Scope& scope) { const Scope& scope) {
for (auto& var_name_item : innames) { for (auto& var_name_item : innames) {
std::vector<Variable*>& input_vars = inputs[var_name_item.first]; std::vector<Variable*>& input_vars = inputs[var_name_item.first];
input_vars.reserve(var_name_item.second.size());
for (auto& var_name : var_name_item.second) { for (auto& var_name : var_name_item.second) {
input_vars.push_back(scope.FindVar(var_name)); input_vars.push_back(scope.FindVar(var_name));
} }
} }
for (auto& var_name_item : outnames) { for (auto& var_name_item : outnames) {
std::vector<Variable*>& output_vars = outputs[var_name_item.first]; std::vector<Variable*>& output_vars = outputs[var_name_item.first];
output_vars.reserve(var_name_item.second.size());
for (auto& var_name : var_name_item.second) { for (auto& var_name : var_name_item.second) {
output_vars.push_back(scope.FindVar(var_name)); output_vars.push_back(scope.FindVar(var_name));
} }
...@@ -552,30 +554,28 @@ class RuntimeInferShapeContext : public InferShapeContext { ...@@ -552,30 +554,28 @@ class RuntimeInferShapeContext : public InferShapeContext {
bool HasOutput(const std::string& name) const override { bool HasOutput(const std::string& name) const override {
// has only one output // has only one output
const auto& outs = op_.Outputs(); const auto& outs = ctx_.outputs;
auto it = outs.find(name); auto it = outs.find(name);
if (it == outs.end()) { if (it == outs.end()) {
return false; return false;
} }
const auto& out = it->second; const auto& out = it->second;
if (out.size() == 0 || out[0] == kEmptyVarName) { if (out.size() == 0) {
return false; return false;
} }
PADDLE_ENFORCE_EQ(out.size(), 1UL, PADDLE_ENFORCE_EQ(out.size(), 1UL,
"Output %s should not have more than one outputs", name); "Output %s should not have more than one outputs", name);
return scope_.FindVar(out[0]) != nullptr; return out[0] != nullptr;
} }
bool HasInputs(const std::string& name) const override { bool HasInputs(const std::string& name) const override {
if (!op_.HasInputs(name)) { const auto& ins = ctx_.inputs;
return false; auto it = ins.find(name);
} if (it == ins.end() || it->second.empty()) {
auto inputs = op_.Inputs(name);
if (inputs.empty()) {
return false; return false;
} }
for (auto& input : inputs) { for (auto& input : it->second) {
if (scope_.FindVar(input) == nullptr) { if (input == nullptr) {
return false; return false;
} }
} }
...@@ -583,15 +583,13 @@ class RuntimeInferShapeContext : public InferShapeContext { ...@@ -583,15 +583,13 @@ class RuntimeInferShapeContext : public InferShapeContext {
} }
bool HasOutputs(const std::string& name) const override { bool HasOutputs(const std::string& name) const override {
if (!op_.HasOutputs(name)) { const auto& outs = ctx_.outputs;
return false; auto it = outs.find(name);
} if (it == outs.end() || it->second.empty()) {
auto outputs = op_.Outputs(name);
if (outputs.empty()) {
return false; return false;
} }
for (auto& output : outputs) { for (auto& output : it->second) {
if (scope_.FindVar(output) == nullptr) { if (output == nullptr) {
return false; return false;
} }
} }
...@@ -612,16 +610,18 @@ class RuntimeInferShapeContext : public InferShapeContext { ...@@ -612,16 +610,18 @@ class RuntimeInferShapeContext : public InferShapeContext {
void ShareDim(const std::string& in, const std::string& out, size_t i = 0, void ShareDim(const std::string& in, const std::string& out, size_t i = 0,
size_t j = 0) override { size_t j = 0) override {
PADDLE_ENFORCE_LT(i, Inputs(in).size()); auto in_it = ctx_.inputs.find(in);
PADDLE_ENFORCE_LT(j, Outputs(out).size()); auto out_it = ctx_.outputs.find(out);
const std::string& input_n = Inputs(in)[i]; PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
const std::string& output_n = Outputs(out)[j]; "Inputs %s should have %llu argument", in, i);
PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
"Outputs %s should have %llu argument", out, j);
Variable* in_var = in_it->second[i];
Variable* out_var = out_it->second[j];
Variable* in_var = scope_.FindVar(input_n);
Variable* out_var = scope_.FindVar(output_n);
PADDLE_ENFORCE(in_var->Type() == out_var->Type(), PADDLE_ENFORCE(in_var->Type() == out_var->Type(),
"The type of %s and %s is not the same.", output_n, "The type of %s and %s is not the same.", in, out);
GetDim(input_n));
if (in_var->IsType<framework::SelectedRows>()) { if (in_var->IsType<framework::SelectedRows>()) {
auto& in_sele_rows = in_var->Get<framework::SelectedRows>(); auto& in_sele_rows = in_var->Get<framework::SelectedRows>();
...@@ -642,13 +642,16 @@ class RuntimeInferShapeContext : public InferShapeContext { ...@@ -642,13 +642,16 @@ class RuntimeInferShapeContext : public InferShapeContext {
void ShareLoD(const std::string& in, const std::string& out, size_t i = 0, void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
size_t j = 0) const override { size_t j = 0) const override {
const std::vector<std::string>& inputs = Inputs(in); auto in_it = ctx_.inputs.find(in);
const std::vector<std::string>& outputs = Outputs(out); auto out_it = ctx_.outputs.find(out);
PADDLE_ENFORCE_LT(i, inputs.size()); PADDLE_ENFORCE(in_it != ctx_.inputs.end() && in_it->second.size() > i,
PADDLE_ENFORCE_LT(j, outputs.size()); "Inputs %s should have %llu argument", in, i);
Variable* in_var = scope_.FindVar(inputs.at(i)); PADDLE_ENFORCE(out_it != ctx_.outputs.end() && out_it->second.size() > j,
"Outputs %s should have %llu argument", out, j);
Variable* in_var = in_it->second.at(i);
if (!in_var->IsType<LoDTensor>()) return; if (!in_var->IsType<LoDTensor>()) return;
Variable* out_var = scope_.FindVar(outputs.at(j)); Variable* out_var = out_it->second.at(j);
PADDLE_ENFORCE(out_var->IsType<LoDTensor>(), PADDLE_ENFORCE(out_var->IsType<LoDTensor>(),
"The %d-th output of Output(%s) must be LoDTensor.", j, out); "The %d-th output of Output(%s) must be LoDTensor.", j, out);
auto in_tensor = in_var->Get<LoDTensor>(); auto in_tensor = in_var->Get<LoDTensor>();
...@@ -683,9 +686,64 @@ class RuntimeInferShapeContext : public InferShapeContext { ...@@ -683,9 +686,64 @@ class RuntimeInferShapeContext : public InferShapeContext {
bool IsRuntime() const override { return true; } bool IsRuntime() const override { return true; }
// TODO(paddle-dev): Can this be template?
std::vector<InferShapeVarPtr> GetInputVarPtrs(
const std::string& name) override {
const std::vector<Variable*>& vars = InputVars(name);
std::vector<InferShapeVarPtr> res;
res.reserve(vars.size());
res.insert(res.begin(), vars.begin(), vars.end());
return res;
}
std::vector<InferShapeVarPtr> GetOutputVarPtrs(
const std::string& name) override {
const std::vector<Variable*>& vars = OutputVars(name);
std::vector<InferShapeVarPtr> res;
res.reserve(vars.size());
res.insert(res.begin(), vars.begin(), vars.end());
return res;
}
DDim GetInputDim(const std::string& name) const override {
const std::vector<Variable*>& vars = InputVars(name);
PADDLE_ENFORCE_EQ(vars.size(), 1UL,
"Input(%s) should hold one element, but now it holds %d",
name, vars.size());
return this->GetDim(vars[0]);
}
std::vector<DDim> GetInputsDim(const std::string& name) const override {
const std::vector<Variable*>& vars = InputVars(name);
return GetDims(vars);
}
std::vector<proto::VarType::Type> GetInputsVarType(
const std::string& name) const override {
return GetVarTypes(InputVars(name));
}
std::vector<proto::VarType::Type> GetOutputsVarType(
const std::string& name) const override {
return GetVarTypes(OutputVars(name));
}
void SetOutputDim(const std::string& name, const DDim& dim) override {
auto& vars = OutputVars(name);
PADDLE_ENFORCE_EQ(vars.size(), 1UL,
"Output(%s) should hold one element, but now it holds %d",
name, vars.size());
SetDim(vars[0], dim);
}
void SetOutputsDim(const std::string& name,
const std::vector<DDim>& dims) override {
auto& vars = OutputVars(name);
SetDims(vars, dims);
}
protected: protected:
DDim GetDim(const std::string& name) const override { DDim GetDim(Variable* var) const {
Variable* var = scope_.FindVar(name);
PADDLE_ENFORCE_NOT_NULL(var); PADDLE_ENFORCE_NOT_NULL(var);
if (var->IsType<LoDTensor>()) { if (var->IsType<LoDTensor>()) {
return var->Get<LoDTensor>().dims(); return var->Get<LoDTensor>().dims();
...@@ -693,25 +751,44 @@ class RuntimeInferShapeContext : public InferShapeContext { ...@@ -693,25 +751,44 @@ class RuntimeInferShapeContext : public InferShapeContext {
return var->Get<SelectedRows>().GetCompleteDims(); return var->Get<SelectedRows>().GetCompleteDims();
} else { } else {
PADDLE_THROW( PADDLE_THROW(
"Only LoDTensor/SelectedRows support 'GetDim', but Variable %s's " "Only LoDTensor/SelectedRows support 'GetDim', but Variables "
"type_id is %s.", "type_id is %s.",
name, var->Type().name()); var->Type().name());
} }
} }
std::vector<DDim> GetDims(const std::vector<Variable*>& vars) const {
std::vector<DDim> ret;
ret.reserve(vars.size());
std::transform(vars.begin(), vars.end(), std::back_inserter(ret),
[this](Variable* var) { return this->GetDim(var); });
return ret;
}
std::vector<DDim> GetRepeatedDims(const std::string& name) const override { std::vector<DDim> GetRepeatedDims(const std::string& name) const override {
PADDLE_THROW("Only compile time support this method"); PADDLE_THROW("Only compile time support this method");
} }
void SetDim(const std::string& name, const DDim& dim) override { void SetDim(Variable* var, const DDim& dim) {
Variable* var = scope_.FindVar(name);
if (var->IsType<LoDTensor>()) { if (var->IsType<LoDTensor>()) {
var->GetMutable<LoDTensor>()->Resize(dim); var->GetMutable<LoDTensor>()->Resize(dim);
} else if (var->IsType<SelectedRows>()) { } else if (var->IsType<SelectedRows>()) {
var->GetMutable<SelectedRows>()->set_height(dim[0]); var->GetMutable<SelectedRows>()->set_height(dim[0]);
} else { } else {
PADDLE_THROW("Variable %s type_id %s, expect LoDTensor/SelectedRows.", PADDLE_THROW("Variable type_id %s, expect LoDTensor/SelectedRows.",
name, var->Type().name()); var->Type().name());
}
}
void SetDims(const std::vector<Variable*>& vars,
const std::vector<DDim>& dims) {
size_t length = vars.size();
PADDLE_ENFORCE_EQ(length, dims.size());
for (size_t i = 0; i < length; ++i) {
if (vars[i] == nullptr) {
continue;
}
SetDim(vars[i], dims[i]);
} }
} }
...@@ -720,16 +797,36 @@ class RuntimeInferShapeContext : public InferShapeContext { ...@@ -720,16 +797,36 @@ class RuntimeInferShapeContext : public InferShapeContext {
PADDLE_THROW("Only compile time support this method"); PADDLE_THROW("Only compile time support this method");
} }
proto::VarType::Type GetVarType(const std::string& name) const override { std::vector<proto::VarType::Type> GetVarTypes(
auto* var = scope_.FindVar(name); const std::vector<Variable*>& vars) const {
return ToVarType(var->Type()); std::vector<proto::VarType::Type> retv;
retv.resize(vars.size());
std::transform(vars.begin(), vars.end(), retv.begin(),
std::bind(std::mem_fn(&RuntimeInferShapeContext::GetVarType),
this, std::placeholders::_1));
return retv;
} }
InferShapeVarPtr GetVarPtr(const std::string& name) override { proto::VarType::Type GetVarType(Variable* var) const {
return scope_.FindVar(name); return ToVarType(var->Type());
} }
private: private:
const std::vector<Variable*>& InputVars(const std::string& name) const {
auto it = ctx_.inputs.find(name);
PADDLE_ENFORCE(it != ctx_.inputs.end(),
"Operator %s does not have the input %s.", op_.Type(), name);
return it->second;
}
const std::vector<Variable*>& OutputVars(const std::string& name) const {
auto it = ctx_.outputs.find(name);
PADDLE_ENFORCE(it != ctx_.outputs.end(),
"Operator %s does not have the outputs %s.", op_.Type(),
name);
return it->second;
}
const OperatorBase& op_; const OperatorBase& op_;
const Scope& scope_; const Scope& scope_;
const RuntimeContext& ctx_; const RuntimeContext& ctx_;
...@@ -860,8 +957,7 @@ Scope* OperatorWithKernel::PrepareData( ...@@ -860,8 +957,7 @@ Scope* OperatorWithKernel::PrepareData(
for (size_t i = 0; i < var_name_item.second.size(); ++i) { for (size_t i = 0; i < var_name_item.second.size(); ++i) {
auto& var_name = var_name_item.second[i]; auto& var_name = var_name_item.second[i];
auto* var = scope.FindVar(var_name); auto* var = input_vars[i];
input_vars[i] = var;
// Only tensor can be tranfer to another device. // Only tensor can be tranfer to another device.
if (var == nullptr || !VarIsTensor(*var)) { if (var == nullptr || !VarIsTensor(*var)) {
......
