Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
4490e8af
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4490e8af
编写于
4月 02, 2021
作者:
N
niuliling123
提交者:
GitHub
4月 02, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add leaky_relu forward and backward in activation_op.cu (#31841)
* add leaky_relu forward and backward in activation_op.cu
上级
0b42f489
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
181 addition
and
69 deletion
+181
-69
paddle/fluid/operators/activation_op.cu
paddle/fluid/operators/activation_op.cu
+181
-69
未找到文件。
paddle/fluid/operators/activation_op.cu
浏览文件 @
4490e8af
...
@@ -42,6 +42,10 @@ template <typename T>
...
@@ -42,6 +42,10 @@ template <typename T>
class
BaseGPUFunctor
{
class
BaseGPUFunctor
{
public:
public:
using
ELEMENT_TYPE
=
T
;
using
ELEMENT_TYPE
=
T
;
using
AttrPair
=
std
::
vector
<
std
::
pair
<
const
char
*
,
float
*>>
;
AttrPair
GetAttrs
()
{
return
AttrPair
();
}
};
};
/* ========================================================================== */
/* ========================================================================== */
...
@@ -57,42 +61,35 @@ class ReluGPUFunctor : public BaseGPUFunctor<T> {
...
@@ -57,42 +61,35 @@ class ReluGPUFunctor : public BaseGPUFunctor<T> {
// for relu forward when T is double
// for relu forward when T is double
__device__
__forceinline__
typename
CudaVecType
<
T
>::
type
Compute
(
__device__
__forceinline__
typename
CudaVecType
<
T
>::
type
Compute
(
const
typename
CudaVecType
<
T
>::
type
*
x
);
const
typename
CudaVecType
<
T
>::
type
in
)
{
// relu forward : out = max(x, 0)
return
in
>
zero_
?
in
:
zero_
;
}
// when num % vecsize != 0 this func will be used
// when num % vecsize != 0 this func will be used
__device__
__forceinline__
T
ComputeRemainder
(
const
T
x
)
{
__device__
__forceinline__
T
ComputeRemainder
(
const
T
in
)
{
return
x
>
zero_
?
x
:
zero_
;
// relu forward : out = max(x, 0)
return
in
>
zero_
?
in
:
zero_
;
}
}
};
};
template
<
>
__device__
__forceinline__
CudaVecType
<
double
>::
type
ReluGPUFunctor
<
double
>::
Compute
(
const
CudaVecType
<
double
>::
type
*
x
)
{
// relu forward : out = max(x, 0)
#ifdef __HIPCC__ || __CUDA_ARCH__ >= 350
return
__ldg
(
x
)
>
zero_
?
__ldg
(
x
)
:
zero_
;
#else
return
(
*
x
)
>
zero_
?
(
*
x
)
:
zero_
;
#endif
}
template
<
>
template
<
>
__device__
__forceinline__
CudaVecType
<
float
>::
type
__device__
__forceinline__
CudaVecType
<
float
>::
type
ReluGPUFunctor
<
float
>::
Compute
(
const
CudaVecType
<
float
>::
type
*
xx
)
{
ReluGPUFunctor
<
float
>::
Compute
(
const
CudaVecType
<
float
>::
type
in
)
{
// relu forward : out = max(
xx
, 0)
// relu forward : out = max(
in
, 0)
return
make_float4
((
xx
->
x
>
zero_
)
*
(
xx
->
x
),
(
xx
->
y
>
zero_
)
*
(
xx
->
y
),
return
make_float4
((
in
.
x
>
zero_
)
*
(
in
.
x
),
(
in
.
y
>
zero_
)
*
(
in
.
y
),
(
xx
->
z
>
zero_
)
*
(
xx
->
z
),
(
xx
->
w
>
zero_
)
*
(
xx
->
w
));
(
in
.
z
>
zero_
)
*
(
in
.
z
),
(
in
.
w
>
zero_
)
*
(
in
.
