Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
4c5cfdea
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4c5cfdea
编写于
9月 18, 2020
作者:
L
liu zhengxi
提交者:
GitHub
9月 18, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix paddle.nn.Transformer api (#27391)
上级
d726fd5e
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
217 addition
and
20 deletion
+217
-20
python/paddle/fluid/tests/unittests/test_transformer_api.py
python/paddle/fluid/tests/unittests/test_transformer_api.py
+135
-0
python/paddle/nn/layer/transformer.py
python/paddle/nn/layer/transformer.py
+82
-20
未找到文件。
python/paddle/fluid/tests/unittests/test_transformer_api.py
浏览文件 @
4c5cfdea
...
...
@@ -474,6 +474,141 @@ class TestTransformer(unittest.TestCase):
trans_output
=
transformer
(
src
,
tgt
,
src_mask
,
tgt_mask
,
memory_mask
)
def
test_transformer_attr_1
(
self
):
batch_size
,
d_model
,
n_head
,
dim_feedforward
,
dropout
,
_
,
_
,
source_length
,
target_length
=
generate_basic_params
(
mode
=
"decoder_layer"
)
# batch_size, source_length, target_length, d_model, n_head = 4, 8, 8, 64, 8
with
fluid
.
dygraph
.
guard
(
fluid
.
CPUPlace
()):
transformer
=
Transformer
(
d_model
,
n_head
,
dim_feedforward
=
dim_feedforward
,
dropout
=
dropout
,
weight_attr
=
[
None
],
bias_attr
=
[
False
])
src
=
paddle
.
to_variable
(
np
.
random
.
rand
(
batch_size
,
source_length
,
d_model
).
astype
(
"float32"
))
tgt
=
paddle
.
to_variable
(
np
.
random
.
rand
(
batch_size
,
target_length
,
d_model
).
astype
(
"float32"
))
src_mask
=
np
.
zeros
((
batch_size
,
n_head
,
source_length
,
source_length
)).
astype
(
"float32"
)
src_mask
[
0
][
0
][
0
][
0
]
=
-
np
.
inf
src_mask
=
paddle
.
to_variable
(
src_mask
)
tgt_mask
=
np
.
zeros
((
batch_size
,
n_head
,
target_length
,
target_length
)).
astype
(
"float32"
)
tgt_mask
[
0
][
0
][
0
][
0
]
=
-
1e9
memory_mask
=
np
.
zeros
((
batch_size
,
n_head
,
target_length
,
source_length
)).
astype
(
"float32"
)
memory_mask
[
0
][
0
][
0
][
0
]
=
-
1e9
tgt_mask
,
memory_mask
=
paddle
.
to_variable
(
tgt_mask
),
paddle
.
to_variable
(
memory_mask
)
trans_output
=
transformer
(
src
,
tgt
,
src_mask
,
tgt_mask
,
memory_mask
)
def
test_transformer_attr_2
(
self
):
batch_size
,
d_model
,
n_head
,
dim_feedforward
,
dropout
,
_
,
_
,
source_length
,
target_length
=
generate_basic_params
(
mode
=
"decoder_layer"
)
# batch_size, source_length, target_length, d_model, n_head = 4, 8, 8, 64, 8
with
fluid
.
dygraph
.
guard
(
fluid
.
CPUPlace
()):
transformer
=
Transformer
(
d_model
,
n_head
,
dim_feedforward
=
dim_feedforward
,
dropout
=
dropout
,
weight_attr
=
[
None
,
None
],
bias_attr
=
[
False
,
False
])
src
=
paddle
.
to_variable
(
np
.
random
.
rand
(
batch_size
,
source_length
,
d_model
).
astype
(
"float32"
))
tgt
=
paddle
.
to_variable
(
np
.
random
.
rand
(
batch_size
,
target_length
,
d_model
).
astype
(
"float32"
))
src_mask
=
np
.
zeros
((
batch_size
,
n_head
,
source_length
,
source_length
)).
astype
(
"float32"
)
src_mask
[
0
][
0
][
0
][
0
]
=
-
np
.
inf
src_mask
=
paddle
.
to_variable
(
src_mask
)
tgt_mask
=
np
.
zeros
((
batch_size
,
n_head
,
target_length
,
target_length
)).