...@@ -190,7 +190,6 @@ std::vector<Scope *> &ParallelExecutor::GetLocalScopes() { ...@@ -190,7 +190,6 @@ std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
ParallelExecutor::ParallelExecutor( ParallelExecutor::ParallelExecutor(
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
const std::unordered_set<std::string> &params,
const std::unordered_set<std::string> &bcast_vars, const std::unordered_set<std::string> &bcast_vars,
const ProgramDesc &main_program, const std::string &loss_var_name, const ProgramDesc &main_program, const std::string &loss_var_name,
Scope *scope, const std::vector<Scope *> &local_scopes, Scope *scope, const std::vector<Scope *> &local_scopes,
...@@ -209,7 +208,7 @@ ParallelExecutor::ParallelExecutor( ...@@ -209,7 +208,7 @@ ParallelExecutor::ParallelExecutor(
"the number of places must be greater than 1."); "the number of places must be greater than 1.");
} }
// Step 1. Bcast the params to devs. // Step 1. Bcast the bcast_vars to devs.
// Create local scopes // Create local scopes
if (local_scopes.empty()) { if (local_scopes.empty()) {
member_->own_local_scope_ = true; member_->own_local_scope_ = true;
...@@ -249,12 +248,12 @@ ParallelExecutor::ParallelExecutor( ...@@ -249,12 +248,12 @@ ParallelExecutor::ParallelExecutor(
// ncclOp // ncclOp
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
std::unique_ptr<ir::Graph> graph = build_strategy.Apply( std::unique_ptr<ir::Graph> graph = build_strategy.Apply(
main_program, member_->places_, loss_var_name, params, main_program, member_->places_, loss_var_name, member_->local_scopes_,
member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get()); member_->use_cuda_, member_->nccl_ctxs_.get());
#else #else
std::unique_ptr<ir::Graph> graph = std::unique_ptr<ir::Graph> graph =
build_strategy.Apply(main_program, member_->places_, loss_var_name, build_strategy.Apply(main_program, member_->places_, loss_var_name,
params, member_->local_scopes_, member_->use_cuda_); member_->local_scopes_, member_->use_cuda_);
#endif #endif
auto max_memory_size = GetEagerDeletionThreshold(); auto max_memory_size = GetEagerDeletionThreshold();
if (max_memory_size >= 0) { if (max_memory_size >= 0) {
......
...@@ -41,7 +41,6 @@ class ParallelExecutor { ...@@ -41,7 +41,6 @@ class ParallelExecutor {
public: public:
explicit ParallelExecutor(const std::vector<platform::Place> &places, explicit ParallelExecutor(const std::vector<platform::Place> &places,
const std::unordered_set<std::string> &params,
const std::unordered_set<std::string> &bcast_vars, const std::unordered_set<std::string> &bcast_vars,
const ProgramDesc &main_program, const ProgramDesc &main_program,
const std::string &loss_var_name, Scope *scope, const std::string &loss_var_name, Scope *scope,
......
...@@ -22,20 +22,6 @@ limitations under the License. */ ...@@ -22,20 +22,6 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
DDim InferShapeContext::GetInputDim(const std::string &name) const {
const std::vector<std::string> &arg_names = Inputs(name);
PADDLE_ENFORCE_EQ(arg_names.size(), 1UL,
"Input(%s) should hold one element, but now it holds %d",
name, arg_names.size());
return this->GetDim(arg_names[0]);
}
std::vector<DDim> InferShapeContext::GetInputsDim(
const std::string &name) const {
const std::vector<std::string> &arg_names = Inputs(name);
return GetDims(arg_names);
}
std::vector<DDim> InferShapeContext::GetReaderDims( std::vector<DDim> InferShapeContext::GetReaderDims(
const std::string &name) const { const std::string &name) const {
const std::vector<std::string> &arg_names = Inputs(name); const std::vector<std::string> &arg_names = Inputs(name);
...@@ -46,26 +32,6 @@ std::vector<DDim> InferShapeContext::GetReaderDims( ...@@ -46,26 +32,6 @@ std::vector<DDim> InferShapeContext::GetReaderDims(
return this->GetRepeatedDims(arg_names[0]); return this->GetRepeatedDims(arg_names[0]);
} }
DDim InferShapeContext::GetInputsElementDim(const std::string &name,
int idx) const {
const std::vector<std::string> &names = Inputs(name);
return this->GetDim(names[idx]);
}
void InferShapeContext::SetOutputDim(const std::string &name, const DDim &dim) {
auto &arg_names = Outputs(name);
PADDLE_ENFORCE_EQ(arg_names.size(), 1UL,
"Output(%s) should hold one element, but now it holds %d",
name, arg_names.size());
SetDim(arg_names[0], dim);
}
void InferShapeContext::SetOutputsDim(const std::string &name,
const std::vector<DDim> &dims) {
auto &names = Outputs(name);
SetDims(names, dims);
}
void InferShapeContext::SetReaderDims(const std::string &name, void InferShapeContext::SetReaderDims(const std::string &name,
const std::vector<DDim> &dims) { const std::vector<DDim> &dims) {
const std::vector<std::string> &arg_names = Outputs(name); const std::vector<std::string> &arg_names = Outputs(name);
...@@ -76,69 +42,5 @@ void InferShapeContext::SetReaderDims(const std::string &name, ...@@ -76,69 +42,5 @@ void InferShapeContext::SetReaderDims(const std::string &name,
return this->SetRepeatedDims(arg_names[0], dims); return this->SetRepeatedDims(arg_names[0], dims);
} }
std::vector<InferShapeVarPtr> InferShapeContext::GetInputVarPtrs(
const std::string &name) {
const std::vector<std::string> arg_names = Inputs(name);
std::vector<InferShapeVarPtr> res;
res.reserve(arg_names.size());
std::transform(
arg_names.begin(), arg_names.end(), std::back_inserter(res),
[this](const std::string &name) { return this->GetVarPtr(name); });
return res;
}
std::vector<InferShapeVarPtr> InferShapeContext::GetOutputVarPtrs(
const std::string &name) {
const std::vector<std::string> arg_names = Outputs(name);
std::vector<InferShapeVarPtr> res;
res.reserve(arg_names.size());
std::transform(
arg_names.begin(), arg_names.end(), std::back_inserter(res),
[this](const std::string &name) { return this->GetVarPtr(name); });
return res;
}
std::vector<DDim> InferShapeContext::GetDims(
const std::vector<std::string> &names) const {
std::vector<DDim> ret;
ret.reserve(names.size());
std::transform(
names.begin(), names.end(), std::back_inserter(ret),
[this](const std::string &name) { return this->GetDim(name); });
return ret;
}
void InferShapeContext::SetDims(const std::vector<std::string> &names,
const std::vector<DDim> &dims) {
size_t length = names.size();
PADDLE_ENFORCE_EQ(length, dims.size());
for (size_t i = 0; i < length; ++i) {
if (names[i] == framework::kEmptyVarName) {
continue;
}
SetDim(names[i], dims[i]);
}
}
std::vector<proto::VarType::Type> InferShapeContext::GetInputsVarType(
const std::string &name) const {
return GetVarTypes(Inputs(name));
}
std::vector<proto::VarType::Type> InferShapeContext::GetOutputsVarType(
const std::string &name) const {
return GetVarTypes(Outputs(name));
}
std::vector<proto::VarType::Type> InferShapeContext::GetVarTypes(
const std::vector<std::string> &names) const {
std::vector<proto::VarType::Type> retv;
retv.resize(names.size());
std::transform(names.begin(), names.end(), retv.begin(),
std::bind(std::mem_fn(&InferShapeContext::GetVarType), this,
std::placeholders::_1));
return retv;
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -25,6 +25,8 @@ limitations under the License. */ ...@@ -25,6 +25,8 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class OperatorBase;
using InferShapeVarPtr = boost::variant<VarDesc *, Variable *>; using InferShapeVarPtr = boost::variant<VarDesc *, Variable *>;
class InferShapeContext { class InferShapeContext {
...@@ -33,22 +35,23 @@ class InferShapeContext { ...@@ -33,22 +35,23 @@ class InferShapeContext {
virtual bool HasInput(const std::string &name) const = 0; virtual bool HasInput(const std::string &name) const = 0;
virtual bool HasOutput(const std::string &name) const = 0; virtual bool HasOutput(const std::string &name) const = 0;
std::vector<proto::VarType::Type> GetInputsVarType( virtual std::vector<proto::VarType::Type> GetInputsVarType(
const std::string &name) const; const std::string &name) const = 0;
std::vector<proto::VarType::Type> GetOutputsVarType( virtual std::vector<proto::VarType::Type> GetOutputsVarType(
const std::string &name) const; const std::string &name) const = 0;
virtual bool HasInputs(const std::string &name) const = 0; virtual bool HasInputs(const std::string &name) const = 0;
virtual bool HasOutputs(const std::string &name) const = 0; virtual bool HasOutputs(const std::string &name) const = 0;
DDim GetInputDim(const std::string &name) const; virtual DDim GetInputDim(const std::string &name) const = 0;
std::vector<DDim> GetInputsDim(const std::string &name) const; virtual std::vector<DDim> GetInputsDim(const std::string &name) const = 0;
std::vector<DDim> GetReaderDims(const std::string &name) const; virtual std::vector<DDim> GetReaderDims(const std::string &name) const;
DDim GetInputsElementDim(const std::string &name, int idx) const;
void SetOutputDim(const std::string &name, const DDim &dim); virtual void SetOutputDim(const std::string &name, const DDim &dim) = 0;
void SetOutputsDim(const std::string &name, const std::vector<DDim> &dims); virtual void SetOutputsDim(const std::string &name,
void SetReaderDims(const std::string &name, const std::vector<DDim> &dims); const std::vector<DDim> &dims) = 0;
virtual void SetReaderDims(const std::string &name,
const std::vector<DDim> &dims);
virtual AttrReader Attrs() const = 0; virtual AttrReader Attrs() const = 0;
virtual const std::vector<std::string> &Inputs( virtual const std::vector<std::string> &Inputs(
...@@ -67,27 +70,15 @@ class InferShapeContext { ...@@ -67,27 +70,15 @@ class InferShapeContext {
virtual bool IsRuntime() const = 0; virtual bool IsRuntime() const = 0;
std::vector<InferShapeVarPtr> GetInputVarPtrs(const std::string &name); virtual std::vector<InferShapeVarPtr> GetInputVarPtrs(
std::vector<InferShapeVarPtr> GetOutputVarPtrs(const std::string &name); const std::string &name) = 0;
virtual InferShapeVarPtr GetVarPtr(const std::string &name) = 0; virtual std::vector<InferShapeVarPtr> GetOutputVarPtrs(
const std::string &name) = 0;
// Note: In while op, we need this to be public
void SetDims(const std::vector<std::string> &names,
const std::vector<DDim> &dims);
protected: protected:
virtual DDim GetDim(const std::string &name) const = 0;
virtual void SetDim(const std::string &name, const DDim &dim) = 0;
virtual std::vector<DDim> GetRepeatedDims(const std::string &name) const = 0; virtual std::vector<DDim> GetRepeatedDims(const std::string &name) const = 0;
virtual void SetRepeatedDims(const std::string &name, virtual void SetRepeatedDims(const std::string &name,
const std::vector<DDim> &dims) = 0; const std::vector<DDim> &dims) = 0;
std::vector<DDim> GetDims(const std::vector<std::string> &names) const;
std::vector<proto::VarType::Type> GetVarTypes(
const std::vector<std::string> &names) const;
virtual proto::VarType::Type GetVarType(const std::string &name) const = 0;
}; };
} // namespace framework } // namespace framework
......
...@@ -254,5 +254,16 @@ TEST(Analyzer_dam, compare) { compare(); } ...@@ -254,5 +254,16 @@ TEST(Analyzer_dam, compare) { compare(); }
TEST(Analyzer_dam, compare_mkldnn) { compare(true /* use_mkldnn */); } TEST(Analyzer_dam, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif #endif
// Compare Deterministic result
TEST(Analyzer_dam, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
...@@ -180,6 +180,17 @@ TEST(Analyzer_LAC, compare) { ...@@ -180,6 +180,17 @@ TEST(Analyzer_LAC, compare) {
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all); reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
} }
// Compare Deterministic result
TEST(Analyzer_LAC, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace analysis } // namespace analysis
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
...@@ -179,5 +179,16 @@ TEST(Analyzer_Chinese_ner, compare) { ...@@ -179,5 +179,16 @@ TEST(Analyzer_Chinese_ner, compare) {
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all); reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
} }
// Compare Deterministic result
TEST(Analyzer_Chinese_ner, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
...@@ -85,6 +85,17 @@ TEST(Analyzer_resnet50, compare) { compare(); } ...@@ -85,6 +85,17 @@ TEST(Analyzer_resnet50, compare) { compare(); }
TEST(Analyzer_resnet50, compare_mkldnn) { compare(true /* use_mkldnn */); } TEST(Analyzer_resnet50, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif #endif
// Compare Deterministic result
TEST(Analyzer_resnet50, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace analysis } // namespace analysis
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
...@@ -265,6 +265,17 @@ TEST(Analyzer_rnn1, compare) { ...@@ -265,6 +265,17 @@ TEST(Analyzer_rnn1, compare) {
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all); reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
} }
// Compare Deterministic result
TEST(Analyzer_rnn1, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
// Test Multi-Thread. // Test Multi-Thread.
TEST(Analyzer_rnn1, multi_thread) { TEST(Analyzer_rnn1, multi_thread) {
contrib::AnalysisConfig cfg; contrib::AnalysisConfig cfg;
......