w
));
}
}
template
<
>
template
<
>
__device__
__forceinline__
CudaVecType
<
float16
>::
type
__device__
__forceinline__
CudaVecType
<
float16
>::
type
ReluGPUFunctor
<
float16
>::
Compute
(
const
CudaVecType
<
float16
>::
type
*
in
)
{
ReluGPUFunctor
<
float16
>::
Compute
(
const
CudaVecType
<
float16
>::
type
in
)
{
// relu forward : out = max(in, 0)
// relu forward : out = max(in, 0)
#ifdef __HIPCC__ || CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
#ifdef __HIPCC__ || CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
const
half2
kzero
=
__float2half2_rn
(
0.0
f
);
const
half2
kzero
=
__float2half2_rn
(
0.0
f
);
return
__hmul2
(
__hgt2
(
__ldg
(
in
),
kzero
),
__ldg
(
in
)
);
return
__hmul2
(
__hgt2
(
in
,
kzero
),
in
);
#else
#else
const
float2
xx
=
__half22float2
(
*
in
);
const
float2
xx
=
__half22float2
(
in
);
return
__floats2half2_rn
((
xx
.
x
>
0.0
f
)
*
static_cast
<
float
>
(
xx
.
x
),
return
__floats2half2_rn
((
xx
.
x
>
0.0
f
)
*
static_cast
<
float
>
(
xx
.
x
),
(
xx
.
y
>
0.0
f
)
*
static_cast
<
float
>
(
xx
.
y
));
(
xx
.
y
>
0.0
f
)
*
static_cast
<
float
>
(
xx
.
y
));
#endif
#endif
...
@@ -112,8 +109,10 @@ class ReluGradGPUFunctor : public BaseGPUFunctor<T> {
...
@@ -112,8 +109,10 @@ class ReluGradGPUFunctor : public BaseGPUFunctor<T> {
// for relu backward when T is double
// for relu backward when T is double
__device__
__forceinline__
typename
CudaVecType
<
T
>::
type
Compute
(
__device__
__forceinline__
typename
CudaVecType
<
T
>::
type
Compute
(
const
typename
CudaVecType
<
T
>::
type
*
out
,
const
typename
CudaVecType
<
T
>::
type
out
,
const
typename
CudaVecType
<
T
>::
type
*
dout
);
const
typename
CudaVecType
<
T
>::
type
dout
)
{
return
out
>
zero_
?
dout
:
zero_
;
}
// when num % vecsize != 0 this func will be used
// when num % vecsize != 0 this func will be used
__device__
__forceinline__
T
ComputeRemainder
(
const
T
out
,
const
T
dout
)
{
__device__
__forceinline__
T
ComputeRemainder
(
const
T
out
,
const
T
dout
)
{
...
@@ -124,44 +123,132 @@ class ReluGradGPUFunctor : public BaseGPUFunctor<T> {
...
@@ -124,44 +123,132 @@ class ReluGradGPUFunctor : public BaseGPUFunctor<T> {
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepOut
;
}
};
};
template
<
>
__device__
__forceinline__
CudaVecType
<
double
>::
type
ReluGradGPUFunctor
<
double
>::
Compute
(
const
CudaVecType
<
double
>::
type
*
out
,
const
CudaVecType
<
double
>::
type
*
dout
)
{
// relu backward : dx = out > 0 ? dout : 0;
#ifdef __HIPCC__ || __CUDA_ARCH__ >= 350
return
__ldg
(
out
)
>
zero_
?
__ldg
(
dout
)
:
zero_
;
#else
return
(
*
out
)
>
zero_
?
(
*
dout
)
:
zero_
;
#endif
}
template
<
>
template
<
>
__device__
__forceinline__
CudaVecType
<
float
>::
type
__device__
__forceinline__
CudaVecType
<
float
>::
type
ReluGradGPUFunctor
<
float
>::
Compute
(
const
CudaVecType
<
float
>::
type
*
out
,
ReluGradGPUFunctor
<
float
>::
Compute
(
const
CudaVecType
<
float
>::
type
out
,
const
CudaVecType
<
float
>::
type
*
dout
)
{
const
CudaVecType
<
float
>::
type
dout
)
{
// relu backward : dx = out > 0 ? dout : 0;
// relu backward : dx = out > 0 ? dout : 0;
return
make_float4
((
out
->
x
>
zero_
)
*
(
dout
->
x
),
(
out
->
y
>
zero_
)
*
(
dout
->
y
),
return
make_float4
((
out
.
x
>
zero_
)
*
(
dout
.
x
),
(
out
.
y
>
zero_
)
*
(
dout
.
y
),
(
out
->
z
>
zero_
)
*
(
dout
->
z
),
(
out
.
