Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
4b683887
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4b683887
编写于
9月 16, 2021
作者:
Z
Zhong Hui
提交者:
GitHub
9月 16, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add segment apis to paddle.incubate (#35759)
上级
f218330e
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
325 addition
and
3 deletion
+325
-3
python/paddle/fluid/tests/unittests/test_segment_ops.py
python/paddle/fluid/tests/unittests/test_segment_ops.py
+61
-1
python/paddle/incubate/__init__.py
python/paddle/incubate/__init__.py
+13
-2
python/paddle/incubate/tensor/__init__.py
python/paddle/incubate/tensor/__init__.py
+25
-0
python/paddle/incubate/tensor/math.py
python/paddle/incubate/tensor/math.py
+225
-0
python/setup.py.in
python/setup.py.in
+1
-0
未找到文件。
python/paddle/fluid/tests/unittests/test_segment_ops.py
浏览文件 @
4b683887
...
@@ -15,8 +15,11 @@
...
@@ -15,8 +15,11 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
unittest
import
unittest
import
numpy
as
np
import
sys
import
sys
import
numpy
as
np
import
paddle
from
op_test
import
OpTest
from
op_test
import
OpTest
...
@@ -198,5 +201,62 @@ class TestSegmentMean2(TestSegmentMean):
...
@@ -198,5 +201,62 @@ class TestSegmentMean2(TestSegmentMean):
self
.
attrs
=
{
'pooltype'
:
"MEAN"
}
self
.
attrs
=
{
'pooltype'
:
"MEAN"
}
class
API_SegmentOpsTest
(
unittest
.
TestCase
):
def
test_static
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
static
.
data
(
name
=
"x"
,
shape
=
[
3
,
3
],
dtype
=
"float32"
)
y
=
paddle
.
static
.
data
(
name
=
'y'
,
shape
=
[
3
],
dtype
=
'int32'
)
res_sum
=
paddle
.
incubate
.
segment_sum
(
x
,
y
)
res_mean
=
paddle
.
incubate
.
segment_mean
(
x
,
y
)
res_max
=
paddle
.
incubate
.
segment_max
(
x
,
y
)
res_min
=
paddle
.
incubate
.
segment_min
(
x
,
y
)
exe
=
paddle
.
static
.
Executor
(
paddle
.
CPUPlace
())
data1
=
np
.
array
([[
1
,
2
,
3
],
[
3
,
2
,
1
],
[
4
,
5
,
6
]],
dtype
=
'float32'
)
data2
=
np
.
array
([
0
,
0
,
1
],
dtype
=
"int32"
)
np_sum
=
np
.
array
([[
4
,
4
,
4
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_mean
=
np
.
array
([[
2
,
2
,
2
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_max
=
np
.
array
([[
3
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_min
=
np
.
array
([[
1
,
2
,
1
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
ret
=
exe
.
run
(
feed
=
{
'x'
:
data1
,
'y'
:
data2
},
fetch_list
=
[
res_sum
,
res_mean
,
res_max
,
res_min
])
for
np_res
,
ret_res
in
zip
([
np_sum
,
np_mean
,
np_max
,
np_min
],
ret
):
self
.
assertTrue
(
np
.
allclose
(
np_res
,
ret_res
,
atol
=
1e-6
),
"two value is
\
{}
\n
{}, check diff!"
.
format
(
np_res
,
ret_res
))
def
test_dygraph
(
self
):
device
=
paddle
.
CPUPlace
()
with
paddle
.
fluid
.
dygraph
.
guard
(
device
):
x
=
paddle
.
to_tensor
(
[[
1
,
2
,
3
],
[
3
,
2
,
1
],
[
4
,
5
,
6
]],
dtype
=
'float32'
)
y
=
paddle
.
to_tensor
([
0
,
0
,
1
],
dtype
=
"int32"
)
res_sum
=
paddle
.
incubate
.
segment_sum
(
x
,
y
)
res_mean
=
paddle
.
incubate
.
segment_mean
(
x
,
y
)
res_max
=
paddle
.
incubate
.
segment_max
(
x
,
y
)
res_min
=
paddle
.
incubate
.
segment_min
(
x
,
y
)
np_sum
=
np
.
array
([[
4
,
4
,
4
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_mean
=
np
.
array
([[
2
,
2
,
2
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_max
=
np
.
array
([[
3
,
2
,
3
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
np_min
=
np
.
array
([[
1
,
2
,
1
],
[
4
,
5
,
6
]],
dtype
=
"float32"
)
ret
=
[
res_sum
,
res_mean
,
res_max
,
res_min
]
for
np_res
,
ret_res
in
zip
([
np_sum
,
np_mean
,
np_max
,
np_min
],
ret
):
self
.
assertTrue
(
np
.
allclose
(
np_res
,
ret_res
.
numpy
(),
atol
=
1e-6
),
"two value is
\
{}
\n
{}, check diff!"