...@@ -158,5 +158,16 @@ TEST(Analyzer_rnn2, compare) { ...@@ -158,5 +158,16 @@ TEST(Analyzer_rnn2, compare) {
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all); reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
} }
// Compare Deterministic result
TEST(Analyzer_rnn2, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
...@@ -204,5 +204,16 @@ TEST(Analyzer_seq_conv1, compare) { ...@@ -204,5 +204,16 @@ TEST(Analyzer_seq_conv1, compare) {
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all); reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
} }
// Compare Deterministic result
TEST(Analyzer_seq_conv1, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
...@@ -106,6 +106,17 @@ TEST(Analyzer_Text_Classification, compare) { ...@@ -106,6 +106,17 @@ TEST(Analyzer_Text_Classification, compare) {
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all); reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
} }
// Compare Deterministic result
TEST(Analyzer_Text_Classification, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
TEST(Analyzer_Text_Classification, compare_against_embedding_fc_lstm_fused) { TEST(Analyzer_Text_Classification, compare_against_embedding_fc_lstm_fused) {
AnalysisConfig cfg; AnalysisConfig cfg;
SetConfig(&cfg); SetConfig(&cfg);
......
...@@ -145,6 +145,17 @@ TEST(Analyzer_vis, compare) { compare(); } ...@@ -145,6 +145,17 @@ TEST(Analyzer_vis, compare) { compare(); }
TEST(Analyzer_vis, compare_mkldnn) { compare(true /* use_mkldnn */); } TEST(Analyzer_vis, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif #endif
// Compare Deterministic result
TEST(Analyzer_vis, compare_determine) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all);
}
} // namespace analysis } // namespace analysis
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
...@@ -45,6 +45,7 @@ DEFINE_bool(use_analysis, true, ...@@ -45,6 +45,7 @@ DEFINE_bool(use_analysis, true,
"Running the inference program in analysis mode."); "Running the inference program in analysis mode.");
DEFINE_bool(record_benchmark, false, DEFINE_bool(record_benchmark, false,
"Record benchmark after profiling the model"); "Record benchmark after profiling the model");
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
DECLARE_bool(profile); DECLARE_bool(profile);
DECLARE_int32(paddle_num_threads); DECLARE_int32(paddle_num_threads);
...@@ -85,7 +86,7 @@ void CompareResult(const std::vector<PaddleTensor> &outputs, ...@@ -85,7 +86,7 @@ void CompareResult(const std::vector<PaddleTensor> &outputs,
float *pdata = static_cast<float *>(out.data.data()); float *pdata = static_cast<float *>(out.data.data());
float *pdata_ref = static_cast<float *>(ref_out.data.data()); float *pdata_ref = static_cast<float *>(ref_out.data.data());
for (size_t j = 0; j < size; ++j) { for (size_t j = 0; j < size; ++j) {
EXPECT_NEAR(pdata_ref[j], pdata[j], 1e-3); EXPECT_NEAR(pdata_ref[j], pdata[j], FLAGS_accuracy);
} }
break; break;
} }
...@@ -283,6 +284,26 @@ void TestPrediction(const PaddlePredictor::Config *config, ...@@ -283,6 +284,26 @@ void TestPrediction(const PaddlePredictor::Config *config,
} }
} }
void CompareDeterministic(
const PaddlePredictor::Config *config,
const std::vector<std::vector<PaddleTensor>> &inputs) {
int batch_size = FLAGS_batch_size;
int num_times = FLAGS_repeat;
auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);
// warmup run
std::vector<PaddleTensor> warmup_outputs, outputs;
predictor->Run(inputs[0], &warmup_outputs, batch_size);
// run num_times to Compare Deterministic Result.
for (int i = 0; i < num_times; i++) {
for (size_t j = 0; j < inputs.size(); j++) {
predictor->Run(inputs[j], &outputs, batch_size);
CompareResult(outputs, warmup_outputs);
}
}
}
void CompareNativeAndAnalysis( void CompareNativeAndAnalysis(
const PaddlePredictor::Config *config, const PaddlePredictor::Config *config,
const std::vector<std::vector<PaddleTensor>> &inputs) { const std::vector<std::vector<PaddleTensor>> &inputs) {
......
...@@ -42,8 +42,7 @@ if (WITH_DISTRIBUTE) ...@@ -42,8 +42,7 @@ if (WITH_DISTRIBUTE)
SET(OP_PREFETCH_DEPS ${OP_PREFETCH_DEPS} parameter_prefetch) SET(OP_PREFETCH_DEPS ${OP_PREFETCH_DEPS} parameter_prefetch)
endif() endif()
register_operators(EXCLUDES warpctc_op conv_fusion_op DEPS ${OP_HEADER_DEPS} ${OP_PREFETCH_DEPS}) register_operators(EXCLUDES py_func_op warpctc_op conv_fusion_op DEPS ${OP_HEADER_DEPS} ${OP_PREFETCH_DEPS})
# warpctc_op needs cudnn 7 above # warpctc_op needs cudnn 7 above
if (WITH_GPU AND NOT WIN32) if (WITH_GPU AND NOT WIN32)
...@@ -92,4 +91,8 @@ cc_test(save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op) ...@@ -92,4 +91,8 @@ cc_test(save_load_op_test SRCS save_load_op_test.cc DEPS save_op load_op)
cc_test(save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op) cc_test(save_load_combine_op_test SRCS save_load_combine_op_test.cc DEPS save_combine_op load_combine_op)
nv_test(dropout_op_test SRCS dropout_op_test.cc DEPS dropout_op tensor) nv_test(dropout_op_test SRCS dropout_op_test.cc DEPS dropout_op tensor)
if (WITH_PYTHON)
cc_library(py_func_op SRCS py_func_op.cc DEPS op_registry python pybind)
endif()
set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library") set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library")
...@@ -399,26 +399,41 @@ class WhileGradOpShapeInference : public framework::InferShapeBase { ...@@ -399,26 +399,41 @@ class WhileGradOpShapeInference : public framework::InferShapeBase {
ctx->HasInputs(kOutputs); ctx->HasInputs(kOutputs);
ctx->HasInputs(framework::GradVarName(kOutputs)); ctx->HasInputs(framework::GradVarName(kOutputs));
auto p_names = ctx->Inputs(kX);
auto pg_ig_names = ctx->Outputs(kXGRAD); auto pg_ig_names = ctx->Outputs(kXGRAD);
auto var_types = ctx->GetInputsVarType(kX); std::vector<framework::InferShapeVarPtr> in_var_ptrs =
std::vector<std::string> names_to_set; ctx->GetInputVarPtrs(kX);
std::vector<framework::DDim> dims_to_set; std::vector<framework::InferShapeVarPtr> out_var_ptrs =
for (size_t i = 0; i < p_names.size(); ++i) { ctx->GetOutputVarPtrs(kXGRAD);
PADDLE_ENFORCE(in_var_ptrs.size() == out_var_ptrs.size());
for (size_t i = 0; i < in_var_ptrs.size(); ++i) {
if (pg_ig_names[i] == framework::kEmptyVarName) { if (pg_ig_names[i] == framework::kEmptyVarName) {
continue; continue;
} }
auto dims = ctx->GetInputsElementDim(kX, i); if (ctx->IsRuntime()) {
if (var_types[i] == framework::proto::VarType::LOD_TENSOR) { framework::Variable *in_var =
names_to_set.push_back(pg_ig_names[i]); boost::get<framework::Variable *>(in_var_ptrs[i]);
dims_to_set.push_back(dims); framework::Variable *out_var =
} else if (var_types[i] == framework::proto::VarType::LOD_TENSOR_ARRAY) { boost::get<framework::Variable *>(out_var_ptrs[i]);
// not sure how to set the dim of LOD_TENSOR_ARRAY
names_to_set.push_back(pg_ig_names[i]); auto type = framework::ToVarType(in_var->Type());
dims_to_set.push_back(dims); if (type == framework::proto::VarType::LOD_TENSOR) {
out_var->GetMutable<LoDTensor>()->Resize(
in_var->Get<framework::LoDTensor>().dims());
} else if (type == framework::proto::VarType::SELECTED_ROWS) {
out_var->GetMutable<framework::SelectedRows>()->set_height(
in_var->Get<framework::SelectedRows>().GetCompleteDims()[0]);
} else if (type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
PADDLE_THROW("WhileGradOp doesn't support type %d",
static_cast<int>(type));
}
} else {
framework::VarDesc *in_var =
boost::get<framework::VarDesc *>(in_var_ptrs[i]);
boost::get<framework::VarDesc *>(out_var_ptrs[i])
->SetShape(in_var->GetShape());
} }
} }
ctx->SetDims(names_to_set, dims_to_set);
} }
}; };
......
...@@ -155,11 +155,14 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> { ...@@ -155,11 +155,14 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto chosen_memory_format = auto chosen_memory_format =
platform::data_format_to_memory_format(data_format); platform::data_format_to_memory_format(data_format);
if (is_conv3d) { weights_format = mkldnn::memory::format::any;
chosen_memory_format = // Check the format for user's special output
platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format); if (chosen_memory_format != mkldnn::memory::format::any) {
if (is_conv3d) {
chosen_memory_format =
platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
}
} }
weights_format = GetWeightsFormat(chosen_memory_format, g, is_conv3d);
auto src_md = platform::MKLDNNMemDesc( auto src_md = platform::MKLDNNMemDesc(
src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format); src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
...@@ -435,11 +438,14 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> { ...@@ -435,11 +438,14 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
auto chosen_memory_format = auto chosen_memory_format =
platform::data_format_to_memory_format(data_format); platform::data_format_to_memory_format(data_format);
if (is_conv3d) { weights_format = mkldnn::memory::format::any;
chosen_memory_format = // Check the format for user's special output
platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format); if (chosen_memory_format != mkldnn::memory::format::any) {
if (is_conv3d) {
chosen_memory_format =
platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
}
} }
weights_format = GetWeightsFormat(chosen_memory_format, g, is_conv3d);
auto src_md = platform::MKLDNNMemDesc( auto src_md = platform::MKLDNNMemDesc(
src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format); src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
......
...@@ -26,6 +26,13 @@ class MergeSelectedRowsOp : public framework::OperatorWithKernel { ...@@ -26,6 +26,13 @@ class MergeSelectedRowsOp : public framework::OperatorWithKernel {
"Input(X) of MergeSelectedRowsOp should not be null."); "Input(X) of MergeSelectedRowsOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"), PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of MergeSelectedRowsOp should not be null."); "Output(Out) of MergeSelectedRowsOp should not be null.");
PADDLE_ENFORCE_EQ(ctx->GetInputsVarType("X").front(),
framework::proto::VarType::SELECTED_ROWS,
"Input X only should be SelectedRows.");
PADDLE_ENFORCE_EQ(ctx->GetOutputsVarType("Out").front(),
framework::proto::VarType::SELECTED_ROWS,
"Output Y only should be SelectedRows.");
ctx->ShareDim("X", /*->*/ "Out"); ctx->ShareDim("X", /*->*/ "Out");
} }
}; };
...@@ -43,7 +50,28 @@ class MergeSelectedRowsOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -43,7 +50,28 @@ class MergeSelectedRowsOpMaker : public framework::OpProtoAndCheckerMaker {
R"DOC( R"DOC(
MergeSelectedRows Operator. MergeSelectedRows Operator.
MergeSelectedRows is used to merge the duplicated rows of the input. MergeSelectedRows is used to merge the duplicated rows of the input. The
output's row has no duplicated, and it's order is incremental.
Example:
Input:
X.rows is [0, 5, 5, 4, 19]
X.height is 20
X.value is:
[[1, 1]
[2, 2]
[3, 3]
[4, 4]
[6, 6]]
Output:
Out.row is [0, 4, 5, 19]
Out.height is 20
Out.value is:
[[1, 1]
[4, 4]
[5, 5]
[6, 6]]
)DOC"); )DOC");
} }
}; };
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/py_func_op.h"
#include <set>
#include <string>
#include <vector>
#include "Python.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
namespace py = ::pybind11;
static std::vector<py::object> g_py_callables;
const char kForwardPythonCallableId[] = "forward_callable_id";
const char kBackwardPythonCallableId[] = "backward_callable_id";
const char kPyFuncBackwardSkipVars[] = "backward_skip_vars";
size_t AppendPythonCallableObjectAndReturnId(const py::object &py_obj) {
g_py_callables.emplace_back(py_obj);
return g_py_callables.size() - 1;
}
// Return py::object* instead of py::object
// Returning py::object would cause reference count increasing
// but without GIL, reference count in Python may not be safe
static py::object *GetPythonCallableObject(size_t i) {
PADDLE_ENFORCE_LT(i, g_py_callables.size(), "Invalid python callable id");
return &g_py_callables[i];
}
static std::string PythonFuncDebugString(const py::object &py_callable) {
py::gil_scoped_acquire guard;
std::string wrapper_func_str = py::str(py_callable);
auto inner_func = py_callable.attr("_func");
std::string inner_func_str = py::str(inner_func);
return inner_func_str + " wrapped by " + wrapper_func_str;
}
static void CallPythonFunc(py::object *callable,
const std::vector<framework::LoDTensor> &ins,
std::vector<framework::LoDTensor *> *outs) {
py::gil_scoped_acquire guard;
py::tuple in_args(ins.size());
for (size_t i = 0; i < ins.size(); ++i) {
in_args[i] = ins[i].IsInitialized() ? py::cast(ins[i]) : py::cast(nullptr);
}
auto ret = (*callable)(*in_args);
auto ret_tuple = py::cast<py::tuple>(ret);
size_t ret_num = py::len(ret_tuple);
size_t out_num = outs->size();
if (UNLIKELY(ret_num != out_num)) {
// Python function has no return values or returns None
// In this case, ret_num = 1 && ret[0] == None && out_num should be 0
// Otherwise, ret_num must be equal to out_num
PADDLE_ENFORCE(
ret_num == 1 && out_num == 0 &&
py::cast<framework::LoDTensor *>(ret_tuple[0]) == nullptr,
"Output number not match. Expected %d, actual %d", out_num, ret_num);
}
for (size_t i = 0; i < out_num; ++i) {
auto *out = (*outs)[i];
if (out == nullptr) {
continue;
}
try {
auto *py_out_tensor = py::cast<framework::LoDTensor *>(ret_tuple[i]);
PADDLE_ENFORCE_NOT_NULL(py_out_tensor,
"Output tensor %d should not be nullptr", i);
out->set_lod(py_out_tensor->lod());
out->ShareDataWith(*py_out_tensor);
} catch (py::cast_error &) {
PADDLE_THROW("The %d-th output must be LoDTensor", i);
}
}
}
class PyFuncOpVarTypInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op,
framework::BlockDesc *block) const override {
auto &outs = op.Outputs();
bool has_out = (outs.count("Out") > 0 && !outs.at("Out").empty());
auto &ins = op.Inputs();
bool has_in = (ins.count("X") > 0 && !ins.at("X").empty());
/**
* X or Out can be empty, so that py_func can be more flexible
* to support Python functions with no input or no output
*/
PADDLE_ENFORCE(has_in || has_out, "Input(X) or Output(Out) must exist");
PADDLE_ENFORCE_GE(boost::get<int>(op.GetAttr(kForwardPythonCallableId)), 0,
"Function id cannot be less than 0");
if (!has_out) return;
/**
* Traverse all outputs, check if name of any output ends with @GRAD.