z
>
zero_
)
*
(
dout
.
z
),
(
out
.
w
>
zero_
)
*
(
dout
.
w
));
(
out
->
w
>
zero_
)
*
(
dout
->
w
));
}
}
template
<
>
template
<
>
__device__
__forceinline__
CudaVecType
<
float16
>::
type
__device__
__forceinline__
CudaVecType
<
float16
>::
type
ReluGradGPUFunctor
<
float16
>::
Compute
(
const
CudaVecType
<
float16
>::
type
*
out
,
ReluGradGPUFunctor
<
float16
>::
Compute
(
const
CudaVecType
<
float16
>::
type
out
,
const
CudaVecType
<
float16
>::
type
*
dout
)
{
const
CudaVecType
<
float16
>::
type
dout
)
{
// relu backward : dx = out > 0 ? dout : 0;
// relu backward : dx = out > 0 ? dout : 0;
#ifdef __HIPCC__ || CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
#ifdef __HIPCC__ || CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
const
half2
kzero
=
__float2half2_rn
(
0.0
f
);
const
half2
kzero
=
__float2half2_rn
(
0.0
f
);
return
__hmul2
(
__hgt2
(
__ldg
(
out
),
kzero
),
__ldg
(
dout
)
);
return
__hmul2
(
__hgt2
(
out
,
kzero
),
dout
);
#else
#else
const
float2
xx
=
__half22float2
(
*
out
);
const
float2
xx
=
__half22float2
(
out
);
const
float2
yy
=
__half22float2
(
*
dout
);
const
float2
yy
=
__half22float2
(
dout
);
return
__floats2half2_rn
((
xx
.
x
>
0.0
f
)
*
static_cast
<
float
>
(
yy
.
x
),
return
__floats2half2_rn
((
xx
.
x
>
0.0
f
)
*
static_cast
<
float
>
(
yy
.
x
),
(
xx
.
y
>
0.0
f
)
*
static_cast
<
float
>
(
yy
.
y
));
(
xx
.
y
>
0.0
f
)
*
static_cast
<
float
>
(
yy
.
y
));
#endif
#endif
}
}
/* ========================================================================== */
/* ======================== leaky relu forward ========================
*/
template
<
typename
T
>
class
LeakyReluGPUFunctor
:
public
BaseGPUFunctor
<
T
>
{
private:
T
zero_
;
float
alpha_
;
public:
LeakyReluGPUFunctor
()
{
zero_
=
static_cast
<
T
>
(
0.0
f
);
}
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"alpha"
,
&
alpha_
}};
}
// leakyrelu forward : out = x > 0 ? x : x * alpha
__device__
__forceinline__
typename
CudaVecType
<
T
>::
type
Compute
(
const
typename
CudaVecType
<
T
>::
type
in
)
{
return
in
>
zero_
?
in
:
static_cast
<
T
>
(
alpha_
)
*
in
;
}
__device__
__forceinline__
T
ComputeRemainder
(
const
T
in
)
{
// leakyrelu forward : out = x > 0 ? x : x * alpha
return
in
>
zero_
?
in
:
static_cast
<
T
>
(
alpha_
)
*
in
;
}
};
template
<
>
__device__
__forceinline__
CudaVecType
<
float
>::
type
LeakyReluGPUFunctor
<
float
>::
Compute
(
const
CudaVecType
<
float
>::
type
in
)
{
// leakyrelu forward : out = x > 0 ? x : x * alpha
return
make_float4
((
in
.
x
>
zero_
)
?
(
in
.
x
)
:
(
in
.
x
)
*
alpha_
,
(
in
.
y
>
zero_
)
?
(
in
.
y
)
:
(
in
.
y
)
*
alpha_
,
(
in
.
z
>
zero_
)
?
(
in
.
z
)
:
(
in
.
z
)
*
alpha_
,
(
in
.
w
>
zero_
)
?
