Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
4d49f1d8
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4d49f1d8
编写于
7月 18, 2017
作者:
Q
qijun
浏览文件
操作
浏览文件
下载
差异文件
merge baidu/develop
上级
87189665
f146b03b
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
613 addition
and
70 deletion
+613
-70
CMakeLists.txt
CMakeLists.txt
+2
-1
cmake/external/nnpack.cmake
cmake/external/nnpack.cmake
+14
-0
paddle/framework/ddim.cc
paddle/framework/ddim.cc
+2
-0
paddle/framework/ddim.h
paddle/framework/ddim.h
+2
-0
paddle/framework/ddim_test.cc
paddle/framework/ddim_test.cc
+1
-0
paddle/framework/op_registry.h
paddle/framework/op_registry.h
+24
-2
paddle/framework/operator.cc
paddle/framework/operator.cc
+13
-15
paddle/framework/operator.h
paddle/framework/operator.h
+7
-0
paddle/framework/tensor.h
paddle/framework/tensor.h
+24
-31
paddle/framework/tensor_test.cc
paddle/framework/tensor_test.cc
+12
-6
paddle/function/CMakeLists.txt
paddle/function/CMakeLists.txt
+0
-1
paddle/function/nnpack/NNPACKConvOp.cpp
paddle/function/nnpack/NNPACKConvOp.cpp
+14
-11
paddle/pybind/pybind.cc
paddle/pybind/pybind.cc
+17
-0
python/paddle/v2/framework/create_op_creation_methods.py
python/paddle/v2/framework/create_op_creation_methods.py
+235
-0
python/paddle/v2/framework/tests/test_op_creation_methods.py
python/paddle/v2/framework/tests/test_op_creation_methods.py
+241
-2
python/paddle/v2/optimizer.py
python/paddle/v2/optimizer.py
+5
-1
未找到文件。
CMakeLists.txt
浏览文件 @
4d49f1d8
...
...
@@ -137,7 +137,8 @@ if(WITH_GPU)
endif
(
WITH_GPU
)
if
(
USE_NNPACK
)
list
(
APPEND EXTERNAL_LIBS
${
NNPACK_LIB
}
${
PTHREADPOOL_LIB
}
"rt"
)
include
(
external/nnpack
)
list
(
APPEND EXTERNAL_LIBS
${
NNPACK_LIBS
}
)
endif
(
USE_NNPACK
)
add_subdirectory
(
proto
)
...
...
paddle/function/nnpack
/nnpack.cmake
→
cmake/external
/nnpack.cmake
浏览文件 @
4d49f1d8
...
...
@@ -7,10 +7,24 @@ set(NNPACK_ROOT $ENV{NNPACK_ROOT} CACHE PATH "Folder contains NNPACK")
find_path
(
NNPACK_INC_DIR nnpack.h PATHS
${
NNPACK_ROOT
}
/include
)
find_library
(
NNPACK_LIB NAMES nnpack PATHS
${
NNPACK_ROOT
}
/lib
)
find_library
(
PTHREADPOOL_LIB NAMES pthreadpool PATHS
${
NNPACK_ROOT
}
/lib
)
find_library
(
NNPACK_UKERNELS_LIB NAMES nnpack_ukernels PATHS
${
NNPACK_ROOT
}
/lib
)
find_library
(
NNPACK_CPUFEATURES_LIB NAMES cpufeatures PATHS
${
NNPACK_ROOT
}
/lib
)
if
(
NNPACK_INC_DIR AND NNPACK_LIB AND PTHREADPOOL_LIB
)
set
(
NNPACK_FOUND ON
)
INCLUDE_DIRECTORIES
(
${
NNPACK_INC_DIR
}
)
set
(
NNPACK_LIBS
)
list
(
APPEND NNPACK_LIBS
${
NNPACK_LIB
}
${
PTHREADPOOL_LIB
}
)
if
(
NNPACK_UKERNELS_LIB
)
list
(
APPEND NNPACK_LIBS
${
NNPACK_UKERNELS_LIB
}
)
endif
()
if
(
NNPACK_CPUFEATURES_LIB
)
list
(
APPEND NNPACK_LIBS
${
NNPACK_CPUFEATURES_LIB
}
)
endif
()
if
(
NOT ANDROID
)
list
(
APPEND NNPACK_LIBS
"rt"
)
endif
()
else
()
message
(
FATAL_ERROR
"Cannot find NNPACK in (
${
NNPACK_ROOT
}
)"
)
endif
()
paddle/framework/ddim.cc
浏览文件 @
4d49f1d8
...
...
@@ -117,6 +117,8 @@ int DDim::operator[](int idx) const {
return
boost
::
apply_visitor
(
DynamicConstIndexer
(
idx
),
var
);
}
ssize_t
DDim
::
size
()
const
{
return
arity
(
*
this
);
}
bool
DDim
::
operator
==
(
DDim
d
)
const
{
if
(
var
.
which
()
!=
d
.
getVar
().
which
())
{
return
false
;
...
...
paddle/framework/ddim.h
浏览文件 @
4d49f1d8
...
...
@@ -65,6 +65,8 @@ struct DDim {
DDimVar
getVar
()
{
return
var
;
}
ssize_t
size
()
const
;
bool
operator
==
(
DDim
d
)
const
;
bool
operator
!=
(
DDim
d
)
const
;
...
...
paddle/framework/ddim_test.cc
浏览文件 @
4d49f1d8
...
...
@@ -49,6 +49,7 @@ TEST(DDim, Equality) {
// arity of a DDim
EXPECT_EQ
(
paddle
::
framework
::
arity
(
ddim
),
3
);
EXPECT_EQ
(
ddim
.
size
(),
3
);
// product of a DDim
EXPECT_EQ
(
paddle
::
framework
::
product
(
vddim
),
45
);
...
...
paddle/framework/op_registry.h
浏览文件 @
4d49f1d8
#pragma once
#include <algorithm>
#include <atomic>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
...
...