* If found, set its shape, dtype, lod_level, type to be the same as
* the corresponding forward variable
*/
const std::string kGradVarSuffix = framework::kGradVarSuffix;
auto &out_var_names = outs.at("Out");
for (auto &out_var_name : out_var_names) {
if (out_var_name == framework::kEmptyVarName ||
out_var_name.size() < kGradVarSuffix.size()) {
continue;
}
size_t len = out_var_name.size() - kGradVarSuffix.size();
if (out_var_name.substr(len) == kGradVarSuffix) {
auto fwd_var_name = out_var_name.substr(0, len);
auto *out_var_desc = block->FindVarRecursive(out_var_name);
auto *fwd_var_desc = block->FindVarRecursive(fwd_var_name);
PADDLE_ENFORCE_NOT_NULL(out_var_desc, "Backward variable %s not found",
out_var_name);
PADDLE_ENFORCE_NOT_NULL(fwd_var_desc, "Forward variable %s not found",
fwd_var_name);
VLOG(10) << "Infer var_desc of Output(" << out_var_name << ") as Input("
<< fwd_var_name << ")";
out_var_desc->SetShape(fwd_var_desc->GetShape());
out_var_desc->SetDataType(fwd_var_desc->GetDataType());
out_var_desc->SetLoDLevel(fwd_var_desc->GetLoDLevel());
out_var_desc->SetType(fwd_var_desc->GetType());
}
}
}
};
class PyFuncOpShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(!ctx->IsRuntime(),
"Infer shape cannot be called in runtime.");
}
};
class PyFuncOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "Inputs of py_func op.").AsDuplicable();
AddOutput("Out", "Outputs of py_func op").AsDuplicable();
AddAttr<int>(kForwardPythonCallableId,
"Index of registered forward Python function.")
.SetDefault(0);
AddAttr<int>(kBackwardPythonCallableId,
"Index of registered backward Python function.")
.SetDefault(-1);
AddAttr<std::vector<std::string>>(kPyFuncBackwardSkipVars,
"Unused forward in/out in backward op")
.SetDefault(std::vector<std::string>());
AddComment(R"DOC("PyFunc Op")DOC");
}
};
/**
* There are several benefits when backward op of py_func op is
* still py_func op.
*
* - Less codes are needed, since codes of backward is almost
* the same as forward.
*
* - To support high order derivative, so that py_func is
* infinite-order differentiable
*/
class PyFuncOpGradDescMaker : public framework::GradOpDescMakerBase {
private:
static std::string DebugString(const std::vector<std::string> &strs) {
if (strs.empty()) return "";
std::string ret = strs[0];
for (size_t i = 1; i < strs.size(); ++i) {
ret += " ";
ret += strs[i];
}
return ret;
}
public:
using framework::GradOpDescMakerBase::GradOpDescMakerBase;
std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
auto &fwd_attrs = Attrs();
// no backward op when backward_id is less than 0
if (boost::get<int>(fwd_attrs.at(kBackwardPythonCallableId)) < 0) {
return {};
}
std::unique_ptr<framework::OpDesc> grad_op(new framework::OpDesc());
grad_op->SetType("py_func");
framework::AttributeMap bwd_attrs;
bwd_attrs[kForwardPythonCallableId] =
fwd_attrs.at(kBackwardPythonCallableId);
bwd_attrs[kBackwardPythonCallableId] = -1;
grad_op->SetAttrMap(bwd_attrs);
// All forward inputs
auto fwd_ins = Input("X");
// All forward outputs
auto fwd_outs = Output("Out");
// For memory reused, some inputs/output in forward part may be not needed
// in backward part. Skipping these vars helps to save memory
auto &backward_skip_var_list = boost::get<std::vector<std::string>>(
fwd_attrs.at(kPyFuncBackwardSkipVars));
std::unordered_set<std::string> backward_skip_var_set(
backward_skip_var_list.begin(), backward_skip_var_list.end());
std::vector<std::string> bwd_ins;
bwd_ins.reserve(fwd_ins.size() + fwd_outs.size());
for (auto &fwd_in : fwd_ins) {
if (backward_skip_var_set.count(fwd_in) == 0) {
bwd_ins.emplace_back(fwd_in);
}
}
for (auto &fwd_out : fwd_outs) {
if (backward_skip_var_set.count(fwd_out) == 0) {
bwd_ins.emplace_back(fwd_out);
}
}
// Backward OG cannot be skipped
// But in Python side, if OG is kEmptyVarName, input tensor would be None
auto fwd_out_grads = OutputGrad("Out");
bwd_ins.reserve(bwd_ins.size() + fwd_out_grads.size());
bwd_ins.insert(bwd_ins.end(), fwd_out_grads.begin(), fwd_out_grads.end());
// Backward IG cannot be skipped
// But in Python side, if IG is not needed, users can just return None
auto bwd_outs = InputGrad("X", false);
VLOG(10) << "PyFunc Grad Input: " << DebugString(bwd_ins);
VLOG(10) << "PyFunc Grad Output: " << DebugString(bwd_outs);
grad_op->SetInput("X", bwd_ins);
grad_op->SetOutput("Out", bwd_outs);
std::vector<std::unique_ptr<framework::OpDesc>> ret(1);
ret[0] = std::move(grad_op);
return ret;
}
};
class PyFuncOp : public framework::OperatorBase {
public:
using framework::OperatorBase::OperatorBase;
protected:
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
auto &in_arg_names = Inputs("X");
auto &out_arg_names = Outputs("Out");
std::vector<framework::LoDTensor> inputs(in_arg_names.size());
for (size_t i = 0; i < in_arg_names.size(); ++i) {
auto in_var = scope.FindVar(in_arg_names[i]);
// When py_func op is called in backward, in_var may be null
if (in_var == nullptr) {
continue;
}
auto &in_tensor = in_var->Get<framework::LoDTensor>();
if (!in_tensor.IsInitialized()) {
continue;
}
if (platform::is_gpu_place(in_tensor.place())) {
framework::TensorCopySync(in_tensor, platform::CPUPlace(), &inputs[i]);
} else {
inputs[i].ShareDataWith(in_tensor);
}
inputs[i].set_lod(in_tensor.lod());
}
std::vector<framework::LoDTensor *> outputs(out_arg_names.size());
for (size_t i = 0; i < out_arg_names.size(); ++i) {
auto *out_var = scope.FindVar(out_arg_names[i]);
outputs[i] =
out_var ? out_var->GetMutable<framework::LoDTensor>() : nullptr;
}
auto callable_id = static_cast<size_t>(Attr<int>(kForwardPythonCallableId));
auto *py_callable = GetPythonCallableObject(callable_id);
VLOG(10) << "Call Python function with id " << callable_id << ": "
<< PythonFuncDebugString(*py_callable);
CallPythonFunc(py_callable, inputs, &outputs);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(py_func, ops::PyFuncOp, ops::PyFuncOpMaker,
ops::PyFuncOpVarTypInference, ops::PyFuncOpShapeInference,
ops::PyFuncOpGradDescMaker);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "pybind11/pybind11.h"
namespace paddle {
namespace operators {
size_t AppendPythonCallableObjectAndReturnId(const ::pybind11::object &py_obj);
} // namespace operators
} // namespace paddle
...@@ -32,7 +32,7 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> { ...@@ -32,7 +32,7 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const bool is_test = ctx.Attr<bool>("is_test"); const bool is_test = ctx.Attr<bool>("is_test");
PADDLE_ENFORCE( PADDLE_ENFORCE(
is_test == true, is_test == true,
"ConvTransposeMKLDNN works only for inference!. Set is_test = True"); "TransposeMKLDNN works only for inference!. Set is_test = True");
auto& dev_ctx = auto& dev_ctx =
ctx.template device_context<paddle::platform::MKLDNNDeviceContext>(); ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
const auto& mkldnn_engine = dev_ctx.GetEngine(); const auto& mkldnn_engine = dev_ctx.GetEngine();
...@@ -47,69 +47,24 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> { ...@@ -47,69 +47,24 @@ class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
return; return;
} }
std::vector<int> nchw_axis(ndims, 0);
for (size_t i = 0; i < nchw_axis.size(); ++i) {
nchw_axis[i] = i;
}
std::vector<int> nchw_tz = paddle::framework::vectorize2int(input->dims()); std::vector<int> nchw_tz = paddle::framework::vectorize2int(input->dims());
std::string data_format = ctx.Attr<std::string>("data_format");
auto src_md =
input->format() != mkldnn::memory::format::nchw
? platform::MKLDNNMemDesc(nchw_tz, platform::MKLDNNGetDataType<T>(),
input->format())
: Axis2MemoryDesc(nchw_tz, nchw_axis);
this->TransposeKernel(ctx.GetPlace(), Axis2MemoryDesc(nchw_tz, axis),
src_md, output, input_data, nchw_tz, mkldnn_engine);
}
protected:
mkldnn::memory::desc Axis2MemoryDesc(std::vector<int>& nchw_tz,
std::vector<int>& axis) const {
mkldnn_memory_desc_t mem_fmt;
mem_fmt.primitive_kind = mkldnn_memory;
mem_fmt.ndims = axis.size();
for (unsigned int i = 0; i < nchw_tz.size(); ++i) {
mem_fmt.dims[i] = nchw_tz[i]; // logical dimensions (nchw format,
// regardless physical layout)
}
mem_fmt.data_type = mkldnn_f32;
mem_fmt.format = mkldnn_blocked;
unsigned int total_stride = 1;
for (int i = nchw_tz.size() - 1; i >= 0; --i) {
mem_fmt.layout_desc.blocking.padding_dims[i] =
nchw_tz[i]; // logical dimensions (nchw format, regardless physical
// layout)
mem_fmt.layout_desc.blocking.block_dims[i] = 1;
mem_fmt.layout_desc.blocking.offset_padding_to_data[i] = 0; // no offset
mem_fmt.layout_desc.blocking.strides[0][axis[i]] = total_stride;
mem_fmt.layout_desc.blocking.strides[1][axis[i]] = 1;
total_stride *= nchw_tz[axis[i]];
}
mem_fmt.layout_desc.blocking.offset_padding = 0; // no initial offset
return mem_fmt;
}
void TransposeKernel(platform::Place place, mkldnn::memory::desc md_o, const std::string key = platform::TransposeMKLDNNHandler::GetHash(
mkldnn::memory::desc md_i, Tensor* output, nchw_tz, axis, ctx.op().Output("Out"));
const T* data_i, std::vector<int>& nchw_dims,
const mkldnn::engine& eng) const {
// Make Memory primitive descriptors
auto mpd_o = mkldnn::memory::primitive_desc(md_o, eng);
auto mpd_i = mkldnn::memory::primitive_desc(md_i, eng);
auto data_o = output->mutable_data<T>( platform::TransposeMKLDNNHandler handler(nchw_tz, axis, dev_ctx,
place, paddle::memory::Allocator::kDefault, mpd_o.get_size()); mkldnn_engine, key);
auto src = mkldnn::memory(mpd_i, (T*)(data_i)); auto transpose_src_memory_p = handler.AcquireSrcMemory(
auto dst = mkldnn::memory(mpd_o, data_o); input->format(), platform::to_void_cast<T>(input_data));
auto transpose_dst_memory_p =
handler.AcquireDstMemory(output, ctx.GetPlace());
auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p,
transpose_src_memory_p);
auto r = mkldnn::reorder(src, dst); std::vector<mkldnn::primitive> pipeline;
mkldnn::stream(mkldnn::stream::kind::eager).submit({r}).wait(); pipeline.push_back(*transpose_p);
mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
} }
}; };
......