astype
(
"float32"
)
tgt_mask
[
0
][
0
][
0
][
0
]
=
-
1e9
memory_mask
=
np
.
zeros
((
batch_size
,
n_head
,
target_length
,
source_length
)).
astype
(
"float32"
)
memory_mask
[
0
][
0
][
0
][
0
]
=
-
1e9
tgt_mask
,
memory_mask
=
paddle
.
to_variable
(
tgt_mask
),
paddle
.
to_variable
(
memory_mask
)
trans_output
=
transformer
(
src
,
tgt
,
src_mask
,
tgt_mask
,
memory_mask
)
def
test_transformer_attr_3
(
self
):
batch_size
,
d_model
,
n_head
,
dim_feedforward
,
dropout
,
_
,
_
,
source_length
,
target_length
=
generate_basic_params
(
mode
=
"decoder_layer"
)
# batch_size, source_length, target_length, d_model, n_head = 4, 8, 8, 64, 8
with
fluid
.
dygraph
.
guard
(
fluid
.
CPUPlace
()):
transformer
=
Transformer
(
d_model
,
n_head
,
dim_feedforward
=
dim_feedforward
,
dropout
=
dropout
,
weight_attr
=
[
None
,
None
,
None
],
bias_attr
=
[
False
,
False
,
True
])
src
=
paddle
.
to_variable
(
np
.
random
.
rand
(
batch_size
,
source_length
,
d_model
).
astype
(
"float32"
))
tgt
=
paddle
.
to_variable
(
np
.
random
.
rand
(
batch_size
,
target_length
,
d_model
).
astype
(
"float32"
))
src_mask
=
np
.
zeros
((
batch_size
,
n_head
,
source_length
,
source_length
)).
astype
(
"float32"
)
src_mask
[
0
][
0
][
0
][
0
]
=
-
np
.
inf
src_mask
=
paddle
.
to_variable
(
src_mask
)
tgt_mask
=
np
.
zeros
((
batch_size
,
n_head
,
target_length
,
target_length
)).
astype
(
"float32"
)
tgt_mask
[
0
][
0
][
0
][
0
]
=
-
1e9
memory_mask
=
np
.
zeros
((
batch_size
,
n_head
,
target_length
,
source_length
)).
astype
(
"float32"
)
memory_mask
[
0
][
0
][
0
][
0
]
=
-
1e9
tgt_mask
,
memory_mask
=
paddle
.
to_variable
(
tgt_mask
),
paddle
.
to_variable
(
memory_mask
)
trans_output
=
transformer
(
src
,
tgt
,
src_mask
,
tgt_mask
,
memory_mask
)
def
test_transformer_attr_boolean
(
self
):
batch_size
,
d_model
,
n_head
,
dim_feedforward
,
dropout
,
_
,
_
,
source_length
,
target_length
=
generate_basic_params
(
mode
=
"decoder_layer"
)
# batch_size, source_length, target_length, d_model, n_head = 4, 8, 8, 64, 8
with
fluid
.
dygraph
.
guard
(
fluid
.
CPUPlace
()):
transformer
=
Transformer
(
d_model
,
n_head
,
dim_feedforward
=
dim_feedforward
,
dropout
=
dropout
,
bias_attr
=
False
)
src
=
paddle
.
to_variable
(
np
.
random
.
rand
(
batch_size
,
source_length
,
d_model
).
astype
(
"float32"
))
tgt
=
paddle
.
to_variable
(
np
.
random
.
rand
(
batch_size
,
target_length
,
d_model
).
astype
(
"float32"
))
src_mask
=
np
.
zeros
((
batch_size
,
n_head
,
source_length
,
source_length
)).
astype
(
"float32"
)
src_mask
[
0
][
0
][
0
][
0
]
=
-
np
.
inf
src_mask
=
paddle
.
to_variable
(
src_mask
)
tgt_mask
=
np
.
zeros
((
batch_size
,
n_head
,
target_length
,
target_length
)).
astype
(
"float32"
)
tgt_mask
[
0
][
0
][
0
][
0
]
=
-
1e9
memory_mask
=
np
.
zeros
((
batch_size
,
n_head
,
target_length
,
source_length
)).
astype
(
"float32"
)
memory_mask
[
0
][
0
][
0
][
0
]
=
-
1e9
tgt_mask
,
memory_mask
=
paddle
.
to_variable
(
tgt_mask
),
paddle
.
to_variable
(
memory_mask
)
trans_output
=
transformer
(
src
,
tgt
,
src_mask
,
tgt_mask
,
memory_mask
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/nn/layer/transformer.py
浏览文件 @
4c5cfdea
...