@@ -214,11 +215,14 @@ class OpRegistry {
}
static
OperatorPtr
CreateOp
(
const
OpDesc
&
op_desc
)
{
//! Create a OpPtr by type.
std
::
string
op_type
=
op_desc
.
type
();
OperatorPtr
op
(
creators
().
at
(
op_type
)());
//! Fill op's data member. Not use constructor because it will be noising
//! for Op developer.
const
OpProto
&
op_proto
=
protos
().
at
(
op_type
);
// set op's inputs_ from desc.
op
->
type_
=
op_desc
.
type
();
// set op's inputs_ from desc.
op
->
inputs_
.
reserve
((
size_t
)
op_desc
.
inputs_size
());
std
::
copy
(
op_desc
.
inputs
().
begin
(),
op_desc
.
inputs
().
end
(),
std
::
back_inserter
(
op
->
inputs_
));
...
...
@@ -226,13 +230,20 @@ class OpRegistry {
op
->
outputs_
.
reserve
((
size_t
)
op_desc
.
outputs_size
());
std
::
copy
(
op_desc
.
outputs
().
begin
(),
op_desc
.
outputs
().
end
(),
std
::
back_inserter
(
op
->
outputs_
));
// set op's attr;
//! Fill attrs, and validate attrs.
for
(
auto
&
attr
:
op_desc
.
attrs
())
{
op
->
attrs_
[
attr
.
name
()]
=
AttrTypeHelper
::
GetAttrValue
(
attr
);
}
op_checkers
().
at
(
op_type
).
Check
(
op
->
attrs_
);
//! Convert Temporary variable name to an unique variable name.
GenerateTempVariableName
(
op
.
get
());
// set argument offsets stored in op.
CreateInOutOffsetMap
(
op
,
op_proto
);
//! Other op's custom Init for a complex Op. For simple Op, the Init
//! method do nothing.
op
->
Init
();
return
op
;
}
...
...
@@ -248,6 +259,17 @@ class OpRegistry {
};
private:
static
void
GenerateTempVariableName
(
OperatorBase
*
op
)
{
static
std
::
atomic
<
size_t
>
gUniqId
(
0UL
);
for
(
auto
&
outname
:
op
->
outputs_
)
{
if
(
outname
==
OperatorBase
::
TMP_VAR_NAME
())
{
outname
+=
op
->
type_
;
outname
+=
"@"
;
outname
+=
std
::
to_string
(
gUniqId
.
fetch_add
(
1
));
}
}
}
static
std
::
unordered_map
<
std
::
string
,
OpCreator
>&
creators
()
{
static
std
::
unordered_map
<
std
::
string
,
OpCreator
>
creators_
;
return
creators_
;
...
...
paddle/framework/operator.cc
浏览文件 @
4d49f1d8
...
...
@@ -91,23 +91,21 @@ std::vector<std::string> OperatorBase::Outputs(const std::string& name) const {
std
::
string
OperatorBase
::
DebugString
()
const
{
std
::
stringstream
ss
;
ss
<<
"=================
\n
"
;
ss
<<
"type = "
<<
type_
<<
"
\n
"
;
ss
<<
"inputs = ["
;
for
(
auto
&
ipt
:
inputs_
)
{
ss
<<
ipt
<<
", "
;
ss
<<
"Op("
<<
type_
<<
"), inputs:("
;
for
(
size_t
i
=
0
;
i
<
inputs_
.
size
();
++
i
)
{
ss
<<
inputs_
[
i
];
if
(
i
!=
inputs_
.
size
()
-
1
)
{
ss
<<
", "
;
}
}
ss
<<
"]
\n
"
;
ss
<<
"outputs = ["
;
for
(
auto
&
opt
:
outputs_
)
{
ss
<<
opt
<<
", "
;
ss
<<
"), outputs:("
;
for
(
size_t
i
=
0
;
i
<
outputs_
.
size
();
++
i
)
{
ss
<<
outputs_
[
i
];
if
(
i
!=
outputs_
.
size
()
-
1
)
{
ss
<<
", "
;
}
}
ss
<<
"]
\n
"
;
ss
<<
"attr_keys = ["
;
for
(
auto
&
attr
:
attrs_
)
{
ss
<<
attr
.
first
<<
", "
;
}
ss
<<
"]
\n
"
;
ss
<<
")."
;
return
ss
.
str
();
}
...
...
paddle/framework/operator.h
浏览文件 @
4d49f1d8
...
...
@@ -56,6 +56,13 @@ using OperatorPtr = std::shared_ptr<OperatorBase>;
*/
class
OperatorBase
{
public:
/// If a variable is a empty variable, that name will be used.
static
std
::
string
EMPTY_VAR_NAME
()
{
return
"@EMPTY@"
;
}
/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
static
std
::
string
TMP_VAR_NAME
()
{
return
"@TEMP@"
;
}
virtual
~
OperatorBase
()
{}
template
<
typename
T
>
...
...
paddle/framework/tensor.h
浏览文件 @
4d49f1d8
...
...
@@ -29,9 +29,7 @@ namespace framework {
class
Tensor
{
public:
Tensor
()
:
numel_
(
0
),
offset_
(
0
)
{}
Tensor
&
operator
=
(
const
Tensor
&
src
)
=
delete
;
Tensor
()
:
offset_
(
0
)
{}
template
<
typename
T
>
const
T
*
data
()
const
{
...
...
@@ -48,34 +46,33 @@ class Tensor {
}
template
<
typename
T
>
T
*
mutable_data
(
DDim
dims
,
p
addle
::
p
latform
::
Place
place
)
{
T
*
mutable_data
(
DDim
dims
,
platform
::
Place
place
)
{
set_dims
(
dims
);
return
mutable_data
<
T
>
(
place
);
}
template
<
typename
T
>
T
*
mutable_data
(
p
addle
::
p
latform
::
Place
place
)
{
PADDLE_ENFORCE
(
numel_
>
0
,
"Tensor
::numel_
must be larger than zero to call "
T
*
mutable_data
(
platform
::
Place
place
)
{
PADDLE_ENFORCE
(
product
(
dims_
)
>
0
,
"Tensor
's numel
must be larger than zero to call "
"Tensor::mutable_data. Call Tensor::set_dim first."
);
if
(
holder_
==
nullptr
||
!