.
format
(
np_res
,
ret_res
))
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/incubate/__init__.py
浏览文件 @
4b683887
...
@@ -18,7 +18,18 @@ from .checkpoint import auto_checkpoint # noqa: F401
...
@@ -18,7 +18,18 @@ from .checkpoint import auto_checkpoint # noqa: F401
from
..fluid.layer_helper
import
LayerHelper
# noqa: F401
from
..fluid.layer_helper
import
LayerHelper
# noqa: F401
from
.operators
import
softmax_mask_fuse_upper_triangle
# noqa: F401
from
.operators
import
softmax_mask_fuse_upper_triangle
# noqa: F401
from
.operators
import
softmax_mask_fuse
# noqa: F401
from
.operators
import
softmax_mask_fuse
# noqa: F401
from
.tensor
import
segment_sum
from
.tensor
import
segment_mean
from
.tensor
import
segment_max
from
.tensor
import
segment_min
__all__
=
[
# noqa
__all__
=
[
'LookAhead'
,
'ModelAverage'
,
'softmax_mask_fuse_upper_triangle'
,
'softmax_mask_fuse'
'LookAhead'
,
'ModelAverage'
,
'softmax_mask_fuse_upper_triangle'
,
'softmax_mask_fuse'
,
'segment_sum'
,
'segment_mean'
,
'segment_max'
,
'segment_min'
,
]
]
python/paddle/incubate/tensor/__init__.py
0 → 100644
浏览文件 @
4b683887
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.math
import
segment_sum
from
.math
import
segment_mean
from
.math
import
segment_max
from
.math
import
segment_min
__all__
=
[
'segment_sum'
,
'segment_mean'
,
'segment_max'
,
'segment_min'
,
]
python/paddle/incubate/tensor/math.py
0 → 100644
浏览文件 @
4b683887
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__
=
[
'segment_sum'
,
'segment_mean'
,
'segment_max'
,
'segment_min'
,
]
import
paddle
from
paddle.fluid.layer_helper
import
LayerHelper
,
in_dygraph_mode
from
paddle.fluid.data_feeder
import
check_variable_and_dtype
from
paddle
import
_C_ops
def
segment_sum
(
data
,
segment_ids
,
name
=
None
):
"""
Segment Sum Operator.
This operator sums the elements of input `data` which with
the same index in `segment_ids`.
It computes a tensor such that $out_i =
\\
sum_{j} data_{j}$
where sum is over j such that `segment_ids[j] == i`.
Args:
data (Tensor): A tensor, available data type float32, float64.
segment_ids (Tensor): A 1-D tensor, which have the same size
with the first dimension of input data.
Available data type is int32, int64.
Returns:
output (Tensor): the reduced result.
Examples:
.. code-block:: python
import paddle
data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
out = paddle.incubate.segment_sum(data, segment_ids)
#Outputs: [[4., 4., 4.], [4., 5., 6.]]
"""
if
in_dygraph_mode
():
out
,
tmp
=
_C_ops
.
segment_pool
(
data
,
segment_ids
,
'pooltype'
,
"SUM"
)
return
out
check_variable_and_dtype
(
data
,
"X"
,
(
"float32"
,
"float64"
),
"segment_pool"
)
check_variable_and_dtype
(
segment_ids
,
"SegmentIds"
,
(
"int32"
,
"int64"
),
"segment_pool"
)
helper
=
LayerHelper
(
"segment_sum"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
summed_ids
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
helper
.
append_op
(
type
=
"segment_pool"
,
inputs
=
{
"X"
:
data
,
"SegmentIds"
:
segment_ids
},
outputs
=
{
"Out"
:
out
,
"SummedIds"
:
summed_ids
},
attrs
=
{
"pooltype"
:
"SUM"
})
return
out
def
segment_mean
(
data
,
segment_ids
,
name
=
None
):
"""
Segment mean Operator.
Ihis operator calculate the mean value of input `data` which
with the same index in `segment_ids`.
It computes a tensor such that $out_i =
\\
frac{1}{n_i}
\\
sum_{j} data[j]$
where sum is over j such that 'segment_ids[j] == i' and $n_i$ is the number
of all index 'segment_ids[j] == i'.
Args:
data (tensor): a tensor, available data type float32, float64.
segment_ids (tensor): a 1-d tensor, which have the same size
with the first dimension of input data.
available data type is int32, int64.
Returns:
output (Tensor): the reduced result.
Examples:
.. code-block:: python
import paddle
data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
out = paddle.incubate.segment_mean(data, segment_ids)
#Outputs: [[2., 2., 2.], [4., 5., 6.]]