(
in
.
w
)
:
(
in
.
w
)
*
alpha_
);
}
template
<
>
__device__
__forceinline__
CudaVecType
<
float16
>::
type
LeakyReluGPUFunctor
<
float16
>::
Compute
(
const
CudaVecType
<
float16
>::
type
in
)
{
// leakyrelu forward : out = x > 0 ? x : x * alpha
const
float2
xx
=
__half22float2
(
in
);
return
__floats2half2_rn
((
xx
.
x
>
0.0
f
)
?
xx
.
x
:
xx
.
x
*
alpha_
,
(
xx
.
y
>
0.0
f
)
?
xx
.
y
:
xx
.
y
*
alpha_
);
}
/* ========================================================================== */
/* =========================== leaky relu backward =======================
*/
template
<
typename
T
>
class
LeakyReluGradGPUFunctor
:
public
BaseGPUFunctor
<
T
>
{
private:
T
zero_
;
float
alpha_
;
public:
LeakyReluGradGPUFunctor
()
{
zero_
=
static_cast
<
T
>
(
0.0
f
);
}
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"alpha"
,
&
alpha_
}};
}
// for leaky relu backward when T is double
__device__
__forceinline__
typename
CudaVecType
<
T
>::
type
Compute
(
const
typename
CudaVecType
<
T
>::
type
in
,
const
typename
CudaVecType
<
T
>::
type
dout
)
{
// leakyrelu backward : dx = x > 0 ? dout : alpha * dout
return
in
>
zero_
?
dout
:
static_cast
<
T
>
(
alpha_
)
*
dout
;
}
// when num % vecsize != 0 this func will be used
__device__
__forceinline__
T
ComputeRemainder
(
const
T
in
,
const
T
dout
)
{
// leakyrelu backward : dx = x > 0 ? dout : alpha * dout
return
in
>
zero_
?
dout
:
static_cast
<
T
>
(
alpha_
)
*
dout
;
}
static
constexpr
ActBwdOpFwdDeps
FwdDeps
()
{
return
kDepX
;
}
};
template
<
>
__device__
__forceinline__
CudaVecType
<
float
>::
type
LeakyReluGradGPUFunctor
<
float
>::
Compute
(
const
CudaVecType
<
float
>::
type
in
,
const
CudaVecType
<
float
>::
type
dout
)
{
// leakyrelu backward : dx = x > 0 ? dout : alpha * dout
return
make_float4
((
in
.
x
>
zero_
)
?
(
dout
.
x
)
:
alpha_
*
(
dout
.
x
),
(
in
.
y
>
zero_
)
?
(
dout
.
y
)
:
alpha_
*
(
dout
.
y
),
(
in
.
z
>
zero_
)
?
(
dout
.
z
)
:
alpha_
*
(
dout
.
z
),
(
in
.
w
>
zero_
)
?
(
dout
.
w
)
:
alpha_
*
(
dout
.
w
));
}
template
<
>
__device__
__forceinline__
CudaVecType
<
float16
>::
type
LeakyReluGradGPUFunctor
<
float16
>::
Compute
(
const
CudaVecType
<
float16
>::
type
in
,
const
CudaVecType
<
float16
>::
type
dout
)
{
// leakyrelu backward : dx = x > 0 ? dout : alpha * dout
const
float2
xx
=
__half22float2
(
in
);
const
float2
yy
=
__half22float2
(
dout
);
return
__floats2half2_rn
((
xx
.
x
>
0.0
f
)
?
yy
.
x
:
alpha_
*
yy
.
x
,
(
xx
.
y
>
0.0
f
)
?
yy
.
y
:
alpha_
*
yy
.
y
);
}
/* ========================================================================== */
/* ========================================================================== */
template
<
typename
T
,
typename
Functor
>
template
<
typename
T
,
typename
Functor
>
...
@@ -176,14 +263,23 @@ __global__ void ActivationGradKernelVec(const T* forward_data, const T* dout,
...
@@ -176,14 +263,23 @@ __global__ void ActivationGradKernelVec(const T* forward_data, const T* dout,
const
VecType
*
in_forward
=
reinterpret_cast
<
const
VecType
*>
(
forward_data
);
const
VecType
*
in_forward
=
reinterpret_cast
<
const
VecType
*>
(
forward_data
);
const
VecType
*
in_dout
=
reinterpret_cast
<
const
VecType
*>
(
dout
);
const
VecType
*
in_dout
=
reinterpret_cast
<
const
VecType
*>
(
dout
);
VecType
*
out
=
reinterpret_cast
<
VecType
*>
(
dx
);
VecType
*
out
=
reinterpret_cast
<
VecType
*>
(
dx
);
VecType
forward_vec
,
dout_vec
;
T
in_data
,
dout_data
;
for
(
int
i
=
idx
;
i
<
loop
;
i
+=
stride
)
{
for
(
int
i
=
idx
;
i
<
loop
;
i
+=
stride
)
{
out
[
i
]
=
functor
.