(
holder_
->
place
()
==
place
)
/* some versions of boost::variant don't have operator!= */
||
holder_
->
size
()
<
numel_
*
sizeof
(
T
)
+
offset_
)
{
||
holder_
->
size
()
<
product
(
dims_
)
*
sizeof
(
T
)
+
offset_
)
{
if
(
platform
::
is_cpu_place
(
place
))
{
holder_
.
reset
(
new
PlaceholderImpl
<
T
,
platform
::
CPUPlace
>
(
boost
::
get
<
platform
::
CPUPlace
>
(
place
),
numel_
*
sizeof
(
T
)));
}
boost
::
get
<
platform
::
CPUPlace
>
(
place
),
product
(
dims_
)
*
sizeof
(
T
)));
}
else
if
(
platform
::
is_gpu_place
(
place
))
{
#ifdef __CUDACC__
else
if
(
platform
::
is_gpu_place
(
place
))
{
holder_
.
reset
(
new
PlaceholderImpl
<
T
,
platform
::
GPUPlace
>
(
boost
::
get
<
platform
::
GPUPlace
>
(
place
),
numel_
*
sizeof
(
T
)));
}
boost
::
get
<
platform
::
GPUPlace
>
(
place
),
product
(
dims_
)
*
sizeof
(
T
)));
#else
else
if
(
platform
::
is_gpu_place
(
place
))
{
PADDLE_ENFORCE
(
true
,
"GPU not support!"
);
}
PADDLE_ENFORCE
(
true
,
"'GPUPlace' is not supported in CPU only device."
);
#endif
}
else
{
PADDLE_ENFORCE
(
true
,
"Unknown 'place'."
);
}
offset_
=
0
;
}
return
reinterpret_cast
<
T
*>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
...
...
@@ -98,7 +95,7 @@ class Tensor {
// flat to rank = 1
template
<
typename
T
>
typename
TTypes
<
T
>::
Flat
flat
()
{
return
shaped
<
T
,
1
>
(
make_ddim
({
static_cast
<
int
>
(
numel_
)}));
return
shaped
<
T
,
1
>
(
make_ddim
({
static_cast
<
int
>
(
product
(
dims_
)
)}));
}
// to TensorType Vec
...
...
@@ -129,7 +126,7 @@ class Tensor {
template
<
typename
T
>
typename
TTypes
<
T
>::
ConstFlat
flat
()
const
{
return
shaped
<
T
,
1
>
(
make_ddim
({
static_cast
<
int
>
(
numel_
)}));
return
shaped
<
T
,
1
>
(
make_ddim
({
static_cast
<
int
>
(
product
(
dims_
)
)}));
}
template
<
typename
T
>
...
...
@@ -151,12 +148,12 @@ class Tensor {
}
template
<
typename
T
>
void
CopyFrom
(
const
Tensor
&
src
,
p
addle
::
p
latform
::
Place
dst_place
)
{
void
CopyFrom
(
const
Tensor
&
src
,
platform
::
Place
dst_place
)
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
src
.
holder_
->
place
())
&&
platform
::
is_cpu_place
(
dst_place
),
"Tensor::CopyFrom only support CPU now."
);
src
.
CheckDims
<
T
>
();
size_t
size
=
src
.
numel_
*
sizeof
(
T
);
size_t
size
=
product
(
src
.
dims_
)
*
sizeof
(
T
);
set_dims
(
src
.
dims
());
const
void
*
src_ptr
=
static_cast
<
const
void
*>
(
src
.
data
<
T
>
());
void
*
dst_ptr
=
static_cast
<
void
*>
(
mutable_data
<
T
>
(
dst_place
));
...
...
@@ -190,7 +187,6 @@ class Tensor {
return
;
}
dims_
=
dims
;
numel_
=
product
(
dims_
);
}
DDim
dims
()
const
{
return
dims_
;
}
...
...
@@ -201,7 +197,7 @@ class Tensor {
struct
Placeholder
{
virtual
~
Placeholder
()
{}
virtual
void
*
ptr
()
const
=
0
;
virtual
p
addle
::
p
latform
::
Place
place
()
const
=
0
;
virtual
platform
::
Place
place
()
const
=
0
;
virtual
size_t
size
()
const
=
0
;
};
...
...
@@ -212,9 +208,7 @@ class Tensor {
class
Deleter
{
public:
Deleter
(
PType
place
)
:
place_
(
place
)
{}
void
operator
()(
T
*
ptr
)
{
paddle
::
memory
::
Free
(
place_
,
static_cast
<
void
*>
(
ptr
));
}
void
operator
()(
T
*
ptr
)
{
memory
::
Free
(
place_
,
static_cast
<
void
*>
(
ptr
));
}
private:
PType
place_
;
...
...
@@ -222,32 +216,31 @@ class Tensor {
public:
PlaceholderImpl
(
PlaceType
place
,
size_t
size
)
:
ptr_
(
static_cast
<
T
*>
(
paddle
::
memory
::
Alloc
(
place
,
size
)),
:
ptr_
(
static_cast
<
T
*>
(
memory
::
Alloc
(
place
,
size
)),
Deleter
<
PlaceType
>
(
place
)),
place_
(
place
),
size_
(
size
)
{}
virtual
void
*
ptr
()
const
{
return
static_cast
<
void
*>
(
ptr_
.
get
());
}
virtual
size_t
size
()
const
{
return
size_
;
}
virtual
p
addle
::
p
latform
::
Place
place
()
const
{
return
place_
;
}
virtual
platform
::
Place
place
()
const
{
return
place_
;
}
std
::
unique_ptr
<
T
,
Deleter
<
PlaceType
>>
ptr_
;
p
addle
::
p
latform
::
Place
place_
;
// record the place of ptr_.
size_t
size_
;
// size of the memory block.
platform
::
Place
place_
;
// record the place of ptr_.
size_t
size_
;
// size of the memory block.
};
template
<
typename
T
>
inline
void
CheckDims
()
const
{
PADDLE_ENFORCE
(
holder_
!=
nullptr
,
"Tenosr holds no memory. Call Tensor::mutable_data first."
