Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
4d198acb
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4d198acb
编写于
3月 29, 2022
作者:
Z
zhangyikun02
提交者:
GitHub
3月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
pool2d support fp16 on xpu and update pool2d unittest, test=kunlun (#40841)
上级
d1c1d731
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
227 addition
and
229 deletion
+227
-229
paddle/fluid/operators/pool_op_xpu.cc
paddle/fluid/operators/pool_op_xpu.cc
+28
-18
python/paddle/fluid/tests/unittests/xpu/test_pool2d_op_xpu.py
...on/paddle/fluid/tests/unittests/xpu/test_pool2d_op_xpu.py
+199
-211
未找到文件。
paddle/fluid/operators/pool_op_xpu.cc
浏览文件 @
4d198acb
...
...
@@ -37,6 +37,8 @@ xpu::Pooling_t XPUPoolingType(const std::string& pooltype, bool exclusive,
template
<
typename
DeviceContext
,
typename
T
>
class
PoolXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
...
...
@@ -68,17 +70,19 @@ class PoolXPUKernel : public framework::OpKernel<T> {
const
int
c
=
in_x
->
dims
()[
1
];
const
int
in_h
=
in_x
->
dims
()[
2
];
const
int
in_w
=
in_x
->
dims
()[
3
];
const
float
*
input
=
in_x
->
data
<
float
>
(
);
auto
input
=
reinterpret_cast
<
const
XPUType
*>
(
in_x
->
data
<
T
>
()
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
float
*
output
=
out
->
data
<
float
>
(
);
auto
output
=
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()
);
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
Error_t
::
SUCCESS
;
if
(
pooling_type
==
"max"
)
{
r
=
xpu
::
max_pool2d
(
dev_ctx
.
x_context
(),
input
,
output
,
index_data
,
n
,
c
,
in_h
,
in_w
,
ksize
,
strides
,
paddings
,
true
);
r
=
xpu
::
max_pool2d
<
XPUType
>
(
dev_ctx
.
x_context
(),
input
,
output
,
index_data
,
n
,
c
,
in_h
,
in_w
,
ksize
,
strides
,
paddings
,
true
);
}
else
if
(
pooling_type
==
"avg"
)
{
r
=
xpu
::
avg_pool2d
(
dev_ctx
.
x_context
(),
input
,
output
,
n
,
c
,
in_h
,
in_w
,
ksize
,
strides
,
paddings
,
!
exclusive
,
true
);
r
=
xpu
::
avg_pool2d
<
XPUType
>
(
dev_ctx
.
x_context
(),
input
,
output
,
n
,
c
,
in_h
,
in_w
,
ksize
,
strides
,
paddings
,
!
exclusive
,
true
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported pooling type for kunlun "
,
pooling_type
));
...
...
@@ -92,6 +96,8 @@ class PoolXPUKernel : public framework::OpKernel<T> {
template
<
typename
DeviceContext
,
typename
T
>
class
PoolGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
...
...
@@ -130,21 +136,21 @@ class PoolGradXPUKernel : public framework::OpKernel<T> {
const
int
c
=
in_x
->
dims
()[
1
];
const
int
in_h
=
in_x
->
dims
()[
2
];
const
int
in_w
=
in_x
->
dims
()[
3
];
const
float
*
input
=
in_x
->
data
<
float
>
(
);
const
float
*
output
=
out
->
data
<
float
>
(
);
const
float
*
output_grad
=
out_grad
->
data
<
float
>
(
);
auto
input
=
reinterpret_cast
<
const
XPUType
*>
(
in_x
->
data
<
T
>
()
);
auto
output
=
reinterpret_cast
<
const
XPUType
*>
(
out
->
data
<
T
>
()
);
auto
output_grad
=
reinterpret_cast
<
const
XPUType
*>
(
out_grad
->
data
<
T
>
()
);
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
float
*
input_grad
=
in_x_grad
->
data
<
float
>
(
);
auto
input_grad
=
reinterpret_cast
<
XPUType
*>
(
in_x_grad
->
data
<
T
>
()
);
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
Error_t
::
SUCCESS
;
if
(
pooling_type
==
"max"
)
{
r
=
xpu
::
max_pool2d_grad
(
dev_ctx
.
x_context
(),
input
,
output
,
index_data
,
output_grad
,
input_grad
,
n
,
c
,
in_h
,
in_w
,
ksize
,
strides
,
paddings
,
true
);
r
=
xpu
::
max_pool2d_grad
<
XPUType
>
(
dev_ctx
.