Compute
((
in_forward
+
i
),
(
in_dout
+
i
));
#ifdef __HIPCC__ || __CUDA_ARCH__ >= 350
forward_vec
=
__ldg
(
in_forward
+
i
);
dout_vec
=
__ldg
(
in_dout
+
i
);
#else
forward_vec
=
in_forward
[
i
];
dout_vec
=
in_dout
[
i
];
#endif
out
[
i
]
=
functor
.
Compute
(
forward_vec
,
dout_vec
);
}
}
while
(
idx
==
loop
&&
tail
)
{
while
(
idx
==
loop
&&
tail
)
{
dx
[
num
-
tail
]
=
in_data
=
forward_data
[
num
-
tail
];
functor
.
ComputeRemainder
(
forward_data
[
num
-
tail
],
dout
[
num
-
tail
]);
dout_data
=
dout
[
num
-
tail
];
dx
[
num
-
tail
]
=
functor
.
ComputeRemainder
(
in_data
,
dout_data
);
--
tail
;
--
tail
;
}
}
}
}
...
@@ -199,9 +295,14 @@ __global__ void ActivationkernelVec(const T* src, T* dst, int num,
...
@@ -199,9 +295,14 @@ __global__ void ActivationkernelVec(const T* src, T* dst, int num,
int
tail
=
num
%
vecsize
;
int
tail
=
num
%
vecsize
;
const
VecType
*
in
=
reinterpret_cast
<
const
VecType
*>
(
src
);
const
VecType
*
in
=
reinterpret_cast
<
const
VecType
*>
(
src
);
VecType
*
out
=
reinterpret_cast
<
VecType
*>
(
dst
);
VecType
*
out
=
reinterpret_cast
<
VecType
*>
(
dst
);
VecType
x_vec
;
for
(
int
i
=
idx
;
i
<
loop
;
i
+=
stride
)
{
for
(
int
i
=
idx
;
i
<
loop
;
i
+=
stride
)
{
out
[
i
]
=
functor
.
Compute
((
in
+
i
));
#ifdef __HIPCC__ || __CUDA_ARCH__ >= 350
x_vec
=
__ldg
(
in
+
i
);
#else
x_vec
=
in
[
i
];
#endif
out
[
i
]
=
functor
.
Compute
(
x_vec
);
}
}
while
(
idx
==
loop
&&
tail
)
{
while
(
idx
==
loop
&&
tail
)
{
...
@@ -231,6 +332,10 @@ class ActivationGPUKernel
...
@@ -231,6 +332,10 @@ class ActivationGPUKernel
block
=
256
;
block
=
256
;
#endif
#endif
Functor
functor
;
Functor
functor
;
auto
attrs
=
functor
.
GetAttrs
();
for
(
auto
&
attr
:
attrs
)
{
*
attr
.
second
=
context
.
Attr
<
float
>
(
attr
.
first
);
}
constexpr
int
vecsize
=
CudaVecType
<
T
>::
vecsize
;
constexpr
int
vecsize
=
CudaVecType
<
T
>::
vecsize
;
int
grid
=
max
((
num
/
vecsize
+
block
-
1
)
/
block
,
1
);
int
grid
=
max
((
num
/
vecsize
+
block
-
1
)
/
block
,
1
);
auto
stream
=
context
.
cuda_device_context
().
stream
();
auto
stream
=
context
.
cuda_device_context
().
stream
();
...
@@ -270,7 +375,12 @@ class ActivationGradGPUKernel
...
@@ -270,7 +375,12 @@ class ActivationGradGPUKernel
#ifdef __HIPCC__
#ifdef __HIPCC__
block
=
256
;
block
=
256
;
#endif
#endif
Functor
functor
;
Functor
functor
;
auto
attrs
=
functor
.
GetAttrs
();
for
(
auto
&
attr
:
attrs
)
{
*
attr
.
second
=
context
.