);
PADDLE_ENFORCE
(
holder_
->
size
()
>=
numel_
*
sizeof
(
T
)
+
offset_
,
PADDLE_ENFORCE
(
holder_
->
size
()
>=
product
(
dims_
)
*
sizeof
(
T
)
+
offset_
,
"Tensor's dims_ is out of bound. Call Tensor::mutable_data "
"first to re-allocate memory."
);
}
std
::
shared_ptr
<
Placeholder
>
holder_
;
// holds the memory block if allocated.
DDim
dims_
;
size_t
numel_
;
// cache of `product(dims_)`
size_t
offset_
;
// marks the begin of tensor data area.
};
...
...
paddle/framework/tensor_test.cc
浏览文件 @
4d49f1d8
...
...
@@ -47,7 +47,7 @@ TEST(Tensor, DataAssert) {
/* following tests are not available at present
because Memory::Alloc() and Memory::Free() have not been ready.
*/
TEST
(
Tensor
,
MutableData
)
{
using
namespace
paddle
::
framework
;
using
namespace
paddle
::
platform
;
...
...
@@ -72,7 +72,7 @@ TEST(Tensor, MutableData) {
p2
=
src_tensor
.
mutable_data
<
float
>
(
make_ddim
({
2
,
2
}),
CPUPlace
());
EXPECT_EQ
(
p1
,
p2
);
}
#ifdef __CUDACC__
{
Tensor
src_tensor
;
float
*
p1
=
nullptr
;
...
...
@@ -94,6 +94,7 @@ TEST(Tensor, MutableData) {
p2
=
src_tensor
.
mutable_data
<
float
>
(
make_ddim
({
2
,
2
}),
GPUPlace
());
EXPECT_EQ
(
p1
,
p2
);
}
#endif
}
TEST
(
Tensor
,
ShareDataFrom
)
{
...
...
@@ -108,9 +109,11 @@ TEST(Tensor, ShareDataFrom) {
dst_tensor
.
ShareDataFrom
<
float
>
(
src_tensor
);
}
catch
(
EnforceNotMet
err
)
{
caught
=
true
;
std::string msg = "Tenosr holds no memory. Call Tensor::mutable_data
first."; const char* what = err.what(); for (size_t i = 0; i < msg.length();
++i) { ASSERT_EQ(what[i], msg[i]);
std
::
string
msg
=
"Tenosr holds no memory. Call Tensor::mutable_data first."
;
const
char
*
what
=
err
.
what
();
for
(
size_t
i
=
0
;
i
<
msg
.
length
();
++
i
)
{
ASSERT_EQ
(
what
[
i
],
msg
[
i
]);
}
}
ASSERT_TRUE
(
caught
);
...
...
@@ -120,6 +123,7 @@ first."; const char* what = err.what(); for (size_t i = 0; i < msg.length();
ASSERT_EQ
(
src_tensor
.
data
<
int
>
(),
dst_tensor
.
data
<
int
>
());
}
#ifdef __CUDACC__
{
Tensor
src_tensor
;
Tensor
dst_tensor
;
...
...
@@ -127,6 +131,7 @@ first."; const char* what = err.what(); for (size_t i = 0; i < msg.length();
dst_tensor
.
ShareDataFrom
<
int
>
(
src_tensor
);
ASSERT_EQ
(
src_tensor
.
data
<
int
>
(),
dst_tensor
.
data
<
int
>
());
}
#endif
}
TEST
(
Tensor
,
Slice
)
{
...
...
@@ -155,6 +160,7 @@ TEST(Tensor, Slice) {
EXPECT_EQ
(
src_data_address
+
3
*
4
*
1
*
sizeof
(
int
),
slice_data_address
);
}
#ifdef __CUDACC__
{
Tensor
src_tensor
;
src_tensor
.
mutable_data
<
double
>
(
make_ddim
({
6
,
9
}),
GPUPlace
());
...
...
@@ -176,6 +182,7 @@ TEST(Tensor, Slice) {
EXPECT_EQ
(
slice_data_address
,
slice_mutable_data_address
);
EXPECT_EQ
(
src_data_address
+
9
*
2
*
sizeof
(
double
),
slice_data_address
);
}
#endif
}
TEST
(
Tensor
,
CopyFrom
)
{
...
...
@@ -203,4 +210,3 @@ TEST(Tensor, CopyFrom) {
EXPECT_EQ
(
dst_ptr
[
i
],
slice_ptr
[
i
]);
}
}
*/
\ No newline at end of file
paddle/function/CMakeLists.txt
浏览文件 @
4d49f1d8
...
...
@@ -11,7 +11,6 @@ if(WITH_GPU)
endif
()
if
(
USE_NNPACK
)
include
(
nnpack/nnpack.cmake
)
list
(
APPEND cpp_files nnpack/NNPACKConvOp.cpp
)
if
(
WITH_TESTING
)
add_unittest
(
NNPACKConvOpTest nnpack/NNPACKConvOpTest.cpp
)
...
...
paddle/function/nnpack/NNPACKConvOp.cpp
浏览文件 @
4d49f1d8
...
...
@@ -16,7 +16,7 @@ limitations under the License. */
#include "paddle/function/ConvOp.h"
DEFINE_bool
(
nnpack_allocate_outside
,
fals
e
,
tru
e
,
"Allocate and free workspace memory outside the NNPACK interface."
);
DEFINE_int32
(
nnpack_num_threads
,
0
,
...
...
@@ -58,18 +58,10 @@ public:
workspaceBuffer_
=
nullptr
;
workspaceSize_
=
0
;
threadpool_
=
nullptr
;
if
(
FLAGS_nnpack_num_threads
)
{
threadpool_
=
pthreadpool_create
(
FLAGS_nnpack_num_threads
);
VLOG
(
3
)
<<
"Number of threads "
<<
pthreadpool_get_threads_count
(
threadpool_
);
}
create_nnpack_threadpool
();
}
~
NNPACKConvFunction
()
{
if
(
threadpool_
)
{
pthreadpool_destroy
(
threadpool_
);
}
if
(
workspaceBuffer_
)
{
free
(
workspaceBuffer_
);
}
...