...@@ -197,6 +197,130 @@ class MKLDNNHandler { ...@@ -197,6 +197,130 @@ class MKLDNNHandler {
bool is_reusing_; bool is_reusing_;
}; };
class TransposeMKLDNNHandler : public MKLDNNHandler {
public:
TransposeMKLDNNHandler(std::vector<int>& dims, std::vector<int>& axis,
const platform::MKLDNNDeviceContext& dev_ctx,
mkldnn::engine engine, const std::string& base_key)
: platform::MKLDNNHandler(dev_ctx, engine, base_key),
dims_(dims),
axis_(axis),
logical_axis_(dims.size(), 0) {}
std::shared_ptr<mkldnn::memory> AcquireSrcMemory(
const mkldnn::memory::format& fmt, void* ptr) {
auto local_key = key_ + "@user_src_mem_p";
auto mem_p =
std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false),
" find mem primitive in device context");
if (mem_p == nullptr) {
// Make memory descriptor using input format, unless it
// cannot be trusted (nchw) then make up memory fmt manually
for (size_t i = 0; i < logical_axis_.size(); ++i) {
logical_axis_[i] = i;
}
auto src_md = fmt != mkldnn::memory::format::nchw
? platform::MKLDNNMemDesc(
dims_, platform::MKLDNNGetDataType<float>(), fmt)
: Axis2MemoryDesc(dims_, logical_axis_);
mem_p = std::make_shared<mkldnn::memory>(
mkldnn::memory::primitive_desc{src_md, engine_}, ptr);
dev_ctx_.SetBlob(local_key, mem_p);
} else {
mem_p->set_data_handle(ptr);
// Mark that reusing happenned. All primitives from operator instance
// should be reused or none of them. So we check consistency
is_reusing_ = true;
}
return mem_p;
}
std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output,
platform::Place place) {
auto local_key = key_ + "@user_dst_mem_p";
auto mem_p =
std::static_pointer_cast<mkldnn::memory>(dev_ctx_.GetBlob(local_key));
PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false),
" find mem primitive in device context");
if (mem_p == nullptr) {
auto dst_mdp = mkldnn::memory::primitive_desc{
Axis2MemoryDesc(dims_, axis_), engine_};
auto dst_data = output->mutable_data<float>(
place, paddle::memory::Allocator::kDefault, dst_mdp.get_size());
mem_p = std::make_shared<mkldnn::memory>(dst_mdp, dst_data);
dev_ctx_.SetBlob(local_key, mem_p);
} else {
auto dst_data = output->mutable_data<float>(place);
mem_p->set_data_handle(dst_data);
// Mark that reusing happenned. All primitives from operator instance
// should be reused or none of them. So we check consistency
is_reusing_ = true;
}
return mem_p;
}
std::shared_ptr<mkldnn::reorder> AcquireTranspose(
std::shared_ptr<mkldnn::memory> dst_memory_p,
std::shared_ptr<mkldnn::memory> src_memory_p) {
auto prim_key = key_ + "@transpose_p";
auto transpose_p =
std::static_pointer_cast<mkldnn::reorder>(dev_ctx_.GetBlob(prim_key));
PADDLE_ENFORCE((transpose_p != nullptr) || (is_reusing_ == false),
"Fail to find convolution primitive in device context");
if (transpose_p == nullptr) {
transpose_p =
std::make_shared<mkldnn::reorder>(*(src_memory_p), *(dst_memory_p));
dev_ctx_.SetBlob(prim_key, transpose_p);
} else {
is_reusing_ = true;
}
return transpose_p;
}
static std::string GetHash(std::vector<int>& shape, // NOLINT
std::vector<int>& axis, // NOLINT
const std::string& suffix) {
return dims2str(shape) + dims2str(axis) + suffix;
}
protected:
mkldnn_memory_desc_t Axis2MemoryDesc(std::vector<int>& nchw_tz,
std::vector<int>& axis) {
mkldnn_memory_desc_t mem_fmt;
mem_fmt.primitive_kind = mkldnn_memory;
mem_fmt.ndims = axis.size();
for (unsigned int i = 0; i < nchw_tz.size(); ++i) {
mem_fmt.dims[i] = nchw_tz[i]; // logical dimensions (nchw format,
// regardless physical layout)
}
mem_fmt.data_type = mkldnn_f32;
mem_fmt.format = mkldnn_blocked;
unsigned int total_stride = 1;
for (int i = nchw_tz.size() - 1; i >= 0; --i) {
mem_fmt.layout_desc.blocking.padding_dims[i] =
nchw_tz[i]; // logical dimensions (nchw format, regardless physical
// layout)
mem_fmt.layout_desc.blocking.block_dims[i] = 1;
mem_fmt.layout_desc.blocking.offset_padding_to_data[i] = 0; // no offset
mem_fmt.layout_desc.blocking.strides[0][axis[i]] = total_stride;
mem_fmt.layout_desc.blocking.strides[1][axis[i]] = 1;
total_stride *= nchw_tz[axis[i]];
}
mem_fmt.layout_desc.blocking.offset_padding = 0; // no initial offset
return mem_fmt;
}
private:
std::vector<int> dims_;
std::vector<int> axis_;
std::vector<int> logical_axis_;
};
template <class forward_t, class backward_data_t, class backward_weights_t> template <class forward_t, class backward_data_t, class backward_weights_t>
class ConvMKLDNNTemplateHandler : public MKLDNNHandler { class ConvMKLDNNTemplateHandler : public MKLDNNHandler {
public: public:
......
set(PYBIND_DEPS pybind python proto_desc memory executor async_executor prune feed_fetch_method pass_builder parallel_executor profiler layer) set(PYBIND_DEPS pybind python proto_desc memory executor async_executor prune feed_fetch_method pass_builder parallel_executor profiler layer)
if(WITH_PYTHON)
list(APPEND PYBIND_DEPS py_func_op)
endif()
set(PYBIND_SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc async_executor_py.cc imperative.cc) set(PYBIND_SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc async_executor_py.cc imperative.cc)
if(WITH_PYTHON) if(WITH_PYTHON)
......
...@@ -328,7 +328,7 @@ void BindOpDesc(pybind11::module *m) { ...@@ -328,7 +328,7 @@ void BindOpDesc(pybind11::module *m) {
.def("infer_var_type", &pd::OpDesc::InferVarType) .def("infer_var_type", &pd::OpDesc::InferVarType)
.def("set_is_target", &pd::OpDesc::SetIsTarget) .def("set_is_target", &pd::OpDesc::SetIsTarget)
.def("serialize_to_string", SerializeMessage<pd::OpDesc>) .def("serialize_to_string", SerializeMessage<pd::OpDesc>)
.def("block", &pd::OpDesc::Block, .def("block", [](pd::OpDesc &self) { return self.Block(); },
pybind11::return_value_policy::reference); pybind11::return_value_policy::reference);
} }
......
...@@ -37,6 +37,7 @@ limitations under the License. */ ...@@ -37,6 +37,7 @@ limitations under the License. */
#include "paddle/fluid/imperative/layer.h" #include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/memory/allocation/allocator_strategy.h" #include "paddle/fluid/memory/allocation/allocator_strategy.h"
#include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/py_func_op.h"
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h" #include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
#include "paddle/fluid/platform/cpu_info.h" #include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/enforce.h"
...@@ -110,6 +111,12 @@ PYBIND11_MODULE(core, m) { ...@@ -110,6 +111,12 @@ PYBIND11_MODULE(core, m) {
BindException(&m); BindException(&m);
m.def(
"_append_python_callable_object_and_return_id",
[](py::object py_obj) -> size_t {
return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
});
py::class_<imperative::VarBase, PyVarBase>(m, "VarBase", R"DOC()DOC") py::class_<imperative::VarBase, PyVarBase>(m, "VarBase", R"DOC()DOC")
.def(py::init<>()) .def(py::init<>())
.def("_run_backward", .def("_run_backward",
...@@ -977,7 +984,6 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -977,7 +984,6 @@ All parameter, weight, gradient are variables in Paddle.
cannot be updated after being finalized.)DOC"); cannot be updated after being finalized.)DOC");
pe.def(py::init<const std::vector<platform::Place> &, pe.def(py::init<const std::vector<platform::Place> &,
const std::unordered_set<std::string> &,
const std::unordered_set<std::string> &, const ProgramDesc &, const std::unordered_set<std::string> &, const ProgramDesc &,
const std::string &, Scope *, std::vector<Scope *> &, const std::string &, Scope *, std::vector<Scope *> &,
const ExecutionStrategy &, const BuildStrategy &, size_t, const ExecutionStrategy &, const BuildStrategy &, size_t,
......
...@@ -22,9 +22,12 @@ from . import op_frequence ...@@ -22,9 +22,12 @@ from . import op_frequence
from .op_frequence import * from .op_frequence import *
from . import quantize from . import quantize
from .quantize import * from .quantize import *
from . import utils
from .utils import *
__all__ = [] __all__ = []
__all__ += decoder.__all__ __all__ += decoder.__all__
__all__ += memory_usage_calc.__all__ __all__ += memory_usage_calc.__all__
__all__ += op_frequence.__all__ __all__ += op_frequence.__all__
__all__ += quantize.__all__ __all__ += quantize.__all__
__all__ += utils.__all__
...@@ -13,10 +13,11 @@ ...@@ -13,10 +13,11 @@
# limitations under the License. # limitations under the License.
from __future__ import print_function from __future__ import print_function
#from . import lookup_table_utils from . import lookup_table_utils
#from .lookup_table_utils import * from .lookup_table_utils import *
from . import hdfs_utils from . import hdfs_utils
from .hdfs_utils import * from .hdfs_utils import *
#__all__ = lookup_table_utils.__all__ __all__ = []
__all__ = hdfs_utils.__all__ __all__ += lookup_table_utils.__all__
__all__ += hdfs_utils.__all__
...@@ -14,6 +14,7 @@ ...@@ -14,6 +14,7 @@
"""HDFS Utils""" """HDFS Utils"""
import os import os
import sys
import subprocess import subprocess
import multiprocessing import multiprocessing
from datetime import datetime from datetime import datetime
...@@ -24,7 +25,7 @@ import errno ...@@ -24,7 +25,7 @@ import errno
import logging import logging
__all__ = ["HDFSClient", "multi_download"] __all__ = ["HDFSClient", "multi_download", "multi_upload"]
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s') logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
_logger = logging.getLogger("hdfs_utils") _logger = logging.getLogger("hdfs_utils")
...@@ -93,13 +94,15 @@ class HDFSClient(object): ...@@ -93,13 +94,15 @@ class HDFSClient(object):
def upload(self, hdfs_path, local_path, overwrite=False, retry_times=5): def upload(self, hdfs_path, local_path, overwrite=False, retry_times=5):
""" """
upload the local file to hdfs upload the local file to hdfs
Args:
hdfs_path: hdfs path, target path Args:
local_path: local file path, source path hdfs_path(str): the hdfs file path
overwrite: will overwrite the original file local_path(str): the local file path
retry_times: max times retry to upload overwrite(bool|None): will overwrite the file on HDFS or not
Returns: retry_times(int|5): retry times
Returns:
True or False True or False
""" """
assert hdfs_path is not None assert hdfs_path is not None
...@@ -109,7 +112,7 @@ class HDFSClient(object): ...@@ -109,7 +112,7 @@ class HDFSClient(object):
_logger.warn( _logger.warn(
"The Local path: {} is dir and I will support it later, return". "The Local path: {} is dir and I will support it later, return".
format(local_path)) format(local_path))
return return False
base = os.path.basename(local_path) base = os.path.basename(local_path)
if not self.is_exist(hdfs_path): if not self.is_exist(hdfs_path):
...@@ -141,14 +144,16 @@ class HDFSClient(object): ...@@ -141,14 +144,16 @@ class HDFSClient(object):
def download(self, hdfs_path, local_path, overwrite=False, unzip=False): def download(self, hdfs_path, local_path, overwrite=False, unzip=False):
""" """
download from hdfs download file from HDFS
Args:
hdfs_path: hdfs path, target path Args:
local_path: local file path, source path hdfs_path(str): the hdfs file path
overwrite: will remove original file and overwrite it. local_path(str): the local file path
unzip: ignore this param overwrite(bool|None): will overwrite the file on HDFS or not
Returns unzip(bool|False): if the download file is compressed by zip, unzip it or not.
True or False
Returns:
True or False
""" """
_logger.info('Downloading %r to %r.', hdfs_path, local_path) _logger.info('Downloading %r to %r.', hdfs_path, local_path)
_logger.info('Download of %s to %r complete.', hdfs_path, local_path) _logger.info('Download of %s to %r complete.', hdfs_path, local_path)
...@@ -188,13 +193,13 @@ class HDFSClient(object): ...@@ -188,13 +193,13 @@ class HDFSClient(object):
def is_exist(self, hdfs_path=None): def is_exist(self, hdfs_path=None):
""" """
whether the remote hdfs path exists? whether the remote HDFS path exists
Args:
hdfs_path: default value(${OUTPUT_PATH}/${SYS_USER_ID}/${SYS_JOB_ID}/tmp) Args:
fs_name: The default values are the same as in the job configuration hdfs_path(str): the hdfs file path
fs_ugi: The default values are the same as in the job configuration
Returns: Returns:
True or False True or False
""" """
exist_cmd = ['-test', '-e', hdfs_path] exist_cmd = ['-test', '-e', hdfs_path]
returncode, output, errors = self.__run_hdfs_cmd( returncode, output, errors = self.__run_hdfs_cmd(
...@@ -211,13 +216,13 @@ class HDFSClient(object): ...@@ -211,13 +216,13 @@ class HDFSClient(object):
def is_dir(self, hdfs_path=None): def is_dir(self, hdfs_path=None):
""" """
whether the remote hdfs path exists? whether the remote HDFS path is directory
Args:
remote_file_path: default value(${OUTPUT_PATH}/${SYS_USER_ID}/${SYS_JOB_ID}/tmp) Args:
fs_name: The default values are the same as in the job configuration hdfs_path(str): the hdfs file path
fs_ugi: The default values are the same as in the job configuration
Returns: Returns:
True or False True or False
""" """
if not self.is_exist(hdfs_path): if not self.is_exist(hdfs_path):
...@@ -237,17 +242,17 @@ class HDFSClient(object): ...@@ -237,17 +242,17 @@ class HDFSClient(object):
def delete(self, hdfs_path): def delete(self, hdfs_path):
""" """
Remove a file or directory from HDFS. Remove a file or directory from HDFS.
whether the remote HDFS path exists
Args: Args:
param hdfs_path: HDFS path. hdfs_path: HDFS path.
param recursive: Recursively delete files and directories. By default,
this method will raise an :class:`HdfsError` if trying to delete a
non-empty directory.
