Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
4545a058
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4545a058
编写于
10月 10, 2017
作者:
R
ranqiu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add dot-product attention
上级
8e2cc754
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
88 addition
and
2 deletion
+88
-2
doc/api/v2/config/networks.rst
doc/api/v2/config/networks.rst
+5
-0
python/paddle/trainer_config_helpers/networks.py
python/paddle/trainer_config_helpers/networks.py
+83
-2
未找到文件。
doc/api/v2/config/networks.rst
浏览文件 @
4545a058
...
...
@@ -125,3 +125,8 @@ simple_attention
:members: simple_attention
:noindex:
dot_product_attention
---------------------
.. automodule:: paddle.v2.networks
:members: dot_product_attention
:noindex:
python/paddle/trainer_config_helpers/networks.py
浏览文件 @
4545a058
...
...
@@ -26,8 +26,9 @@ __all__ = [
'sequence_conv_pool'
,
'simple_lstm'
,
"simple_img_conv_pool"
,
"img_conv_bn_pool"
,
'lstmemory_group'
,
'lstmemory_unit'
,
'small_vgg'
,
'img_conv_group'
,
'vgg_16_network'
,
'gru_unit'
,
'gru_group'
,
'simple_gru'
,
'simple_attention'
,
'simple_gru2'
,
'bidirectional_gru'
,
'text_conv_pool'
,
'bidirectional_lstm'
,
'inputs'
,
'outputs'
'simple_attention'
,
'dot_product_attention'
,
'simple_gru2'
,
'bidirectional_gru'
,
'text_conv_pool'
,
'bidirectional_lstm'
,
'inputs'
,
'outputs'
]
######################################################
...
...
@@ -1361,6 +1362,7 @@ def simple_attention(encoded_sequence,
compute attention weight.
:type transform_param_attr: ParameterAttribute
:return: a context vector
:rtype: LayerOutput
"""
assert
encoded_proj
.
size
==
decoder_state
.
size
proj_size
=
encoded_proj
.
size
...
...
@@ -1396,6 +1398,85 @@ def simple_attention(encoded_sequence,
input
=
scaled
,
pooling_type
=
SumPooling
(),
name
=
"%s_pooling"
%
name
)
@
wrap_name_default
()
def
dot_product_attention
(
encoded_sequence
,
attending_sequence
,
transformed_state
,
softmax_param_attr
=
None
,
name
=
None
):
"""
Calculate and return a context vector with dot-product attention mechanism.
Size of the context vector equals to size of the attending_sequence.
.. math::
a(s_{i-1},h_{j}) & = s_{i-1}^\mathrm{T} h_{j}
e_{i,j} & = a(s_{i-1}, h_{j})
a_{i,j} & =
\\
frac{exp(e_{i,j})}{
\\
sum_{k=1}^{T_x}{exp(e_{i,k})}}
c_{i} & =
\\
sum_{j=1}^{T_{x}}a_{i,j}z_{j}
where :math:`h_{j}` is the jth element of encoded_sequence,
:math:`z_{j}` is the jth element of attending_sequence,
:math:`s_{i-1}` is transformed_state
The example usage is:
.. code-block:: python
context = dot_product_attention(encoded_sequence=enc_seq,
attending_sequence=att_seq,
transformed_state=state,)
:param name: name of the dot-product attention model.
:type name: basestring
:param softmax_param_attr: parameter attribute of sequence softmax
that is used to produce attention weight.
:type softmax_param_attr: ParameterAttribute
:param encoded_sequence: output of the encoder
:type encoded_sequence: LayerOutput
:param attending_sequence: attention weight is computed by a feed forward neural
network which has two inputs : decoder's transformed
hidden state of previous time step and encoder's output.
attending_sequence is the sequence to be attended.
:type attending_sequence: LayerOutput
:param transformed_state: transformed hidden state of decoder in previous time step,
its size should equal to encoded_sequence's. Here we do the
transformation outside dot_product_attention for flexibility
consideration.
:type transformed_state: LayerOutput
:return: a context vector
:rtype: LayerOutput
"""
assert
transformed_state
.
size
==
encoded_sequence
.
size
expanded
=
expand_layer
(
input
=
transformed_state
,
expanded_as
=
encoded_sequence
,
name
=
'%s_expand'
%
name
)
m
=
linear_comb_layer
(
weights
=
expanded
,
vectors
=
encoded_sequence
,
name
=
'%s_dot-product'
)
attention_weight
=
fc_layer
(
input
=
m
,
size
=
1
,
act
=
SequenceSoftmaxActivation
(),
param_attr
=
softmax_param_attr
,
name
=
"%s_softmax"
%
name
,
bias_attr
=
False
)
scaled
=
scaling_layer
(
weight
=
attention_weight
,
input
=
attending_sequence
,
name
=
'%s_scaling'
%
name
)
return
pooling_layer
(
input
=
scaled
,
pooling_type
=
SumPooling
(),
name
=
"%s_pooling"
%
name
)
def
inputs
(
layers
,
*
args
):
"""
Declare the inputs of network. The order of input should be as same as
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录