...
@@ -225,14 +217,25 @@ public:
}
}
static
void
create_nnpack_threadpool
()
{
if
(
FLAGS_nnpack_num_threads
&&
threadpool_
==
nullptr
)
{
threadpool_
=
pthreadpool_create
(
FLAGS_nnpack_num_threads
);
VLOG
(
3
)
<<
"Number of threads "
<<
pthreadpool_get_threads_count
(
threadpool_
);
}
}
private:
nnp_convolution_algorithm
algorithm_
;
nnp_convolution_transform_strategy
transform_strategy_
;
void
*
workspaceBuffer_
;
size_t
workspaceSize_
;
pthreadpool_t
threadpool_
;
static
pthreadpool_t
threadpool_
;
};
template
<
DeviceType
Device
>
pthreadpool_t
NNPACKConvFunction
<
Device
>::
threadpool_
=
nullptr
;
REGISTER_TYPED_FUNC
(
NNPACKConv
,
CPU
,
NNPACKConvFunction
);
}
// namespace paddle
paddle/pybind/pybind.cc
浏览文件 @
4d49f1d8
...
...
@@ -63,6 +63,23 @@ All parameter, weight, gradient are variables in Paddle.
}
return
ret_values
;
});
m
.
def_submodule
(
"var_names"
,
"The module will return special predefined variable name in Paddle"
)
.
def
(
"empty"
,
pd
::
OperatorBase
::
EMPTY_VAR_NAME
)
.
def
(
"temp"
,
pd
::
OperatorBase
::
TMP_VAR_NAME
);
py
::
class_
<
pd
::
OperatorBase
,
pd
::
OperatorPtr
>
(
m
,
"Operator"
)
.
def
(
"__str__"
,
&
pd
::
OperatorBase
::
DebugString
)
.
def_static
(
"create"
,
[](
const
std
::
string
&
protobin
)
{
pd
::
OpDesc
desc
;
PADDLE_ENFORCE
(
desc
.
ParsePartialFromString
(
protobin
),
"Cannot parse user input to OpDesc"
);
PADDLE_ENFORCE
(
desc
.
IsInitialized
(),
"User OpDesc is not initialized, reason %s"
,
desc
.
InitializationErrorString
());
return
pd
::
OpRegistry
::
CreateOp
(
desc
);
});
return
m
.
ptr
();
}
python/paddle/v2/framework/create_op_creation_methods.py
浏览文件 @
4d49f1d8
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.proto.op_proto_pb2
as
op_proto_pb2
import
paddle.v2.framework.proto.op_desc_pb2
as
op_desc_pb2
import
paddle.v2.framework.proto.attr_type_pb2
as
attr_type_pb2
import
cStringIO
def
get_all_op_protos
():
"""
Get all registered op proto from Paddle C++
:return: list of OpProto
"""
protostrs
=
core
.
get_all_op_protos
()
ret_values
=
[]
for
pbstr
in
protostrs
:
op_proto
=
op_proto_pb2
.
OpProto
.
FromString
(
str
(
pbstr
))
ret_values
.
append
(
op_proto
)
return
ret_values
class
OpDescCreationMethod
(
object
):
"""
A Functor object to convert user input(use key word args) to OpDesc based on
OpProto.
:param op_proto: The OpProto object.
:type op_proto: op_proto_pb2.OpProto
"""
def
__init__
(
self
,
op_proto
):
if
not
isinstance
(
op_proto
,
op_proto_pb2
.
OpProto
):
raise
TypeError
(
"Argument should be OpProto"
)
self
.
__op_proto__
=
op_proto
def
__call__
(
self
,
*
args
,
**
kwargs
):
"""
Convert user input to OpDesc. Only key-word args are supported.
:return: OpDesc based on user input
:rtype: op_desc_pb2.OpDesc
"""
if
len
(
args
)
!=
0
:
raise
ValueError
(
"Only keyword arguments is supported by Paddle"
)
op_desc
=
op_desc_pb2
.
OpDesc
()
# Inputs
ipts
,
ipt_format
,
_
=
OpDescCreationMethod
.
extract_input_or_output
(
"input"
,
kwargs
,
self
.
__op_proto__
.
inputs
)
op_desc
.
inputs
.
extend
(
ipts
)
if
ipt_format
is
not
None
:
op_desc
.
attrs
.
extend
([
ipt_format
])
# Outputs
outs
,
out_format
,
tmp_index
=
OpDescCreationMethod
.
extract_input_or_output
(
"output"
,
kwargs
,
self
.
__op_proto__
.
outputs
)
op_desc
.
outputs
.
extend
(
outs
)
if
out_format
is
not
None
:
op_desc
.
attrs
.
extend
([
out_format
])
if
len
(
tmp_index
)
!=
0
:
tmp_index_attr
=
op_desc
.
attrs
.
add
()
tmp_index_attr
.
type
=
attr_type_pb2
.
INTS
tmp_index_attr
.
name
=
"temporary_index"
tmp_index_attr
.
ints
.
extend
(
tmp_index
)
# Types
op_desc
.
type
=
self
.
__op_proto__
.
type
# Attrs
for
attr
in
self
.
__op_proto__
.
attrs
:
if
attr
.
generated
:
continue
user_defined_attr
=
kwargs
.
get
(
attr
.
name
,
None
)
if
user_defined_attr
is
not
None
:
new_attr
=
op_desc
.
attrs
.
add
()
new_attr
.
name
=
attr
.
name
new_attr
.
type
=
attr
.
type
if
attr
.
type
==
attr_type_pb2
.
INT
:
new_attr
.
i
=
user_defined_attr
elif
attr
.
type
==
attr_type_pb2
.
FLOAT
:
new_attr
.
f
=
user_defined_attr
elif
attr
.
type
==
attr_type_pb2
.
STRING
:
new_attr
.
s
=
user_defined_attr
elif
attr
.
type
==
attr_type_pb2
.
INTS
:
new_attr
.
ints
.
extend
(
user_defined_attr
)
elif
attr
.
type
==
attr_type_pb2
.
