提交 5361911c 编写于 作者: T typhoonzero

adam support sparse

上级 6cc4bd53
...@@ -98,13 +98,12 @@ struct SparseAdamFunctor { ...@@ -98,13 +98,12 @@ struct SparseAdamFunctor {
const int64_t* rows_; const int64_t* rows_;
int64_t row_numel_; int64_t row_numel_;
int64_t height_;
SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow, SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
const T* beta2_pow, const T* mom1, T* mom1_out, const T* beta2_pow, const T* mom1, T* mom1_out,
const T* mom2, T* mom2_out, const T* lr, const T* grad, const T* mom2, T* mom2_out, const T* lr, const T* grad,
const T* param, T* param_out, const int64_t* rows, const T* param, T* param_out, const int64_t* rows,
int64_t row_numel, int64_t height) int64_t row_numel)
: beta1_(beta1), : beta1_(beta1),
beta2_(beta2), beta2_(beta2),
epsilon_(epsilon), epsilon_(epsilon),
...@@ -119,8 +118,7 @@ struct SparseAdamFunctor { ...@@ -119,8 +118,7 @@ struct SparseAdamFunctor {
param_(param), param_(param),
param_out_(param_out), param_out_(param_out),
rows_(rows), rows_(rows),
row_numel_(row_numel), row_numel_(row_numel) {}
height_(height) {}
inline HOSTDEVICE void operator()(size_t i) const { inline HOSTDEVICE void operator()(size_t i) const {
for (int64_t j = 0; j < row_numel_; ++j) { for (int64_t j = 0; j < row_numel_; ++j) {
...@@ -136,6 +134,7 @@ struct SparseAdamFunctor { ...@@ -136,6 +134,7 @@ struct SparseAdamFunctor {
mom1 = beta1_ * mom1 + (1 - beta1_) * g; mom1 = beta1_ * mom1 + (1 - beta1_) * g;
mom2 = beta2_ * mom2 + (1 - beta2_) * g * g; mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
p -= lr * (mom1 / (sqrt(mom2) + epsilon_)); p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
// IMPORTANT:
// FIXME(typhoonzero): row id may be duplicate // FIXME(typhoonzero): row id may be duplicate
moment1_out_[rows_[i] * row_numel_ + j] = mom1; moment1_out_[rows_[i] * row_numel_ + j] = mom1;
moment2_out_[rows_[i] * row_numel_ + j] = mom2; moment2_out_[rows_[i] * row_numel_ + j] = mom2;
...@@ -195,8 +194,7 @@ class AdamOpKernel : public framework::OpKernel<T> { ...@@ -195,8 +194,7 @@ class AdamOpKernel : public framework::OpKernel<T> {
auto& grad_tensor = grad.value(); auto& grad_tensor = grad.value();
const T* grad_data = grad_tensor.template data<T>(); const T* grad_data = grad_tensor.template data<T>();
auto* rows = grad.rows().data(); auto* rows = grad.rows().data();
auto height = grad.height(); auto row_numel = grad_tensor.numel() / grad.rows().size();
auto row_numel = grad_tensor.numel() / height;
SparseAdamFunctor<T> functor( SparseAdamFunctor<T> functor(
beta1, beta2, epsilon, beta1_pow.template data<T>(), beta1, beta2, epsilon, beta1_pow.template data<T>(),
...@@ -205,8 +203,7 @@ class AdamOpKernel : public framework::OpKernel<T> { ...@@ -205,8 +203,7 @@ class AdamOpKernel : public framework::OpKernel<T> {
mom2.template data<T>(), mom2.template data<T>(),
mom2_out.template mutable_data<T>(ctx.GetPlace()), mom2_out.template mutable_data<T>(ctx.GetPlace()),
lr.template data<T>(), grad_data, param.template data<T>(), lr.template data<T>(), grad_data, param.template data<T>(),
param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel, param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel);
height);
platform::ForRange<DeviceContext> for_range( platform::ForRange<DeviceContext> for_range(
static_cast<const DeviceContext&>(ctx.device_context()), static_cast<const DeviceContext&>(ctx.device_context()),
grad.rows().size()); grad.rows().size());
......