x_context
(),
input
,
output
,
index_data
,
output_grad
,
input_grad
,
n
,
c
,
in_h
,
in_w
,
ksize
,
strides
,
paddings
,
true
);
}
else
if
(
pooling_type
==
"avg"
)
{
r
=
xpu
::
avg_pool2d_grad
(
dev_ctx
.
x_context
(),
input
,
output
,
output_grad
,
input_grad
,
n
,
c
,
in_h
,
in_w
,
ksize
,
strides
,
paddings
,
!
exclusive
,
true
);
r
=
xpu
::
avg_pool2d_grad
<
XPUType
>
(
dev_ctx
.
x_context
(),
input
,
output
,
output_grad
,
input_grad
,
n
,
c
,
in_h
,
in_w
,
ksize
,
strides
,
paddings
,
!
exclusive
,
true
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Unsupported pooling type for kunlun "
,
pooling_type
));
...
...
@@ -161,9 +167,13 @@ class PoolGradXPUKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
pool2d
,
ops
::
PoolXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
pool2d
,
ops
::
PoolXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
PoolXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
pool2d_grad
,
ops
::
PoolGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
PoolGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
PoolGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif
python/paddle/fluid/tests/unittests/xpu/test_pool2d_op_xpu.py
浏览文件 @
4d198acb
...
...
@@ -25,6 +25,7 @@ from op_test_xpu import XPUOpTest
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
from
test_pool2d_op
import
adaptive_start_index
,
adaptive_end_index
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
import
paddle
paddle
.
enable_static
()
...
...
@@ -246,229 +247,216 @@ def pool2D_forward_naive(x,
return
out
class
TestPool2D_Op
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"pool2d"
self
.
use_cudnn
=
False
self
.
init_kernel_type
()
self
.
use_mkldnn
=
False
self
.
init_data_type
()
self
.
init_test_case
()
self
.
padding_algorithm
=
"EXPLICIT"
self
.
init_paddings
()
self
.
init_global_pool
()
self
.
init_kernel_type
()
self
.
init_pool_type
()
self
.
init_ceil_mode
()
self
.
init_exclusive
()
self
.
init_adaptive
()
self
.
init_data_format
()
self
.
init_shape
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
output
=
pool2D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
,
self
.
ceil_mode
,
self
.
exclusive
,
self
.
adaptive
,
self
.
data_format
,
self
.
pool_type
,
self
.
padding_algorithm
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
XPUOpTest
.
np_dtype_to_fluid_dtype
(
input
)}
self
.
attrs
=
{
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'pooling_type'
:
self
.
pool_type
,
'global_pooling'
:
self
.
global_pool
,
'use_cudnn'
:
self
.
use_cudnn
,
'use_mkldnn'
:
self
.
use_mkldnn
,
'ceil_mode'
:
self
.
ceil_mode
,
'data_format'
:
self
.
data_format
,
'exclusive'
:
self
.
exclusive
,
'adaptive'
:
self
.
adaptive
,
"padding_algorithm"
:
self
.
padding_algorithm
,
}
class
XPUTestPool2D_Op
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'pool2d'
self
.
use_dynamic_create_class
=
False
class
TestPool2D_Op
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"pool2d"
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
use_cudnn
=
False
self
.
init_kernel_type
()
self
.
use_mkldnn
=
False
self
.
init_test_case
()
self
.
padding_algorithm
=
"EXPLICIT"
self
.
init_paddings
()
self
.
init_global_pool
()
self
.
init_kernel_type
()
self
.
init_pool_type
()
self
.
init_ceil_mode
()
self
.
init_exclusive
()
self
.
init_adaptive
()
self
.
init_data_format
()
self
.
init_shape
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
output
=
pool2D_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
,
self
.
ceil_mode
,
self
.
exclusive
,
self
.
adaptive
,
self
.
data_format
,
self
.
pool_type
,
self
.
padding_algorithm
).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
XPUOpTest
.
np_dtype_to_fluid_dtype
(
input
)}
self
.
attrs
=
{
'strides'
:
self
.
strides
,
'paddings'
:
self
.
paddings
,
'ksize'
:
self
.
ksize
,
'pooling_type'
:
self
.
pool_type
,
'global_pooling'
:
self
.
global_pool
,
'use_cudnn'
:
self
.
use_cudnn
,
'use_mkldnn'
:
self
.
use_mkldnn
,
'ceil_mode'
:
self
.
ceil_mode
,
'data_format'
:
self
.
data_format
,
'exclusive'
:
self
.