FLOATS
:
new_attr
.
floats
.
extend
(
user_defined_attr
)
elif
attr
.
type
==
attr_type_pb2
.
STRINGS
:
new_attr
.
strings
.
extend
(
user_defined_attr
)
else
:
raise
NotImplementedError
(
"Not support attribute type "
+
attr
.
type
)
return
op_desc
@
staticmethod
def
extract_input_or_output
(
in_out
,
kwargs
,
meta
):
"""
Extract input variable names or output variable names from key-word
arguments, which base on VarProtos.
:param in_out: "input" or "output"
:param kwargs: key-word arguments that user inputted.
:param meta: a list of VarProto
:return: The three object will be return. The variable names. The
input_format or output_format attribute(None if the input or output is
not multiple). The temporary variable index list.
"""
multiple
=
OpDescCreationMethod
.
any_is_true
((
m
.
multiple
for
m
in
meta
))
tmp_index
=
[]
retv
=
[]
if
multiple
:
var_format
=
op_desc_pb2
.
AttrDesc
()
var_format
.
type
=
attr_type_pb2
.
INTS
var_format
.
name
=
"%s_format"
%
in_out
var_format
.
ints
.
append
(
0
)
for
var
in
meta
:
var_name
=
var
.
name
if
var
.
temporary
:
var_name
=
[
core
.
var_names
.
temp
()]
tmp_index
.
append
(
len
(
retv
))
else
:
var_name
=
kwargs
.
get
(
var_name
,
[])
if
not
isinstance
(
var_name
,
list
):
var_name
=
[
var_name
]
retv
.
extend
(
var_name
)
var_format
.
ints
.
append
(
len
(
var_name
)
+
var_format
.
ints
[
-
1
])
return
retv
,
var_format
,
tmp_index
else
:
for
var
in
meta
:
if
var
.
temporary
:
retv
.
append
(
kwargs
.
get
(
var
.
name
,
core
.
var_names
.
temp
()))
tmp_index
.
append
(
len
(
retv
))
else
:
retv
.
append
(
kwargs
.
get
(
var
.
name
,
core
.
var_names
.
empty
()))
return
retv
,
None
,
tmp_index
@
staticmethod
def
any_is_true
(
generator
):
"""
Reduce a bool array to one. If any of them is True, then return True.
"""
for
flag
in
generator
:
if
flag
:
return
True
return
False
def
get_docstring_from_op_proto
(
op_proto
):
"""
Generate docstring from a OpProto
:param op_proto: a OpProto instance.
:type op_proto: op_proto_pb2.OpProto
:return: docstring
"""
if
not
isinstance
(
op_proto
,
op_proto_pb2
.
OpProto
):
raise
TypeError
(
"Input must be OpProto"
)
f
=
cStringIO
.
StringIO
()
f
.
write
(
op_proto
.
comment
)
f
.
write
(
"
\n
"
)
def
__append_param__
(
name
,
comment
,
type
):
# Maybe replace the following line with template engine is better.
f
.
write
(
":param "
)
f
.
write
(
name
)
f
.
write
(
": "
)
f
.
write
(
comment
)
f
.
write
(
"
\n
"
)
f
.
write
(
":type "
)
f
.
write
(
name
)
f
.
write
(
": "
)
f
.
write
(
type
)
f
.
write
(
"
\n
"
)
for
ipt
in
op_proto
.
inputs
:
__append_param__
(
ipt
.
name
,
ipt
.
comment
,
"list | basestr"
if
ipt
.
multiple
else
"basestr"
)
temp_var_prefix
=
\
"This is a temporary variable. It does not have to set by user. "
for
opt
in
op_proto
.
outputs
:
__append_param__
(
opt
.
name
,
opt
.
comment
if
not
opt
.
temporary
else
temp_var_prefix
+
opt
.
comment
,
"list | basestr"
if
opt
.
multiple
else
"basestr"
)
for
attr
in
op_proto
.
attrs
:
attr_type
=
None
if
attr
.
type
==
attr_type_pb2
.
INT
:
attr_type
=
"int"
elif
attr
.
type
==
attr_type_pb2
.
FLOAT
:
attr_type
=
"float"
elif
attr
.
type
==
attr_type_pb2
.
STRING
:
attr_type
=
"basestr"
elif
attr
.
type
==
attr_type_pb2
.
INTS
:
attr_type
=
"list of int"
elif
attr
.
type
==
attr_type_pb2
.
FLOATS
:
attr_type
=
"list of float"
elif
attr
.
type
==
attr_type_pb2
.
STRINGS
:
attr_type
=
"list of basestr"
if
attr_type
is
None
:
raise
RuntimeError
(
"Not supported attribute type "
+
attr
.
type
)
__append_param__
(
attr
.
name
,
attr
.
comment
,
attr_type
)
return
f
.
getvalue
()
def
create_op_creation_method
(
op_proto
):
"""
Generate op creation method for an OpProto
"""
method
=
OpDescCreationMethod
(
op_proto
)
def
__impl__
(
*
args
,
**
kwargs
):
opdesc
=
method
(
*
args
,
**
kwargs
)
return
core
.
Operator
.
create
(
opdesc
.
SerializeToString
())
__impl__
.
__doc__
=
get_docstring_from_op_proto
(
op_proto
)
return
__impl__
class
OpCreationsHolder
(
object
):
"""
A object will holds all op creation methods.
Use `op_creations.xxx_op` to access them.
"""
pass
op_creations
=
OpCreationsHolder
()
def
__bootstrap__
():
"""
Bootstrap function for this module. It will dynamic create all op creation
methods in runtime.
"""
for
op_proto
in
get_all_op_protos
():
func
=
create_op_creation_method
(
op_proto
)
func
.
__name__
=
str
(
op_proto
.
type
)
setattr
(
op_creations
,
func
.
__name__
,
func
)
__bootstrap__
()
python/paddle/v2/framework/tests/test_op_creation_methods.py
浏览文件 @
4d49f1d8
import
unittest
import
paddle.v2.framework.create_op_creation_methods
as
creation
import
paddle.v2.framework.core
as
core
import
paddle.v2.framework.proto.op_proto_pb2
as
op_proto_pb2
import
paddle.v2.framework.proto.op_desc_pb2
as
op_desc_pb2
import
paddle.v2.framework.proto.attr_type_pb2
as
attr_type_pb2
class
Test
OpCreationsMethod
s
(
unittest
.