"""
if
in_dygraph_mode
():
out
,
tmp
=
_C_ops
.
segment_pool
(
data
,
segment_ids
,
'pooltype'
,
"MEAN"
)
return
out
check_variable_and_dtype
(
data
,
"X"
,
(
"float32"
,
"float64"
),
"segment_pool"
)
check_variable_and_dtype
(
segment_ids
,
"SegmentIds"
,
(
"int32"
,
"int64"
),
"segment_pool"
)
helper
=
LayerHelper
(
"segment_mean"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
summed_ids
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
helper
.
append_op
(
type
=
"segment_pool"
,
inputs
=
{
"X"
:
data
,
"SegmentIds"
:
segment_ids
},
outputs
=
{
"Out"
:
out
,
"SummedIds"
:
summed_ids
},
attrs
=
{
"pooltype"
:
"MEAN"
})
return
out
def
segment_min
(
data
,
segment_ids
,
name
=
None
):
"""
Segment min operator.
This operator calculate the minimum elements of input `data` which with
the same index in `segment_ids`.
It computes a tensor such that $out_i =
\\
min_{j} data_{j}$
where min is over j such that `segment_ids[j] == i`.
Args:
data (tensor): a tensor, available data type float32, float64.
segment_ids (tensor): a 1-d tensor, which have the same size
with the first dimension of input data.
available data type is int32, int64.
Returns:
output (Tensor): the reduced result.
Examples:
.. code-block:: python
import paddle
data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
out = paddle.incubate.segment_min(data, segment_ids)
#Outputs: [[1., 2., 1.], [4., 5., 6.]]
"""
if
in_dygraph_mode
():
out
,
tmp
=
_C_ops
.
segment_pool
(
data
,
segment_ids
,
'pooltype'
,
"MIN"
)
return
out
check_variable_and_dtype
(
data
,
"X"
,
(
"float32"
,
"float64"
),
"segment_pool"
)
check_variable_and_dtype
(
segment_ids
,
"SegmentIds"
,
(
"int32"
,
"int64"
),
"segment_pool"
)
helper
=
LayerHelper
(
"segment_min"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
summed_ids
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
helper
.
append_op
(
type
=
"segment_pool"
,
inputs
=
{
"X"
:
data
,
"SegmentIds"
:
segment_ids
},
outputs
=
{
"Out"
:
out
,
"SummedIds"
:
summed_ids
},
attrs
=
{
"pooltype"
:
"MIN"
})
return
out
def
segment_max
(
data
,
segment_ids
,
name
=
None
):
"""
Segment max operator.
This operator calculate the maximum elements of input `data` which with
the same index in `segment_ids`.
It computes a tensor such that $out_i =
\\
min_{j} data_{j}$
where max is over j such that `segment_ids[j] == i`.
Args:
data (tensor): a tensor, available data type float32, float64.
segment_ids (tensor): a 1-d tensor, which have the same size
with the first dimension of input data.
available data type is int32, int64.
Returns:
output (Tensor): the reduced result.
Examples:
.. code-block:: python
import paddle
data = paddle.to_tensor([[1, 2, 3], [3, 2, 1], [4, 5, 6]], dtype='float32')
segment_ids = paddle.to_tensor([0, 0, 1], dtype='int32')
out = paddle.incubate.segment_max(data, segment_ids)
#Outputs: [[3., 2., 3.], [4., 5., 6.]]
"""
if
in_dygraph_mode
():
out
,
tmp
=
_C_ops
.
segment_pool
(
data
,
segment_ids
,
'pooltype'
,
"MAX"
)
return
out
check_variable_and_dtype
(
data
,
"X"
,
(
"float32"
,
"float64"
),
"segment_pool"
)
check_variable_and_dtype
(
segment_ids
,
"SegmentIds"
,
(
"int32"
,
"int64"
),
"segment_pool"
)
helper
=
LayerHelper
(
"segment_max"
,
**
locals
())
out
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
summed_ids
=
helper
.
create_variable_for_type_inference
(
dtype
=
data
.
dtype
)
helper
.
append_op
(
type
=
"segment_pool"
,
inputs
=
{
"X"
:
data
,
"SegmentIds"
:
segment_ids
},
outputs
=
{
"Out"
:
out
,
"SummedIds"
:
summed_ids
},
attrs
=
{
"pooltype"
:
"MAX"
})
return
out
python/setup.py.in
浏览文件 @
4b683887
...
@@ -162,6 +162,7 @@ packages=['paddle',
...
@@ -162,6 +162,7 @@ packages=['paddle',
'paddle.incubate.optimizer',
'paddle.incubate.optimizer',
'paddle.incubate.checkpoint',
'paddle.incubate.checkpoint',
'paddle.incubate.operators',
'paddle.incubate.operators',
'paddle.incubate.tensor',
'paddle.distributed.fleet',
'paddle.distributed.fleet',
'paddle.distributed.fleet.base',
'paddle.distributed.fleet.base',
'paddle.distributed.fleet.elastic',
'paddle.distributed.fleet.elastic',
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录