...
@@ -53,7 +53,22 @@ def _convert_param_attr_to_list(param_attr, n):
if
isinstance
(
param_attr
,
(
list
,
tuple
)):
assert
len
(
param_attr
)
==
n
,
(
"length of param_attr should be %d when it is a list/tuple"
%
n
)
param_attrs
=
[
ParamAttr
.
_to_attr
(
attr
)
for
attr
in
param_attr
]
param_attrs
=
[]
for
attr
in
param_attr
:
if
isinstance
(
attr
,
bool
):
if
attr
:
param_attrs
.
append
(
ParamAttr
.
_to_attr
(
None
))
else
:
param_attrs
.
append
(
False
)
else
:
param_attrs
.
append
(
ParamAttr
.
_to_attr
(
attr
))
# param_attrs = [ParamAttr._to_attr(attr) for attr in param_attr]
elif
isinstance
(
param_attr
,
bool
):
param_attrs
=
[]
if
param_attr
:
param_attrs
=
[
ParamAttr
.
_to_attr
(
None
)
for
i
in
range
(
n
)]
else
:
param_attrs
=
[
False
]
*
n
else
:
param_attrs
=
[]
attr
=
ParamAttr
.
_to_attr
(
param_attr
)
...
...
@@ -417,7 +432,7 @@ class TransformerEncoderLayer(Layer):
Otherwise, MHA and FFN both use it as `weight_attr` to create parameters.
Default: None, which means the default weight parameter property is used.
See usage for details in :code:`ParamAttr` .
bias_attr (ParamAttr|tuple, optional): To specify the bias parameter property.
bias_attr (ParamAttr|tuple
|bool
, optional): To specify the bias parameter property.
If it is a tuple, `bias_attr[0]` would be used as `bias_attr` for
MHA, and `bias_attr[1]` would be used as `bias_attr` for linear in FFN.
Otherwise, MHA and FFN both use it as `bias_attr` to create parameters.
...
...
@@ -986,22 +1001,31 @@ class Transformer(Layer):
Otherwise, no pre-process and post-precess includes dropout, residual
connection, layer normalization. Default False
weight_attr(ParamAttr|tuple, optional): To specify the weight parameter property.
If it is a tuple, `weight_attr[0]` would be used as `weight_attr` for
self attention, `weight_attr[1]` would be used as `weight_attr` for
cross attention, and `weight_attr[2]` would be used as `weight_attr`
for linear in FFN. Otherwise, the three sub-layers all uses it as
`weight_attr` to create parameters. Default: None, which means the
default weight parameter property is used. See usage for details
If it is a tuple, the length of `weight_attr` could be 1, 2 or 3. If it is 3,
`weight_attr[0]` would be used as `weight_attr` for self attention, `weight_attr[1]`
would be used as `weight_attr` for cross attention of `TransformerDecoder`,
and `weight_attr[2]` would be used as `weight_attr` for linear in FFN.
If it is 2, `weight_attr[0]` would be used as `weight_attr` both for self attention
and cross attntion and `weight_attr[1]` would be used as `weight_attr` for
linear in FFN. If it is 1, `weight_attr[0]` would be used as `weight_attr`
for self attention, cross attention and linear in FFN. Otherwise,
the three sub-layers all uses it as `weight_attr` to create parameters.
Default: None, which means the default weight parameter property is used.
See usage for details
in :code:`ParamAttr` .
bias_attr (ParamAttr|tuple, optional): To specify the bias parameter property.
If it is a tuple, `bias_attr[0]` would be used as `bias_attr` for
self attention, `bias_attr[1]` would be used as `bias_attr` for
cross attention, and `bias_attr[2]` would be used as `bias_attr`
for linear in FFN. Otherwise, the three sub-layers all uses it as
`bias_attr` to create parameters. The `False` value means the
corresponding layer would not have trainable bias parameter. See
usage for details in :code:`ParamAttr` . Default: None,which means
the default bias parameter property is used.