TestCase
):
def
test_all
_protos
(
self
):
class
Test
GetAllProto
s
(
unittest
.
TestCase
):
def
test_all
(
self
):
all_protos
=
creation
.
get_all_op_protos
()
self
.
assertNotEqual
(
0
,
len
(
all_protos
))
...
...
@@ -11,5 +15,240 @@ class TestOpCreationsMethods(unittest.TestCase):
self
.
assertTrue
(
each
.
IsInitialized
())
class
TestOpDescCreationMethod
(
unittest
.
TestCase
):
def
test_plain_input_output
(
self
):
op
=
op_proto_pb2
.
OpProto
()
op
.
type
=
"test"
ipt
=
op
.
inputs
.
add
()
ipt
.
name
=
"X"
ipt
.
comment
=
"not matter"
ipt
=
op
.
inputs
.
add
()
ipt
.
name
=
"Y"
ipt
.
comment
=
"not matter"
opt
=
op
.
outputs
.
add
()
opt
.
name
=
"Z"
opt
.
comment
=
"not matter"
op
.
comment
=
"not matter"
self
.
assertTrue
(
op
.
IsInitialized
())
method
=
creation
.
OpDescCreationMethod
(
op
)
output
=
method
(
X
=
"a"
,
Y
=
"b"
,
Z
=
"c"
)
expected
=
op_desc_pb2
.
OpDesc
()
expected
.
type
=
"test"
expected
.
inputs
.
extend
([
"a"
,
"b"
])
expected
.
outputs
.
append
(
"c"
)
self
.
assertEqual
(
expected
,
output
)
def
test_multiple_input_plain_output
(
self
):
op
=
op_proto_pb2
.
OpProto
()
op
.
type
=
"fc"
ipt
=
op
.
inputs
.
add
()
ipt
.
name
=
"X"
ipt
.
comment
=
""
ipt
.
multiple
=
True
ipt
=
op
.
inputs
.
add
()
ipt
.
name
=
"W"
ipt
.
comment
=
""
ipt
.
multiple
=
True
ipt
=
op
.
inputs
.
add
()
ipt
.
name
=
"b"
ipt
.
comment
=
""
out
=
op
.
outputs
.
add
()
out
.
name
=
"Y"
out
.
comment
=
""
op
.
comment
=
""
self
.
assertTrue
(
op
.
IsInitialized
())
method
=
creation
.
OpDescCreationMethod
(
op
)
generated1
=
method
(
X
=
"x"
,
W
=
"w"
,
b
=
"b"
,
Y
=
"y"
)
expected1
=
op_desc_pb2
.
OpDesc
()
expected1
.
inputs
.
extend
([
'x'
,
'w'
,
'b'
])
expected1
.
outputs
.
extend
([
'y'
])
expected1
.
type
=
'fc'
attr
=
expected1
.
attrs
.
add
()
attr
.
name
=
'input_format'
attr
.
type
=
attr_type_pb2
.
INTS
attr
.
ints
.
extend
([
0
,
1
,
2
,
3
])
self
.
assertEqual
(
expected1
,
generated1
)
generated2
=
method
(
X
=
[
'x1'
,
'x2'
,
'x3'
],
b
=
'b'
,
W
=
[
'w1'
,
'w2'
,
'w3'
],
Y
=
'y'
)
expected2
=
op_desc_pb2
.
OpDesc
()
expected2
.
inputs
.
extend
([
'x1'
,
'x2'
,
'x3'
,
'w1'
,
'w2'
,
'w3'
,
'b'
])
expected2
.
outputs
.
extend
([
'y'
])
expected2
.
type
=
'fc'
attr
=
expected2
.
attrs
.
add
()
attr
.
name
=
'input_format'
attr
.
type
=
attr_type_pb2
.
INTS
attr
.
ints
.
extend
([
0
,
3
,
6
,
7
])
self
.
assertEqual
(
expected2
,
generated2
)
def
test_attrs
(
self
):
op
=
op_proto_pb2
.
OpProto
()
op
.
type
=
"test"
ipt
=
op
.
inputs
.
add
()
ipt
.
name
=
'X'
ipt
.
comment
=
""
def
__add_attr__
(
name
,
type
):
attr
=
op
.
attrs
.
add
()
attr
.
name
=
name
attr
.
comment
=
""
attr
.
type
=
type
__add_attr__
(
"int_attr"
,
attr_type_pb2
.
INT
)
__add_attr__
(
"float_attr"
,
attr_type_pb2
.
FLOAT
)
__add_attr__
(
"string_attr"
,
attr_type_pb2
.
STRING
)
__add_attr__
(
"ints_attr"
,
attr_type_pb2
.
INTS
)
__add_attr__
(
"floats_attr"
,
attr_type_pb2
.
FLOATS
)
__add_attr__
(
"strings_attr"
,
attr_type_pb2
.
STRINGS
)
op
.
comment
=
""
self
.
assertTrue
(
op
.
IsInitialized
())
method
=
creation
.
OpDescCreationMethod
(
op
)
generated
=
method
(
X
=
"a"
,
int_attr
=
10
,
float_attr
=
3.2
,
string_attr
=
"test_str"
,
ints_attr
=
[
0
,
1
,
2
,
3
,
4
],
floats_attr
=
[
0.2
,
3.2
,
4.5
],
strings_attr
=
[
"a"
,
"b"
,
"c"
])
expected
=
op_desc_pb2
.
OpDesc
()
expected
.
type
=
"test"
expected
.
inputs
.
extend
([
'a'
])
attr
=
expected
.
attrs
.
add
()
attr
.
name
=
"int_attr"
attr
.
type
=
attr_type_pb2
.
INT
attr
.
i
=
10
attr
=
expected
.
attrs
.
add
()
attr
.
name
=
"float_attr"
attr
.
type
=
attr_type_pb2
.