Attr
<
float
>
(
attr
.
first
);
}
constexpr
int
vecsize
=
CudaVecType
<
T
>::
vecsize
;
constexpr
int
vecsize
=
CudaVecType
<
T
>::
vecsize
;
int
grid
=
max
((
numel
/
vecsize
+
block
-
1
)
/
block
,
1
);
int
grid
=
max
((
numel
/
vecsize
+
block
-
1
)
/
block
,
1
);
auto
stream
=
context
.
cuda_device_context
().
stream
();
auto
stream
=
context
.
cuda_device_context
().
stream
();
...
@@ -300,12 +410,28 @@ namespace plat = paddle::platform;
...
@@ -300,12 +410,28 @@ namespace plat = paddle::platform;
ops::grad_functor<double>>, \
ops::grad_functor<double>>, \
ops::ActivationGradKernel<plat::CUDADeviceContext, \
ops::ActivationGradKernel<plat::CUDADeviceContext, \
ops::grad_functor<plat::float16>>);
ops::grad_functor<plat::float16>>);
FOR_EACH_ACTIVATION_OP
(
REGISTER_ACTIVATION_CUDA_KERNEL
);
FOR_EACH_ACTIVATION_OP
(
REGISTER_ACTIVATION_CUDA_KERNEL
);
#define REGISTER_ACTIVATION_GPU_KERNEL(act_type, op_name, functor, \
grad_functor) \
REGISTER_OP_CUDA_KERNEL( \
act_type, ops::ActivationGPUKernel<paddle::platform::CUDADeviceContext, \
ops::functor<float>>, \
ops::ActivationGPUKernel<paddle::platform::CUDADeviceContext, \
ops::functor<double>>, \
ops::ActivationGPUKernel<plat::CUDADeviceContext, \
ops::functor<plat::float16>>); \
REGISTER_OP_CUDA_KERNEL( \
act_type##_grad, ops::ActivationGradGPUKernel<plat::CUDADeviceContext, \
ops::grad_functor<float>>, \
ops::ActivationGradGPUKernel<plat::CUDADeviceContext, \
ops::grad_functor<double>>, \
ops::ActivationGradGPUKernel<plat::CUDADeviceContext, \
ops::grad_functor<plat::float16>>);
/* ======================== leaky relu register ============================ */
/* ======================== leaky relu register ============================ */
REGISTER_ACTIVATION_
CUDA_KERNEL
(
leaky_relu
,
LeakyRelu
,
LeakyRelu
Functor
,
REGISTER_ACTIVATION_
GPU_KERNEL
(
leaky_relu
,
LeakyRelu
,
LeakyReluGPU
Functor
,
LeakyReluGrad
Functor
);
LeakyReluGradGPU
Functor
);
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
leaky_relu_grad_grad
,
leaky_relu_grad_grad
,
...
@@ -330,21 +456,7 @@ REGISTER_OP_CUDA_KERNEL(
...
@@ -330,21 +456,7 @@ REGISTER_OP_CUDA_KERNEL(
/* ========================================================================== */
/* ========================================================================== */
/* =========================== relu register ============================ */
/* =========================== relu register ============================ */
REGISTER_OP_CUDA_KERNEL
(
REGISTER_ACTIVATION_GPU_KERNEL
(
relu
,
Relu
,
ReluGPUFunctor
,
ReluGradGPUFunctor
);
relu
,
ops
::
ActivationGPUKernel
<
paddle
::
platform
::
CUDADeviceContext
,
ops
::
ReluGPUFunctor
<
float
>>
,
ops
::
ActivationGPUKernel
<
paddle
::
platform
::
CUDADeviceContext
,
ops
::
ReluGPUFunctor
<
double
>>
,
ops
::
ActivationGPUKernel
<
plat
::
CUDADeviceContext
,
ops
::
ReluGPUFunctor
<
plat
::
float16
>>
);
REGISTER_OP_CUDA_KERNEL
(
relu_grad
,
ops
::
ActivationGradGPUKernel
<
paddle
::
platform
::
CUDADeviceContext
,
ops
::
ReluGradGPUFunctor
<
float
>>
,
ops
::
ActivationGradGPUKernel
<
paddle
::
platform
::
CUDADeviceContext
,
ops
::
ReluGradGPUFunctor
<
double
>>
,
ops
::
ActivationGradGPUKernel
<
plat
::
CUDADeviceContext
,
ops
::
ReluGradGPUFunctor
<
plat
::
float16
>>
);
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
relu_grad_grad
,
relu_grad_grad
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录