Returns: Returns:
True or False
This function returns `True` if the deletion was successful and `False` if This function returns `True` if the deletion was successful and `False` if
no file or directory previously existed at `hdfs_path`. no file or directory previously existed at `hdfs_path`.
""" """
_logger.info('Deleting %r.', hdfs_path) _logger.info('Deleting %r.', hdfs_path)
...@@ -273,16 +278,14 @@ class HDFSClient(object): ...@@ -273,16 +278,14 @@ class HDFSClient(object):
def rename(self, hdfs_src_path, hdfs_dst_path, overwrite=False): def rename(self, hdfs_src_path, hdfs_dst_path, overwrite=False):
""" """
Rename a file or folder. Move a file or folder on HDFS.
Args:
:param hdfs_src_path: Source path. Args:
:param hdfs_dst_path: Destination path. If the path already exists and is hdfs_path(str): HDFS path.
a directory, the source will be moved into it. If the path exists and is overwrite(bool|False): If the path already exists and overwrite is False, will return False.
a file, or if a parent destination directory is missing, this method will
raise an :class:`HdfsError`.
Returns: Returns:
This function returns `True` if the rename was successful and `False` if True or False
rename was faild.
""" """
assert hdfs_src_path is not None assert hdfs_src_path is not None
assert hdfs_dst_path is not None assert hdfs_dst_path is not None
...@@ -320,17 +323,20 @@ class HDFSClient(object): ...@@ -320,17 +323,20 @@ class HDFSClient(object):
raise raise
def makedirs(self, hdfs_path): def makedirs(self, hdfs_path):
"""Create a remote directory, recursively if necessary. """
Create a remote directory, recursively if necessary.
Args: Args:
:param hdfs_path: Remote path. Intermediate directories will be created hdfs_path(str): Remote path. Intermediate directories will be created appropriately.
appropriately.
Returns: Returns:
True if make a directories was successful, False when make a directiries was failed. True or False
""" """
_logger.info('Creating directories to %r.', hdfs_path) _logger.info('Creating directories to %r.', hdfs_path)
assert hdfs_path is not None assert hdfs_path is not None
if self.is_exist(hdfs_path): if self.is_exist(hdfs_path):
_logger.error("HDFS path is exist: {}".format(hdfs_path))
return return
mkdirs_commands = ['-mkdir', hdfs_path] mkdirs_commands = ['-mkdir', hdfs_path]
...@@ -346,11 +352,13 @@ class HDFSClient(object): ...@@ -346,11 +352,13 @@ class HDFSClient(object):
def ls(self, hdfs_path): def ls(self, hdfs_path):
""" """
ls a hdfs_path. ls directory contents about HDFS hdfs_path
Args:
:param hdfs_path: hdfs_path will be ls. Args:
hdfs_path(str): Remote HDFS path will be ls.
Returns: Returns:
This function returns a `list` that contaion all files in the hdfs_path. List: a contents list about hdfs_path.
""" """
assert hdfs_path is not None assert hdfs_path is not None
...@@ -378,11 +386,15 @@ class HDFSClient(object): ...@@ -378,11 +386,15 @@ class HDFSClient(object):
def lsr(self, hdfs_path, only_file=True, sort=True): def lsr(self, hdfs_path, only_file=True, sort=True):
""" """
ls a hdfs_path sort by time. list directory contents about HDFS hdfs_path recursively
Args:
:param hdfs_path: hdfs_path will be ls. Args:
hdfs_path(str): Remote HDFS path.
only_file(bool|True): will discard folders.
sort(bool|True): will be sorted by create time.
Returns: Returns:
This function returns a `list` that contaion all files sorted by time in the hdfs_path. List: a contents list about hdfs_path.
""" """
def sort_by_time(v1, v2): def sort_by_time(v1, v2):
...@@ -422,21 +434,106 @@ class HDFSClient(object): ...@@ -422,21 +434,106 @@ class HDFSClient(object):
return ret_lines return ret_lines
def multi_download(client,
hdfs_path,
local_path,
trainer_id,
trainers,
multi_processes=5):
"""
Download files from HDFS using multi process.
Args:
client(HDFSClient): instance of HDFSClient
hdfs_path(str): path on hdfs
local_path(str): path on local
trainer_id(int): current trainer id
trainers(int): all trainers number
multi_processes(int|5): the download data process at the same time, default=5
Returns:
List:
Download files in local folder.
"""
def __subprocess_download(datas):
for data in datas:
re_path = os.path.relpath(os.path.dirname(data), hdfs_path)
if re_path == os.curdir:
sub_local_re_path = local_path
else:
sub_local_re_path = os.path.join(local_path, re_path)
client.download(data, sub_local_re_path)
assert isinstance(client, HDFSClient)
client.make_local_dirs(local_path)
_logger.info("Make local dir {} successfully".format(local_path))
all_need_download = client.lsr(hdfs_path, sort=True)
need_download = all_need_download[trainer_id::trainers]
_logger.info("Get {} files From all {} files need to be download from {}".
format(len(need_download), len(all_need_download), hdfs_path))
_logger.info("Start {} multi process to download datas".format(
multi_processes))
procs = []
for i in range(multi_processes):
process_datas = need_download[i::multi_processes]
p = multiprocessing.Process(
target=__subprocess_download, args=(process_datas, ))
procs.append(p)
p.start()
# complete the processes
for proc in procs:
proc.join()
_logger.info("Finish {} multi process to download datas".format(
multi_processes))
local_downloads = []
for data in need_download:
data_name = os.path.basename(data)
re_path = os.path.relpath(os.path.dirname(data), hdfs_path)
if re_path == os.curdir:
local_re_path = os.path.join(local_path, data_name)
else:
local_re_path = os.path.join(local_path, re_path, data_name)
local_downloads.append(local_re_path)
return local_downloads
def getfilelist(path):
rlist = []
for dir, folder, file in os.walk(path):
for i in file:
t = os.path.join(dir, i)
rlist.append(t)
for r in rlist:
print(r)
def multi_upload(client, def multi_upload(client,
hdfs_path, hdfs_path,
local_path, local_path,
multi_processes=5, multi_processes=5,
overwrite=False): overwrite=False,
sync=True):
""" """
Upload file to hdfs. Upload files to HDFS using multi process.
Args: Args:
:param overwrite: will overwrite hdfs file or not client(HDFSClient): instance of HDFSClient
:param multi_processes: the upload data process at the same time, default=5 hdfs_path(str): path on hdfs
:param client: instance of HDFSClient local_path(str): path on local
:param hdfs_path: path on hdfs multi_processes(int|5): the upload data process at the same time, default=5
:param local_path: path on local overwrite(bool|False): will overwrite file on HDFS or not
sync(bool|True): upload files sync or not.
Returns: Returns:
None
""" """
def __subprocess_upload(datas): def __subprocess_upload(datas):
...@@ -446,13 +543,6 @@ def multi_upload(client, ...@@ -446,13 +543,6 @@ def multi_upload(client,
client.upload(hdfs_re_path, data, overwrite, retry_times=5) client.upload(hdfs_re_path, data, overwrite, retry_times=5)
def get_local_files(path): def get_local_files(path):
"""
Get all local files
Args:
path: local file path
Returns:
A list that contation all files in the path.
"""
rlist = [] rlist = []
if not os.path.isdir(path): if not os.path.isdir(path):
...@@ -488,71 +578,6 @@ def multi_upload(client, ...@@ -488,71 +578,6 @@ def multi_upload(client,
multi_processes)) multi_processes))
def multi_download(client,
hdfs_path,
local_path,
trainer_id,
trainers,
file_cnt,
multi_processes=5):
"""
multi_download
Args:
:param client: instance of HDFSClient
:param hdfs_path: path on hdfs
:param local_path: path on local
:param trainer_id: current trainer id
:param trainers: all trainers number
:param file_cnt: all file number
:param multi_processes: the download data process at the same time, default=5
:return: None
Returns:
A list that be downloaded.
"""
def __subprocess_download(datas):
for data in datas:
re_path = os.path.relpath(os.path.dirname(data), hdfs_path)
local_re_path = os.path.join(local_path, re_path)
client.download(data, local_re_path)
assert isinstance(client, HDFSClient)
client.make_local_dirs(local_path)
_logger.info("Make local dir {} successfully".format(local_path))
all_need_download = client.lsr(hdfs_path, sort=True)[:file_cnt]
need_download = all_need_download[trainer_id::trainers]
_logger.info("Get {} files From all {} files need to be download from {}".
format(len(need_download), len(all_need_download), hdfs_path))
_logger.info("Start {} multi process to download datas".format(
multi_processes))
procs = []
for i in range(multi_processes):
process_datas = need_download[i::multi_processes]
p = multiprocessing.Process(
target=__subprocess_download, args=(process_datas, ))
procs.append(p)
p.start()
# complete the processes
for proc in procs:
proc.join()
_logger.info("Finish {} multi process to download datas".format(
multi_processes))
local_downloads = []
for data in need_download:
data_name = os.path.basename(data)
re_path = os.path.relpath(os.path.dirname(data), hdfs_path)
local_re_path = os.path.join(local_path, re_path, data_name)
local_downloads.append(local_re_path)
return local_downloads
if __name__ == "__main__": if __name__ == "__main__":
hadoop_home = "/home/client/hadoop-client/hadoop/" hadoop_home = "/home/client/hadoop-client/hadoop/"
......
...@@ -18,14 +18,12 @@ import os ...@@ -18,14 +18,12 @@ import os
import time import time
import logging import logging
import paddle
import paddle.fluid as fluid
from paddle.fluid import core from paddle.fluid import core
from paddle.fluid import io from paddle.fluid import io
from paddle.fluid import Program from paddle.fluid import Program
__all__ = [ __all__ = [
"load_inference_model", "load_persistable_vars", "load_persistables_for_increment", "load_persistables_for_inference",
"convert_dist_to_sparse_program" "convert_dist_to_sparse_program"
] ]
...@@ -80,19 +78,28 @@ def __get_prefetch_op_tuples(main_program): ...@@ -80,19 +78,28 @@ def __get_prefetch_op_tuples(main_program):
return prefetch_op_tuples return prefetch_op_tuples
def convert_dist_to_sparse_program(main_program): def convert_dist_to_sparse_program(program):
if not main_program._distributed_lookup_table: """
WARNING: this function will only be used for distributed training with distributed lookup table.
when we train model with distributed lookup table but want to do the local inference, we can use
this function to convert the train program with distributed lookup table to sparse lookup table.
:param program(Program): the program must be the trainer program, which will be get by the distribute transpiler.
:return:
program: The `program` is a Program, it's the program replace distributed lookup table to sparse lookup table.
"""
if not program._distributed_lookup_table:
_logger.warn( _logger.warn(
"There are no distributed lookup tables need to be converted") "There are no distributed lookup tables need to be converted")
return return
# create table param and grad var in pserver program # create table param and grad var in pserver program
origin_emb_var = "{}.origin".format(main_program._distributed_lookup_table) origin_emb_var = "{}.origin".format(program._distributed_lookup_table)
emb_var = main_program._distributed_lookup_table emb_var = program._distributed_lookup_table
main_program.global_block()._rename_var(emb_var, origin_emb_var) program.global_block()._rename_var(emb_var, origin_emb_var)
origin_param_var = main_program.global_block().vars[origin_emb_var] origin_param_var = program.global_block().vars[origin_emb_var]
param_var = main_program.global_block().create_var( param_var = program.global_block().create_var(
name=emb_var, name=emb_var,
shape=origin_param_var.shape, shape=origin_param_var.shape,
dtype=origin_param_var.dtype, dtype=origin_param_var.dtype,
...@@ -100,28 +107,28 @@ def convert_dist_to_sparse_program(main_program): ...@@ -100,28 +107,28 @@ def convert_dist_to_sparse_program(main_program):
persistable=True) persistable=True)
# parameter must be selected rows # parameter must be selected rows
param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS) param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
main_program._sync_with_cpp() program._sync_with_cpp()
prefetch_op_tuples = __get_prefetch_op_tuples(main_program) prefetch_op_tuples = __get_prefetch_op_tuples(program)
split_ids_id = prefetch_op_tuples[0] split_ids_id = prefetch_op_tuples[0]
for idx in range(split_ids_id + 2, split_ids_id - 1, -1): for idx in range(split_ids_id + 2, split_ids_id - 1, -1):
main_program.global_block()._remove_op(idx) program.global_block()._remove_op(idx)
main_program.desc.flush() program.desc.flush()
in_out_pairs = zip(prefetch_op_tuples[1], prefetch_op_tuples[2]) in_out_pairs = zip(prefetch_op_tuples[1], prefetch_op_tuples[2])
for in_out_pair in in_out_pairs: for in_out_pair in in_out_pairs:
idx = split_ids_id idx = split_ids_id
ids = main_program.global_block().vars[in_out_pair[0]] ids = program.global_block().vars[in_out_pair[0]]
out = main_program.global_block().vars[in_out_pair[1]] out = program.global_block().vars[in_out_pair[1]]
__insert_lookup_sparse_table_op(main_program, idx, ids, param_var, out) __insert_lookup_sparse_table_op(program, idx, ids, param_var, out)
main_program.desc.flush() program.desc.flush()
return main_program return program
def load_persistable_vars(executor, dirname, program, lookup_table_var): def _load_persistable_vars(executor, dirname, program, lookup_table_vars):
def _is_checkpoint_var(exclude_fluid_vars=None): def _is_checkpoint_var(exclude_fluid_vars=None):
""" """
the checkpoint will not save or load all the variables. the checkpoint will not save or load all the variables.