import unittest import unittest
import numpy as np import numpy as np
from op_test import OpTest from op_test import OpTest
from paddle.v2.fluid import core
from paddle.v2.fluid.op import Operator
class TestAdamOp1(OpTest): class TestAdamOp1(OpTest):
...@@ -196,9 +198,9 @@ def adam_step_sparse(inputs, attributes, height, rows, row_numel, np_grad): ...@@ -196,9 +198,9 @@ def adam_step_sparse(inputs, attributes, height, rows, row_numel, np_grad):
beta2 = attributes['beta2'] beta2 = attributes['beta2']
epsilon = attributes['epsilon'] epsilon = attributes['epsilon']
moment1_out = np.array([height, row_numel]) moment1_out = np.zeros(shape=[height, row_numel])
moment2_out = np.array([height, row_numel]) moment2_out = np.zeros(shape=[height, row_numel])
param_out = np.array([height, row_numel]) param_out = np.zeros(shape=[height, row_numel])
for idx, row_id in enumerate(rows): for idx, row_id in enumerate(rows):
moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1 moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1
...@@ -206,8 +208,8 @@ def adam_step_sparse(inputs, attributes, height, rows, row_numel, np_grad): ...@@ -206,8 +208,8 @@ def adam_step_sparse(inputs, attributes, height, rows, row_numel, np_grad):
moment2_out[row_id] = beta2 * moment2[row_id] + ( moment2_out[row_id] = beta2 * moment2[row_id] + (
1 - beta2) * np.square(np_grad[idx]) 1 - beta2) * np.square(np_grad[idx])
lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow) lr_t = lr * np.sqrt(1 - beta2_pow) / (1 - beta1_pow)
param_out[row_id] = param[row_id] - lr_t * (moment1_out / ( param_out[row_id] = param[row_id] - lr_t * (moment1_out[row_id] / (
np.sqrt(moment2_out) + epsilon)) np.sqrt(moment2_out[row_id]) + epsilon))
return param_out, moment1_out, moment2_out return param_out, moment1_out, moment2_out
...@@ -219,13 +221,15 @@ class TestSparseAdamOp(unittest.TestCase): ...@@ -219,13 +221,15 @@ class TestSparseAdamOp(unittest.TestCase):
height = 10 height = 10
rows = [0, 4, 7] rows = [0, 4, 7]
self.rows = rows
row_numel = 12 row_numel = 12
self.row_numel = row_numel
self.dense_inputs = { self.dense_inputs = {
"Param": np.full((height, row_numel), 5.0).astype("float32"), "Param": np.full((height, row_numel), 5.0).astype("float32"),
"Moment1": np.full((height, row_numel), 5.0).astype("float32"), "Moment1": np.full((height, row_numel), 5.0).astype("float32"),
"Moment2": np.full((height, row_numel), 5.0).astype("float32"), "Moment2": np.full((height, row_numel), 5.0).astype("float32"),
'Beta1Pow': np.array([0.9**10]).astype("float32"), 'Beta1Pow': np.array([beta1**10]).astype("float32"),
'Beta2Pow': np.array([0.999**10]).astype("float32"), 'Beta2Pow': np.array([beta2**10]).astype("float32"),
"LearningRate": np.full((1), 2.0).astype("float32") "LearningRate": np.full((1), 2.0).astype("float32")
} }
self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2} self.attrs = {'epsilon': epsilon, 'beta1': beta1, 'beta2': beta2}
...@@ -245,7 +249,7 @@ class TestSparseAdamOp(unittest.TestCase): ...@@ -245,7 +249,7 @@ class TestSparseAdamOp(unittest.TestCase):
param_out, mom1, mom2 = adam_step_sparse( param_out, mom1, mom2 = adam_step_sparse(
self.dense_inputs, self.attrs, height, rows, row_numel, np_array) self.dense_inputs, self.attrs, height, rows, row_numel, np_array)
self.outputs = { self.outputs = {
"Param": param_out, "ParamOut": param_out,
"Moment1Out": mom1, "Moment1Out": mom1,
"Moment2Out": mom2 "Moment2Out": mom2
} }
...@@ -261,37 +265,29 @@ class TestSparseAdamOp(unittest.TestCase): ...@@ -261,37 +265,29 @@ class TestSparseAdamOp(unittest.TestCase):
op_args[key] = key op_args[key] = key
for s in self.sparse_inputs: for s in self.sparse_inputs:
op_args[s] = s op_args[s] = s
for s in self.outputs:
var = scope.var(s).get_tensor()
var.set(self.outputs[s], place)
op_args[s] = s
for k in self.attrs: for k in self.attrs:
op_args[k] = self.attrs[k] op_args[k] = self.attrs[k]
# create and run sgd operator # create and run sgd operator
sgd_op = Operator("adam", **op_args) adam_op = Operator("adam", **op_args)
sgd_op.run(scope, place) adam_op.run(scope, place)
for key, np_array in self.outputs.iteritems(): for key, np_array in self.outputs.iteritems():
out_var = scope.var(key).get_tensor() out_var = scope.var(key).get_tensor()
actual = np.array(out_var) actual = np.array(out_var)
actual.reshape([actual.size()]) actual = actual.reshape([actual.size])
np_array.reshape([np_array.size()]) np_array = np_array.reshape([np_array.size])
i = 0 for idx, row_id in enumerate(self.rows):
while i < actual.size(): j = 0
self.assertAlmostEqual(actual[i], np_array[i]) while j < self.row_numel:
i += 1 pos = row_id * self.row_numel + j
print (actual[pos] - np_array[pos]) / actual[pos]
# # rows[0] = 0, 5.0 - 2.0 * 2.0 self.assertLess((actual[pos] - np_array[pos]) / actual[pos], 0.00001)
# self.assertAlmostEqual(1.0, result_array[rows[0], 0]) j += 1
# # rows[0] = 0, 5.0 - 2.0 * 1.0
# self.assertAlmostEqual(3.0, result_array[rows[0], 2])
# # 5.0 - 2.0 * 0.0
# self.assertAlmostEqual(5.0, result_array[1, 0])
# # rows[1] = 4, 5.0 - 2.0 * 1.0
# self.assertAlmostEqual(3.0, result_array[rows[1], 10])
# # 5.0 - 2.0 * 0.0
# self.assertAlmostEqual(5.0, result_array[5, 8])
# # rows[2] = 7, 5.0 - 2.0 * 1.0
# self.assertAlmostEqual(3.0, result_array[rows[2], 1])
# # rows[2] = 7, 5.0 - 2.0 * 4.0
# self.assertAlmostEqual(-3.0, result_array[rows[2], 8])
def test_sparse_sgd(self): def test_sparse_sgd(self):
places = [core.CPUPlace()] places = [core.CPUPlace()]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册