exclusive
,
'adaptive'
:
self
.
adaptive
,
"padding_algorithm"
:
self
.
padding_algorithm
,
}
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
set
([
'X'
]),
'Out'
)
def
init_data_format
(
self
):
self
.
data_format
=
"NCHW"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
5
,
5
]
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_paddings
(
self
):
self
.
paddings
=
[
0
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
def
init_kernel_type
(
self
):
self
.
use_cudnn
=
False
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
def
init_global_pool
(
self
):
self
.
global_pool
=
True
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
False
def
init_exclusive
(
self
):
self
.
exclusive
=
True
def
init_adaptive
(
self
):
self
.
adaptive
=
False
class
TestCase1
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_paddings
(
self
):
self
.
paddings
=
[
0
,
0
]
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
def
init_global_pool
(
self
):
self
.
global_pool
=
False
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase2
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_paddings
(
self
):
self
.
paddings
=
[
1
,
1
]
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
def
init_global_pool
(
self
):
self
.
global_pool
=
False
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase3
(
TestPool2D_Op
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestCase4
(
TestCase1
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestCase5
(
TestCase2
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
self
.
outputs
=
{
'Out'
:
output
}
def
has_xpu
(
self
):
return
core
.
is_compiled_with_xpu
()
class
TestPool2D_AsyPadding
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
2
]
def
test_check_output
(
self
):
if
self
.
has_xpu
():
place
=
core
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
return
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
5
,
5
]
def
test_check_grad
(
self
):
if
self
.
has_xpu
(
):
place
=
core
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
set
([
'X'
]),
'Out'
)
return
class
TestCase1_AsyPadding
(
TestCase1
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
0
]
def
init_data_format
(
self
):
self
.
data_format
=
"NCHW"
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
5
,
5
]
class
TestCase2_AsyPadding
(
TestCase2
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
2
,
1
,
2
]
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
def
init_paddings
(
self
):
self
.
paddings
=
[
0
,
0
]
self
.
padding_algorithm
=
"EXPLICIT"
class
TestCase3_AsyPadding
(
TestCase3
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
2
]
def
init_kernel_ty
pe
(
self
):
self
.
use_cudnn
=
False
def
init_sha
pe
(
self
):
self
.
shape
=
[
2
,
3
,
5
,
5
]
def
init_data_type
(
self
):
self
.
dtype
=
np
.
float32
class
TestCase4_AsyPadding
(
TestCase4
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
0
]
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
def
init_global_pool
(
self
):
self
.
global_pool
=
True
def
init_ceil_mode
(
self
):
self
.
ceil_mode
=
False
def
init_exclusive
(
self
):
self
.
exclusive
=
True
def
init_adaptive
(
self
):
self
.
adaptive
=
False
class
TestCase1
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_paddings
(
self
):
self
.
paddings
=
[
0
,
0
]
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
def
init_global_pool
(
self
):
self
.
global_pool
=
False
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase2
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_paddings
(
self
):
self
.
paddings
=
[
1
,
1
]
def
init_pool_type
(
self
):
self
.
pool_type
=
"avg"
self
.
pool2D_forward_naive
=
avg_pool2D_forward_naive
def
init_global_pool
(
self
):
self
.
global_pool
=
False
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase3
(
TestPool2D_Op
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestCase4
(
TestCase1
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestCase5
(
TestCase2
):
def
init_pool_type
(
self
):
self
.
pool_type
=
"max"
self
.
pool2D_forward_naive
=
max_pool2D_forward_naive
class
TestPool2D_AsyPadding
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
5
,
5
]
class
TestCase1_AsyPadding
(
TestCase1
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
0
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase2_AsyPadding
(
TestCase2
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
2
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase3_AsyPadding
(
TestCase3
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
5
,
5
]
class
TestCase4_AsyPadding
(
TestCase4
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
0
,
1
,
0
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase5_AsyPadding
((
TestCase5
)):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
2
,
2
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestAvgInclude_AsyPadding
(
TestCase2
):
def
init_exclusive
(
self
):
self
.
exclusive
=
False
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
2
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestCase5_AsyPadding
(
TestCase5
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
2
,
2
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
class
TestAvgInclude_AsyPadding
(
TestCase2
):
def
init_exclusive
(
self
):
self
.
exclusive
=
False
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
2
,
1
,
2
]
def
init_shape
(
self
):
self
.
shape
=
[
2
,
3
,
7
,
7
]
support_types
=
get_xpu_op_support_types
(
'pool2d'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestPool2D_Op
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录