...@@ -159,8 +166,82 @@ def load_persistable_vars(executor, dirname, program, lookup_table_var): ...@@ -159,8 +166,82 @@ def load_persistable_vars(executor, dirname, program, lookup_table_var):
return is_valid return is_valid
def _load_lookup_table_vars(executor, dirname, main_program, io.load_vars(
lookup_table_vars): executor,
dirname=dirname,
main_program=program,
predicate=_is_checkpoint_var(lookup_table_vars),
filename=None)
def load_persistables_for_increment(dirname, executor, program,
lookup_table_var, lookup_table_var_path):
"""
WARNING: this function will only be used for distributed training with distributed lookup table.
for increment trainning, the pserver will not only load dense variables,
but also load the suitable lookup table var. Because of slice lookup table
var with HASH, we must load the correct slice var.
:param dirname(str): The directory path
:param executor(Executor): The executor to run for loading inference model.
:param program(Program): The parameter server program, which will run on Pserver.
:param lookup_table_var: the distributed lookup tables var name.
:param lookup_table_var_path: the the distributed lookup tables var location.
:return: None
"""
def __load_lookup_table_vars(executor, main_program, lookup_table_var,
lookup_table_var_path):
emb_var = main_program.global_block().var(lookup_table_var)
load_program = Program()
load_block = load_program.global_block()
load_block.append_op(
type='load',
inputs={},
outputs={'Out': [emb_var]},
attrs={'file_path': lookup_table_var_path})
executor.run(load_program)
if not os.path.isdir(dirname):
raise ValueError("There is no directory named '%s'", dirname)
if not os.path.exists(lookup_table_var_path):
raise ValueError("There is no file named '%s'", lookup_table_var_path)
if not isinstance(program, Program):
raise ValueError("program must be an instance of fluid.Program")
_logger.info("Start Load Sparse Program With "
"Distributed Lookup Table Vars from {}, time = {}".format(
dirname, time.ctime()))
_load_persistable_vars(executor, dirname, program, [lookup_table_var])
__load_lookup_table_vars(executor, program, lookup_table_var,
lookup_table_var_path)
_logger.info("Finish Load Sparse Program With "
"Distributed Lookup Table Vars from {}, time = {}".format(
dirname, time.ctime()))
def load_persistables_for_inference(dirname, executor, program,
lookup_table_var_name):
"""
WARNING: this function will only be used for inference with distributed lookup table.
Inference with distributed lookup table is a little funky, this function will load distributed
lookup table vars into sparse var, can be used in local inference mode.
:param dirname(str): The directory path
:param executor(Executor): The executor to run for loading inference model.
:param program(Program): The parameter server program, which will run on Pserver.
:param lookup_table_var_name: the distributed lookup tables var name.
:return: None
"""
def __load_lookup_table_vars(executor, dirname, main_program,
lookup_table_vars):
if not os.path.isdir(dirname): if not os.path.isdir(dirname):
raise ValueError("There is no directory named '%s'", dirname) raise ValueError("There is no directory named '%s'", dirname)
...@@ -209,48 +290,34 @@ def load_persistable_vars(executor, dirname, program, lookup_table_var): ...@@ -209,48 +290,34 @@ def load_persistable_vars(executor, dirname, program, lookup_table_var):
global_block.append_op(type='delete_var', inputs={'X': sums}) global_block.append_op(type='delete_var', inputs={'X': sums})
executor.run(convert_program) executor.run(convert_program)
_logger.info("Start Load Sparse Program With "
"Distributed Lookup Table Vars from {}, time = {}".format(
dirname, time.ctime()))
lookup_table_vars = [lookup_table_var]
io.load_vars(
executor,
dirname=dirname,
main_program=program,
predicate=_is_checkpoint_var(lookup_table_vars),
filename=None)
_load_lookup_table_vars(executor, dirname, program, lookup_table_vars)
_logger.info("Finish Load Sparse Program With "
"Distributed Lookup Table Vars from {}, time = {}".format(
dirname, time.ctime()))
def load_inference_model(dirname, executor, lookup_table_var_name):
if not os.path.isdir(dirname): if not os.path.isdir(dirname):
raise ValueError("There is no directory named '%s'", dirname) raise ValueError("There is no directory named '%s'", dirname)
local_model = os.path.join(dirname, model_filename) if program:
if not isinstance(program, Program):
raise ValueError("program must be an instance of fluid.Program")
else:
local_model = os.path.join(dirname, model_filename)
with open(local_model, "rb") as f: with open(local_model, "rb") as f:
program_desc_str = f.read() program_desc_str = f.read()
program = Program.parse_from_string(program_desc_str) program = Program.parse_from_string(program_desc_str)
if not core._is_program_version_supported(program._version()): if not core._is_program_version_supported(program._version()):
raise ValueError("Unsupported program version: %d\n" % raise ValueError("Unsupported program version: %d\n" %
program._version()) program._version())
# Binary data also need version. _logger.info("Start Load Sparse Program With "
load_persistable_vars(executor, dirname, program, lookup_table_var_name) "Distributed Lookup Table Vars from {}, time = {}".format(
dirname, time.ctime()))
_load_persistable_vars(executor, dirname, program, [lookup_table_var_name])
__load_lookup_table_vars(executor, dirname, program,
[lookup_table_var_name])
feed_target_names = program.desc.get_feed_target_names() _logger.info("Finish Load Sparse Program With "
fetch_target_names = program.desc.get_fetch_target_names() "Distributed Lookup Table Vars from {}, time = {}".format(
fetch_targets = [ dirname, time.ctime()))
program.global_block().var(name) for name in fetch_target_names
]
return [program, feed_target_names, fetch_targets] return program
...@@ -18,7 +18,9 @@ All layers just related to the neural network. ...@@ -18,7 +18,9 @@ All layers just related to the neural network.
from __future__ import print_function from __future__ import print_function
import numpy as np import numpy as np
import six
import os import os
import inspect
from ..layer_helper import LayerHelper from ..layer_helper import LayerHelper
from ..initializer import Normal, Constant from ..initializer import Normal, Constant
from ..framework import Variable, OpProtoHolder from ..framework import Variable, OpProtoHolder
...@@ -176,6 +178,7 @@ __all__ = [ ...@@ -176,6 +178,7 @@ __all__ = [
'merge_selected_rows', 'merge_selected_rows',
'get_tensor_from_selected_rows', 'get_tensor_from_selected_rows',
'lstm', 'lstm',
'py_func',
'psroi_pool', 'psroi_pool',
'huber_loss', 'huber_loss',
] ]
...@@ -9327,6 +9330,224 @@ def get_tensor_from_selected_rows(x, name=None): ...@@ -9327,6 +9330,224 @@ def get_tensor_from_selected_rows(x, name=None):
return out return out
class PyFuncRegistry(object):
_register_funcs = []
def __init__(self, func):
if func is None or not callable(func):
raise TypeError('func must be a Python function')
self._func = func
# find named args using reflection
args = inspect.getargspec(self._func)
if len(args[0]) == 0 and args[1] is None and args[2] is None:
# Function with no inputs
self._named_args = None
else:
self._named_args = args[0]
self._id = core._append_python_callable_object_and_return_id(self)
'''
Why record self here?
1. For debug usage. Users can call
:code:`py_func.registered_func(idx)` method
to find the registered function corresponding
to :code:`idx`.
2. For increasing reference count of self.
It seems that to release Python object
whose reference count is 1 would cause
segmentation fault error in C++ side.
May be lack of Python GC in C++ side?
'''
PyFuncRegistry._register_funcs.append(self)
@classmethod
def registered_func(cls, idx):
return cls._register_funcs[idx]._func
@classmethod
def registered_func_num(cls):
return len(cls._register_funcs)
@property
def id(self):
return self._id
def __call__(self, *args):
if self._named_args is None:
func_ret = self._func()
else:
kwargs = dict()
idx = 0
for arg in self._named_args:
kwargs[arg] = args[idx]
idx += 1
func_ret = self._func(*args[idx:], **kwargs)
if not isinstance(func_ret, (list, tuple)):
func_ret = (func_ret, )
ret = []
for each_ret in func_ret:
if each_ret is None or isinstance(each_ret, core.LoDTensor):
ret.append(each_ret)
continue
if not isinstance(each_ret, np.ndarray):
each_ret = np.array(each_ret)
tensor = core.LoDTensor()
tensor.set(each_ret, core.CPUPlace())
ret.append(tensor)
return tuple(ret)
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
"""
PyFunc Operator.
User can use :code:`py_func` to register operators in Python side.
The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
numpy array or :code:`LoDTensor`. Paddle would call the registered
:code:`func` in forward part, and call :code:`backward_func` in
backward part (if :code:`backward_func` is not None).
User should set the right data type and shape of :code:`out` before
calling this function. However, data types and shapes of gradients of
:code:`out` and :code:`x` would be inferred automatically.
Input orders of :code:`backward_func` would be: forward inputs
:code:`x`, forward outputs :code:`out` and backward input gradients of
:code:`out`. If some variables of :code:`out` have no gradient, the input
tensor would be None in Python side. If some variables of :code:`in` have
no gradient, users should return None.
This function can also be used to debug the running network. User can
add a :code:`py_func` operator without output, and print input
:code:`x` inside :code:`func`.
Args:
func (callable): forward Python function.
x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
Paddle cannot infer shapes and data types of :code:`out`. Users
should create :code:`out` beforehand.
backward_func (callable|None): backward Python function.
None means no backward. Default None.
skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
Variables that are not needed in :code:`backward_func` inputs.
These variables must be any of :code:`x` and :code:`out`.
If set, these vars would not be inputs of :code:`backward_func`,
Only useful when :code:`backward_func` is not None. Default None.
Returns:
out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
Examples:
>>> import paddle.fluid as fluid
>>> import six
>>>
>>> def create_tmp_var(name, dtype, shape):
>>> return fluid.default_main_program().current_block().create_var(
>>> name=name, dtype=dtype, shape=shape)
>>>
>>> # tanh activation has been provided by Paddle C++ op
>>> # Here, we only use tanh to be an example to show the usage
>>> # of py_func
>>> def tanh(x):
>>> return np.tanh(x)
>>>
>>> # forward input x is skipped
>>> def tanh_grad(y, dy):
>>> return np.array(dy) * (1 - np.square(np.array(y)))
>>>
>>> def debug_func(x):
>>> print(x)
>>>
>>> def simple_net(img, label):
>>> hidden = img
>>> for idx in six.moves.range(4):
>>> hidden = fluid.layers.fc(hidden, size=200)
>>> new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
>>> dtype=hidden.dtype, shape=hidden.shape)
>>>
>>> # user-defined layers with forward and backward
>>> hidden = fluid.layers.py_func(func=tanh, x=hidden,
>>> out=new_hidden, backward_func=tanh_grad,
>>> skip_vars_in_backward_input=hidden)
>>>
>>> # user-defined debug layers to print variables
>>> fluid.layers.py_func(func=debug_func, x=hidden, out=None)
>>>
>>> prediction = fluid.layers.fc(hidden, size=10, act='softmax')
>>> loss = fluid.layers.cross_entropy(input=prediction, label=label)
>>> return fluid.layers.mean(loss)
"""
helper = LayerHelper('py_func', **locals())
if x is None:
x = []
elif isinstance(x, Variable):
x = [x]
elif not isinstance(x, (list, tuple)):
raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
if out is None:
out_list = []
elif isinstance(out, Variable):
out_list = [out]
elif isinstance(out, (list, tuple)):
out_list = out
else:
raise TypeError(
'Output must be Variable/list(Variable)/tuple(Variable)')
fwd_func_id = PyFuncRegistry(func).id
bwd_func_id = PyFuncRegistry(
backward_func).id if backward_func is not None else -1
for each_out in out_list:
if len(each_out.shape) == 0:
raise ValueError(
'Output shapes of py_func op should be provided by users manually'
)
backward_skip_vars = set()
if backward_func is not None and skip_vars_in_backward_input is not None:
if isinstance(skip_vars_in_backward_input, Variable):
skip_vars_in_backward_input = [skip_vars_in_backward_input]
fwd_in_out = [v.name for v in x]
fwd_in_out.extend([v.name for v in out_list])
fwd_in_out = set(fwd_in_out)
backward_skip_vars = set()
for v in skip_vars_in_backward_input:
if not v.name in fwd_in_out:
raise ValueError(
'Variable {} is not found in forward inputs and outputs'
.format(v.name))
backward_skip_vars.add(v.name)
helper.append_op(
type='py_func',
inputs={'X': x},
outputs={'Out': out_list},
attrs={
'forward_callable_id': fwd_func_id,
'backward_callable_id': bwd_func_id,
'backward_skip_vars': list(backward_skip_vars)
})
return out
# For debug usage
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num
@templatedoc() @templatedoc()
def psroi_pool(input, def psroi_pool(input,
rois, rois,
......