FLOAT
attr
.
f
=
3.2
attr
=
expected
.
attrs
.
add
()
attr
.
name
=
"string_attr"
attr
.
type
=
attr_type_pb2
.
STRING
attr
.
s
=
"test_str"
attr
=
expected
.
attrs
.
add
()
attr
.
name
=
"ints_attr"
attr
.
type
=
attr_type_pb2
.
INTS
attr
.
ints
.
extend
([
0
,
1
,
2
,
3
,
4
])
attr
=
expected
.
attrs
.
add
()
attr
.
name
=
'floats_attr'
attr
.
type
=
attr_type_pb2
.
FLOATS
attr
.
floats
.
extend
([
0.2
,
3.2
,
4.5
])
attr
=
expected
.
attrs
.
add
()
attr
.
name
=
'strings_attr'
attr
.
type
=
attr_type_pb2
.
STRINGS
attr
.
strings
.
extend
([
'a'
,
'b'
,
'c'
])
self
.
assertEqual
(
expected
,
generated
)
def
test_input_temporary_output
(
self
):
op
=
op_proto_pb2
.
OpProto
()
op
.
type
=
"test"
out
=
op
.
outputs
.
add
()
out
.
name
=
"OUT"
out
.
comment
=
""
out
=
op
.
outputs
.
add
()
out
.
name
=
"TMP"
out
.
comment
=
""
out
.
temporary
=
True
out
=
op
.
outputs
.
add
()
out
.
name
=
"OUT2"
out
.
comment
=
""
op
.
comment
=
""
method
=
creation
.
OpDescCreationMethod
(
op
)
generated
=
method
(
OUT
=
"a"
,
OUT2
=
"b"
)
desc
=
op_desc_pb2
.
OpDesc
()
desc
.
outputs
.
extend
([
"a"
,
core
.
var_names
.
temp
(),
"b"
])
desc
.
type
=
"test"
attr
=
desc
.
attrs
.
add
()
attr
.
name
=
"temporary_index"
attr
.
type
=
attr_type_pb2
.
INTS
attr
.
ints
.
append
(
2
)
self
.
assertEqual
(
generated
,
desc
)
class
TestOpCreationDocStr
(
unittest
.
TestCase
):
def
test_all
(
self
):
op
=
op_proto_pb2
.
OpProto
()
op
.
type
=
"test"
op
.
comment
=
"""Test Op.
This op is used for unit test, not a real op.
"""
a
=
op
.
inputs
.
add
()
a
.
name
=
"a"
a
.
comment
=
"Input a for test op"
a
.
multiple
=
True
b
=
op
.
inputs
.
add
()
b
.
name
=
"b"
b
.
comment
=
"Input b for test op"
self
.
assertTrue
(
op
.
IsInitialized
())
o1
=
op
.
outputs
.
add
()
o1
.
name
=
"output"
o1
.
comment
=
"The output of test op"
o2
=
op
.
outputs
.
add
()
o2
.
name
=
"temp output"
o2
.
comment
=
"The temporary output of test op"
o2
.
temporary
=
True
test_str
=
op
.
attrs
.
add
()
test_str
.
name
=
"str_attr"
test_str
.
type
=
attr_type_pb2
.
STRING
test_str
.
comment
=
"A string attribute for test op"
actual
=
creation
.
get_docstring_from_op_proto
(
op
)
expected_docstring
=
'''Test Op.
This op is used for unit test, not a real op.
:param a: Input a for test op
:type a: list | basestr
:param b: Input b for test op
:type b: basestr
:param output: The output of test op
:type output: basestr
:param temp output: This is a temporary variable. It does not have to set by user. The temporary output of test op
:type temp output: basestr
:param str_attr: A string attribute for test op
:type str_attr: basestr
'''
self
.
assertEqual
(
expected_docstring
,
actual
)
class
TestOpCreations
(
unittest
.
TestCase
):
def
test_all
(
self
):
add_op
=
creation
.
op_creations
.
add_two
(
X
=
"a"
,
Y
=
"b"
,
Out
=
"z"
)
self
.
assertIsNotNone
(
add_op
)
# Invoke C++ DebugString()
self
.
assertEqual
(
'Op(add_two), inputs:(a, b), outputs:(z).'
,
str
(
add_op
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/v2/optimizer.py
浏览文件 @
4d49f1d8
import
py_paddle.swig_paddle
as
swig_api
import
paddle.trainer_config_helpers.config_parser_utils
as
config_parser_utils
import
paddle.trainer_config_helpers.optimizers
as
v1_optimizers
"""
...
...
@@ -17,6 +16,7 @@ __all__ = [
class
Optimizer
(
object
):
def
__init__
(
self
,
**
kwargs
):
import
py_paddle.swig_paddle
as
swig_api
if
'batch_size'
in
kwargs
:
del
kwargs
[
'batch_size'
]
# not important for python library.
...
...
@@ -35,18 +35,22 @@ class Optimizer(object):
For each optimizer(SGD, Adam), GradientMachine should enable different
buffers.
"""
import
py_paddle.swig_paddle
as
swig_api
tmp
=
swig_api
.
ParameterOptimizer
.
create
(
self
.
__opt_conf__
)
assert
isinstance
(
tmp
,
swig_api
.
ParameterOptimizer
)
return
tmp
.
getParameterTypes
()
def
__create_local_updater__
(
self
):
import
py_paddle.swig_paddle
as
swig_api
return
swig_api
.
ParameterUpdater
.
createLocalUpdater
(
self
.
__opt_conf__
)
def
__create_remote_updater__
(
self
,
pass_num
,
use_sparse_updater
):
import
py_paddle.swig_paddle
as
swig_api
return
swig_api
.
ParameterUpdater
.
createRemoteUpdater
(
self
.
__opt_conf__
,
pass_num
,
use_sparse_updater
)
def
__create_new_remote_updater__
(
self
,
pserver_spec
,
use_etcd
):
import
py_paddle.swig_paddle
as
swig_api
return
swig_api
.
ParameterUpdater
.
createNewRemoteUpdater
(
self
.
__opt_conf__
,
pserver_spec
,
use_etcd
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录