If it is a tuple, the length of `bias_attr` could be 1, 2 or 3. If it is 3,
`bias_attr[0]` would be used as `bias_attr` for self attention, `bias_attr[1]`
would be used as `bias_attr` for cross attention of `TransformerDecoder`,
and `bias_attr[2]` would be used as `bias_attr` for linear in FFN.
If it is 2, `bias_attr[0]` would be used as `bias_attr` both for self attention
and cross attntion and `bias_attr[1]` would be used as `bias_attr` for
linear in FFN. If it is 1, `bias_attr[0]` would be used as `bias_attr`
for self attention, cross attention and linear in FFN. Otherwise,
the three sub-layers all uses it as `bias_attr` to create parameters.
The `False` value means the corresponding layer would not have trainable
bias parameter. See usage for details in :code:`ParamAttr` .
Default: None,which means the default bias parameter property is used.
custom_encoder (Layer): If custom encoder is provided, use it as the encoder.
Default None
custom_decoder (Layer): If custom decoder is provided, use it as the decoder.
...
...
@@ -1049,13 +1073,51 @@ class Transformer(Layer):
custom_decoder
=
None
):
super
(
Transformer
,
self
).
__init__
()
if
isinstance
(
bias_attr
,
(
list
,
tuple
)):
if
len
(
bias_attr
)
==
1
:
encoder_bias_attr
=
[
bias_attr
[
0
]]
*
2
decoder_bias_attr
=
[
bias_attr
[
0
]]
*
3
elif
len
(
bias_attr
)
==
2
:
encoder_bias_attr
=
bias_attr
decoder_bias_attr
=
[
bias_attr
[
0
],
bias_attr
[
0
],
bias_attr
[
-
1
]]
elif
len
(
bias_attr
)
==
3
:
encoder_bias_attr
=
[
bias_attr
[
0
],
bias_attr
[
-
1
]]
decoder_bias_attr
=
bias_attr
else
:
assert
False
,
(
"length of bias_attr should be 1 or 2 or 3 when it is a list/tuple"
)
else
:
encoder_bias_attr
=
bias_attr
decoder_bias_attr
=
bias_attr
if
isinstance
(
weight_attr
,
(
list
,
tuple
)):
if
len
(
weight_attr
)
==
1
:
encoder_weight_attr
=
[
weight_attr
[
0
]]
*
2
decoder_weight_attr
=
[
weight_attr
[
0
]]
*
3
elif
len
(
weight_attr
)
==
2
:
encoder_weight_attr
=
weight_attr
decoder_weight_attr
=
[
weight_attr
[
0
],
weight_attr
[
0
],
weight_attr
[
-
1
]
]
elif
len
(
weight_attr
)
==
3
:
encoder_weight_attr
=
[
weight_attr
[
0
],
weight_attr
[
-
1
]]
decoder_weight_attr
=
weight_attr
else
:
assert
False
,
(
"length of weight_attr should be 1 or 2 or 3 when it is a list/tuple"
)
else
:
encoder_weight_attr
=
weight_attr
decoder_weight_attr
=
weight_attr
if
custom_encoder
is
not
None
:
self
.
encoder
=
custom_encoder
else
:
encoder_layer
=
TransformerEncoderLayer
(
d_model
,
nhead
,
dim_feedforward
,
dropout
,
activation
,
attn_dropout
,
act_dropout
,
normalize_before
,
weight_attr
,
bias_attr
)
attn_dropout
,
act_dropout
,
normalize_before
,
encoder_weight_attr
,
encoder_
bias_attr
)
encoder_norm
=
LayerNorm
(
d_model
)
self
.
encoder
=
TransformerEncoder
(
encoder_layer
,
num_encoder_layers
,
encoder_norm
)
...
...
@@ -1065,8 +1127,8 @@ class Transformer(Layer):
else
:
decoder_layer
=
TransformerDecoderLayer
(
d_model
,
nhead
,
dim_feedforward
,
dropout
,
activation
,
attn_dropout
,
act_dropout
,
normalize_before
,
weight_attr
,
bias_attr
)
attn_dropout
,
act_dropout
,
normalize_before
,
decoder_weight_attr
,
decoder_
bias_attr
)
decoder_norm
=
LayerNorm
(
d_model
)
self
.
decoder
=
TransformerDecoder
(
decoder_layer
,
num_decoder_layers
,
decoder_norm
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录