Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
4feb5013
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4feb5013
编写于
3月 08, 2017
作者:
Y
Yi Wang
提交者:
GitHub
3月 08, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1561 from reyoung/feature/better_infer_interface
Add input data interface for inference
上级
7e981630
05b45e1f
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
19 addition
and
52 deletion
+19
-52
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+3
-2
python/paddle/v2/inference.py
python/paddle/v2/inference.py
+16
-50
未找到文件。
demo/mnist/api_train_v2.py
浏览文件 @
4feb5013
...
...
@@ -122,13 +122,14 @@ def main():
test_creator
=
paddle
.
dataset
.
mnist
.
test
()
test_data
=
[]
for
item
in
test_creator
():
test_data
.
append
(
item
[
0
]
)
test_data
.
append
(
(
item
[
0
],
)
)
if
len
(
test_data
)
==
100
:
break
# output is a softmax layer. It returns probabilities.
# Shape should be (100, 10)
probs
=
paddle
.
infer
(
output
=
predict
,
parameters
=
parameters
,
input
=
test_data
)
probs
=
paddle
.
infer
(
output_layer
=
predict
,
parameters
=
parameters
,
input
=
test_data
)
print
probs
.
shape
...
...
python/paddle/v2/inference.py
浏览文件 @
4feb5013
...
...
@@ -9,8 +9,8 @@ __all__ = ['infer']
class
Inference
(
object
):
def
__init__
(
self
,
output
,
parameters
):
topo
=
topology
.
Topology
(
output
)
def
__init__
(
self
,
output
_layer
,
parameters
):
topo
=
topology
.
Topology
(
output
_layer
)
gm
=
api
.
GradientMachine
.
createFromConfigProto
(
topo
.
proto
(),
api
.
CREATE_MODE_TESTING
,
[
api
.
PARAMETER_VALUE
])
for
param
in
gm
.
getParameters
():
...
...
@@ -21,33 +21,16 @@ class Inference(object):
self
.
__gradient_machine__
=
gm
self
.
__data_types__
=
topo
.
data_type
()
def
iter_infer
(
self
,
input
=
None
,
batch_size
=
None
,
reader
=
None
,
feeding
=
None
):
def
iter_infer
(
self
,
input
,
feeding
=
None
):
feeder
=
DataFeeder
(
self
.
__data_types__
,
feeding
)
if
reader
is
None
:
assert
input
is
not
None
and
isinstance
(
input
,
collections
.
Iterable
)
if
not
isinstance
(
input
,
collections
.
Iterable
):
raise
TypeError
(
"When reader is None, input should be whole "
"inference data and should be iterable"
)
if
batch_size
is
None
:
if
not
hasattr
(
input
,
'__len__'
):
raise
ValueError
(
"Should set batch size when input data "
"don't contain length."
)
batch_size
=
len
(
input
)
def
__reader_impl__
():
for
each_sample
in
input
:
if
len
(
feeder
)
==
1
:
yield
[
each_sample
]
else
:
yield
each_sample
reader
=
minibatch
.
batch
(
__reader_impl__
,
batch_size
=
batch_size
)
else
:
if
input
is
not
None
:
raise
ValueError
(
"User should set either input or reader, "
"should not set them both."
)
batch_size
=
len
(
input
)
def
__reader_impl__
():
for
each_sample
in
input
:
yield
each_sample
reader
=
minibatch
.
batch
(
__reader_impl__
,
batch_size
=
batch_size
)
self
.
__gradient_machine__
.
start
()
for
data_batch
in
reader
():
yield
self
.
__gradient_machine__
.
forwardTest
(
feeder
(
data_batch
))
...
...
@@ -71,13 +54,7 @@ class Inference(object):
return
retv
def
infer
(
output
,
parameters
,
input
=
None
,
batch_size
=
None
,
reader
=
None
,
feeding
=
None
,
field
=
'value'
):
def
infer
(
output_layer
,
parameters
,
input
,
feeding
=
None
,
field
=
'value'
):
"""
Infer a neural network by given neural network output and parameters. The
user should pass either a batch of input data or reader method.
...
...
@@ -90,19 +67,13 @@ def infer(output,
batch_size=32)
print result
:param output: output of the neural network that would be inferred
:type output: paddle.v2.config_base.Layer
:param output
_layer
: output of the neural network that would be inferred
:type output
_layer
: paddle.v2.config_base.Layer
:param parameters: parameters of the neural network.
:type parameters: paddle.v2.parameters.Parameters
:param input: input data batch. Should be a python iterable object, and each
element is the data batch.
:type input: collections.Iterable
:param batch_size: the batch size when perform inference. Default is the
length of input.
:type batch_size: int
:param reader: input data reader creator in batch. If this field is set, the
`input` and `batch_size` will be ignored.
:type reader: callable
:param feeding: Reader dictionary. Default could generate from input
value.
:param field: The prediction field. It should in [`value`, `ids`]. `value`
...
...
@@ -113,10 +84,5 @@ def infer(output,
:rtype: numpy.ndarray
"""
inferer
=
Inference
(
output
=
output
,
parameters
=
parameters
)
return
inferer
.
infer
(
field
=
field
,
input
=
input
,
batch_size
=
batch_size
,
reader
=
reader
,
feeding
=
feeding
)
inferer
=
Inference
(
output_layer
=
output_layer
,
parameters
=
parameters
)
return
inferer
.
infer
(
field
=
field
,
input
=
input
,
feeding
=
feeding
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录