...@@ -92,35 +92,27 @@ class ParallelExecutor(object): ...@@ -92,35 +92,27 @@ class ParallelExecutor(object):
num_trainers=1, num_trainers=1,
trainer_id=0, trainer_id=0,
scope=None): scope=None):
# step1: get places, the places are used in run too.
self._places = [] self._places = []
self._act_places = []
if use_cuda: if use_cuda:
gpus = []
gpus_env = os.getenv("FLAGS_selected_gpus") gpus_env = os.getenv("FLAGS_selected_gpus")
if gpus_env: if gpus_env:
gpus = [int(s) for s in gpus_env.split(",")] gpus = [int(s) for s in gpus_env.split(",")]
else: else:
for i in six.moves.range(core.get_cuda_device_count()): gpus = [
gpus.append(i) i for i in six.moves.range(core.get_cuda_device_count())
for i in gpus: ]
p = core.Place() self._places = [core.CUDAPlace(i) for i in gpus]
self._act_places.append(core.CUDAPlace(i))
p.set_place(self._act_places[-1])
self._places.append(p)
else: else:
cpu_num = int( cpu_num = int(
os.environ.get('CPU_NUM', multiprocessing.cpu_count())) os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
for i in six.moves.range(cpu_num): self._places = [core.CPUPlace() for _ in six.moves.range(cpu_num)]
p = core.Place()
self._act_places.append(core.CPUPlace())
p.set_place(self._act_places[-1])
self._places.append(p)
assert self._places, "no place for execution" assert self._places, "no place for execution"
# step2: init exec_strategy
if exec_strategy is None: if exec_strategy is None:
exec_strategy = ExecutionStrategy() exec_strategy = ExecutionStrategy()
exec_strategy.use_cuda = use_cuda exec_strategy.use_cuda = use_cuda
if exec_strategy.num_threads == 0: if exec_strategy.num_threads == 0:
if use_cuda: if use_cuda:
# Experiments on se-resnext shows that too many threads hurt # Experiments on se-resnext shows that too many threads hurt
...@@ -131,49 +123,54 @@ class ParallelExecutor(object): ...@@ -131,49 +123,54 @@ class ParallelExecutor(object):
os.environ.get('CPU_NUM', multiprocessing.cpu_count())) os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
exec_strategy.num_threads = cpu_num * 2 exec_strategy.num_threads = cpu_num * 2
# step3: init build_strategy
if build_strategy is None: if build_strategy is None:
build_strategy = BuildStrategy() build_strategy = BuildStrategy()
build_strategy.num_trainers = num_trainers build_strategy.num_trainers = num_trainers
build_strategy.trainer_id = trainer_id build_strategy.trainer_id = trainer_id
main = main_program # step4: get main_program, scope, local_scopes
main = main if main else framework.default_main_program() main = main_program if main_program \
else framework.default_main_program()
scope = scope if scope is not None else executor.global_scope()
if share_vars_from and not isinstance(share_vars_from,
ParallelExecutor):
raise TypeError("share_vars_from must be ParallelExecutor.")
local_scopes = share_vars_from.executor.local_scopes()\
if share_vars_from else []
# step5: check trainers_endpoints, it is used for distribution.
trainers_endpoints = main._trainers_endpoints trainers_endpoints = main._trainers_endpoints
if num_trainers > 1 and trainers_endpoints: if num_trainers > 1 and trainers_endpoints:
assert num_trainers == len( assert num_trainers == len(
trainers_endpoints), "num_trainers == len(end_points)" trainers_endpoints), "num_trainers == len(end_points)"
build_strategy.trainers_endpoints = trainers_endpoints build_strategy.trainers_endpoints = trainers_endpoints
if scope == None: # step5: get persistable_vars, parameter_vars, places. persistable_vars
scope = executor.global_scope() # need be broadcast to other local_scope.
persistable_vars = set([
if share_vars_from and not isinstance(share_vars_from, cpt.to_text(v.name) for v in [
ParallelExecutor):
raise TypeError("share_vars_from must be ParallelExecutor.")
local_scopes = share_vars_from.executor.local_scopes(
) if share_vars_from else []
self.persistable_vars = [
v.name for v in [
var for var in main.list_vars() var for var in main.list_vars()
if var.persistable and var.type != core.VarDesc.VarType.RAW if var.persistable and var.type != core.VarDesc.VarType.RAW
] ]
] ])
def place_obj(place):
p = core.Place()
p.set_place(place)
return p
places = list(map(place_obj, self._places))
# step6: init ParallelExecutor
self.executor = core.ParallelExecutor( self.executor = core.ParallelExecutor(
self._places, places, persistable_vars, main.desc,
set([
cpt.to_text(p.name)
for p in main.global_block().iter_parameters()
if not p.stop_gradient
]),
set(cpt.to_text(var) for var in self.persistable_vars), main.desc,
cpt.to_text(loss_name) cpt.to_text(loss_name)
if loss_name else six.u(''), scope, local_scopes, exec_strategy, if loss_name else six.u(''), scope, local_scopes, exec_strategy,
build_strategy, num_trainers, trainer_id) build_strategy, num_trainers, trainer_id)
self.scope = scope self.scope = scope
def run(self, fetch_list, feed=None, feed_dict=None, return_numpy=True): def run(self, fetch_list, feed=None, feed_dict=None, return_numpy=True):
...@@ -261,7 +258,7 @@ class ParallelExecutor(object): ...@@ -261,7 +258,7 @@ class ParallelExecutor(object):
self.executor.feed_and_split_tensor_into_local_scopes( self.executor.feed_and_split_tensor_into_local_scopes(
feed_tensor_dict) feed_tensor_dict)
elif isinstance(feed, list) or isinstance(feed, tuple): elif isinstance(feed, list) or isinstance(feed, tuple):
if len(feed) != len(self._act_places): if len(feed) != len(self._places):
raise ValueError( raise ValueError(
"Feed a list of tensor, the list should be the same size as places" "Feed a list of tensor, the list should be the same size as places"
) )
...@@ -277,7 +274,7 @@ class ParallelExecutor(object): ...@@ -277,7 +274,7 @@ class ParallelExecutor(object):
tensor = each[feed_name] tensor = each[feed_name]
if not isinstance(tensor, core.LoDTensor): if not isinstance(tensor, core.LoDTensor):
tmp = core.LoDTensor() tmp = core.LoDTensor()
tmp.set(tensor, self._act_places[i]) tmp.set(tensor, self._places[i])
tensor = tmp tensor = tmp
res_dict[feed_name] = tensor res_dict[feed_name] = tensor
res.append(res_dict) res.append(res_dict)
...@@ -294,4 +291,4 @@ class ParallelExecutor(object): ...@@ -294,4 +291,4 @@ class ParallelExecutor(object):
@property @property
def device_count(self): def device_count(self):
return len(self._act_places) return len(self._places)
...@@ -16,7 +16,7 @@ from __future__ import print_function ...@@ -16,7 +16,7 @@ from __future__ import print_function
import unittest import unittest
from test_conv2d_op import TestConv2dOp, TestWithPad, TestWithStride from test_conv2d_op import TestConv2dOp, TestWithPad, TestWithStride, TestWithGroup, TestWith1x1, TestWithInput1x1Filter1x1
class TestMKLDNN(TestConv2dOp): class TestMKLDNN(TestConv2dOp):
...@@ -37,5 +37,23 @@ class TestMKLDNNWithStride(TestWithStride): ...@@ -37,5 +37,23 @@ class TestMKLDNNWithStride(TestWithStride):
self.data_format = "NCHW" self.data_format = "NCHW"
class TestMKLDNNWithGroup(TestWithGroup):
def init_kernel_type(self):
self.use_mkldnn = True
self.data_format = "NCHW"
class TestMKLDNNWith1x1(TestWith1x1):
def init_kernel_type(self):
self.use_mkldnn = True
self.data_format = "NCHW"
class TestMKLDNNWithInput1x1Filter1x1(TestWithInput1x1Filter1x1):
def init_kernel_type(self):
self.use_mkldnn = True
self.data_format = "NCHW"
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -29,7 +29,7 @@ class TestGetTensorFromSelectedRows(unittest.TestCase): ...@@ -29,7 +29,7 @@ class TestGetTensorFromSelectedRows(unittest.TestCase):
def check_with_place(self, place): def check_with_place(self, place):
scope = core.Scope() scope = core.Scope()
x_rows = [0, 5, 5, 4, 20] x_rows = [0, 5, 5, 4, 19]
height = 20 height = 20
row_numel = 2 row_numel = 2
......
...@@ -29,8 +29,8 @@ class TestMergeSelectedRows(unittest.TestCase): ...@@ -29,8 +29,8 @@ class TestMergeSelectedRows(unittest.TestCase):
def check_with_place(self, place): def check_with_place(self, place):
scope = core.Scope() scope = core.Scope()
x_rows = [0, 5, 5, 4, 20] x_rows = [0, 5, 5, 4, 19]
out_rows = [0, 4, 5, 20] out_rows = [0, 4, 5, 19]
height = 20 height = 20
row_numel = 2 row_numel = 2
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle.fluid as fluid
import paddle
import unittest
import six
import numpy as np
dev_cnt = 2
if fluid.core.is_compiled_with_cuda():
dev_cnt = fluid.core.get_cuda_device_count()
os.environ['CPU_NUM'] = str(dev_cnt)
def dummy_func_with_no_input():
return float(1.0)
def dummy_func_with_no_output(x):
pass
def tanh(x):
return np.tanh(x)
def tanh_grad(y, dy):
return np.array(dy) * (1 - np.square(np.array(y)))
def cross_entropy(logits, labels):
logits = np.array(logits)
labels = np.array(labels)
M = logits.shape[0]
N = logits.shape[1]
ret = np.ndarray([M, 1]).astype(logits.dtype)
for idx in six.moves.range(M):
ret[idx][0] = -np.log(logits[idx][labels[idx][0]])
return ret
def cross_entropy_grad(logits, labels, bwd_dout):
logits = np.array(logits)
labels = np.array(labels)
bwd_dout = np.array(bwd_dout)
M = logits.shape[0]
N = logits.shape[1]
dlogits = np.zeros([M, N]).astype(logits.dtype)
for idx in six.moves.range(M):
dlogits[idx][labels[idx][0]] = -bwd_dout[idx] / logits[idx][labels[idx][
0]]
return dlogits, None
def simple_fc_net(img, label, use_py_func_op):
hidden = img
for idx in range(4):
hidden = fluid.layers.fc(
hidden,
size=200,
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=1.0)))
if not use_py_func_op:
hidden = fluid.layers.tanh(hidden)
else:
new_hidden = fluid.default_main_program().current_block(
).create_var(
name='hidden_{}'.format(idx),
dtype='float32',
shape=hidden.shape)
hidden = fluid.layers.py_func(
func=tanh,
x=hidden,
out=new_hidden,
backward_func=tanh_grad,
skip_vars_in_backward_input=hidden)
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
if not use_py_func_op:
loss = fluid.layers.cross_entropy(input=prediction, label=label)
else:
loss = fluid.default_main_program().current_block().create_var(
name='loss', dtype='float32', shape=[-1, 1])
loss = fluid.layers.py_func(
func=cross_entropy,
x=[prediction, label],
out=loss,
backward_func=cross_entropy_grad,
skip_vars_in_backward_input=loss)
dummy_var = fluid.default_main_program().current_block().create_var(
name='test_tmp_var', dtype='float32', shape=[1])
fluid.layers.py_func(
func=dummy_func_with_no_input, x=None, out=dummy_var)
fluid.layers.py_func(func=dummy_func_with_no_output, x=loss, out=None)
loss = fluid.layers.mean(loss)
return loss
def reader():
for _ in six.moves.range(dev_cnt * 100):
yield np.random.random([784]), np.random.random_integers(
size=[1], low=0, high=9)
def test_main(use_cuda, use_py_func_op, use_parallel_executor):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return None
with fluid.program_guard(fluid.Program(), fluid.Program()):
with fluid.scope_guard(fluid.core.Scope()):
fluid.default_main_program().random_seed = 1
fluid.default_startup_program().random_seed = 1
np.random.seed(1)
img = fluid.layers.data(name='image', shape=[784], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
loss = simple_fc_net(img, label, use_py_func_op)
optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
optimizer.minimize(loss)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
r = paddle.batch(reader, batch_size=10)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
if use_parallel_executor:
exe = fluid.ParallelExecutor(
use_cuda=use_cuda, loss_name=loss.name)
fetch_list = [loss.name]
else:
fetch_list = [loss]
ret = []
for epoch_id in six.moves.range(2):
for d in r():
L, = exe.run(feed=feeder.feed(d), fetch_list=fetch_list)
ret.append(L)
return np.array(ret)
class TestPyFuncOpUseExecutor(unittest.TestCase):
def setUp(self):
self.use_parallel_executor = False
def test_loss_diff(self):
losses = []
for use_cuda in [True, False]:
for use_py_func_op in [True, False]:
L = test_main(use_cuda, use_py_func_op,
self.use_parallel_executor)
if L is not None:
losses.append(L)
for idx in six.moves.range(len(losses) - 1):
max_diff = np.max(np.abs(losses[idx] - losses[0]))
self.assertAlmostEqual(max_diff, 0, delta=1e-3)
class TestPyFuncOpUseParallelExecutor(unittest.TestCase):
def setUp(self):
self.use_parallel_executor = True
if __name__ == '__main__':
unittest.main()
...@@ -107,9 +107,9 @@ packages=['paddle', ...@@ -107,9 +107,9 @@ packages=['paddle',
'paddle.fluid.distributed', 'paddle.fluid.distributed',
'paddle.fluid.layers', 'paddle.fluid.layers',
'paddle.fluid.contrib', 'paddle.fluid.contrib',
'paddle.fluid.contrib.utils',
'paddle.fluid.contrib.decoder', 'paddle.fluid.contrib.decoder',
'paddle.fluid.contrib.quantize', 'paddle.fluid.contrib.quantize',
'paddle.fluid.contrib.utils',
'paddle.fluid.transpiler', 'paddle.fluid.transpiler',
'paddle.fluid.transpiler.details'] 'paddle.fluid.transpiler.details']
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册