提交 448156e4 编写于 作者: D dangqingqing

Merge branch 'develop' of https://github.com/baidu/Paddle into cn_doc

# PaddlePaddle # PaddlePaddle
[![Build Status](https://travis-ci.org/baidu/Paddle.svg?branch=master)](https://travis-ci.org/baidu/Paddle) [![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/baidu/Paddle)
[![Coverage Status](https://coveralls.io/repos/github/baidu/Paddle/badge.svg?branch=develop)](https://coveralls.io/github/baidu/Paddle?branch=develop) [![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://www.paddlepaddle.org/)
[![Join the chat at https://gitter.im/PaddlePaddle/Deep_Learning](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/PaddlePaddle/Deep_Learning?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://www.paddlepaddle.org/cn/index.html)
[![License](https://img.shields.io/badge/license-Apache%202.0-green.svg)](LICENSE) [![Coverage Status](https://coveralls.io/repos/github/PaddlePaddle/Paddle/badge.svg?branch=develop)](https://coveralls.io/github/baidu/Paddle?branch=develop)
[![Release](https://img.shields.io/github/release/baidu/Paddle.svg?colorB=fedcba)](https://github.com/baidu/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
Welcome to the PaddlePaddle GitHub. Welcome to the PaddlePaddle GitHub.
......
...@@ -17,24 +17,15 @@ import os ...@@ -17,24 +17,15 @@ import os
from optparse import OptionParser from optparse import OptionParser
def extract_dict_features(pair_file, feature_file, src_dict_file, def extract_dict_features(pair_file, feature_file):
tgt_dict_file):
src_dict = set() with open(pair_file) as fin, open(feature_file, 'w') as feature_out:
tgt_dict = set()
with open(pair_file) as fin, open(feature_file, 'w') as feature_out, open(
src_dict_file, 'w') as src_dict_out, open(tgt_dict_file,
'w') as tgt_dict_out:
for line in fin: for line in fin:
sentence, labels = line.strip().split('\t') sentence, predicate, labels = line.strip().split('\t')
sentence_list = sentence.split() sentence_list = sentence.split()
labels_list = labels.split() labels_list = labels.split()
src_dict.update(sentence_list)
tgt_dict.update(labels_list)
verb_index = labels_list.index('B-V') verb_index = labels_list.index('B-V')
verb_feature = sentence_list[verb_index]
mark = [0] * len(labels_list) mark = [0] * len(labels_list)
if verb_index > 0: if verb_index > 0:
...@@ -42,47 +33,50 @@ def extract_dict_features(pair_file, feature_file, src_dict_file, ...@@ -42,47 +33,50 @@ def extract_dict_features(pair_file, feature_file, src_dict_file,
ctx_n1 = sentence_list[verb_index - 1] ctx_n1 = sentence_list[verb_index - 1]
else: else:
ctx_n1 = 'bos' ctx_n1 = 'bos'
ctx_n1_feature = ctx_n1
if verb_index > 1:
mark[verb_index - 2] = 1
ctx_n2 = sentence_list[verb_index - 2]
else:
ctx_n2 = 'bos'
mark[verb_index] = 1 mark[verb_index] = 1
ctx_0_feature = sentence_list[verb_index] ctx_0 = sentence_list[verb_index]
if verb_index < len(labels_list) - 2: if verb_index < len(labels_list) - 2:
mark[verb_index + 1] = 1 mark[verb_index + 1] = 1
ctx_p1 = sentence_list[verb_index + 1] ctx_p1 = sentence_list[verb_index + 1]
else: else:
ctx_p1 = 'eos' ctx_p1 = 'eos'
ctx_p1_feature = ctx_p1
if verb_index < len(labels_list) - 3:
mark[verb_index + 2] = 1
ctx_p2 = sentence_list[verb_index + 2]
else:
ctx_p2 = 'eos'
feature_str = sentence + '\t' \ feature_str = sentence + '\t' \
+ verb_feature + '\t' \ + predicate + '\t' \
+ ctx_n1_feature + '\t' \ + ctx_n2 + '\t' \
+ ctx_0_feature + '\t' \ + ctx_n1 + '\t' \
+ ctx_p1_feature + '\t' \ + ctx_0 + '\t' \
+ ctx_p1 + '\t' \
+ ctx_p2 + '\t' \
+ ' '.join([str(i) for i in mark]) + '\t' \ + ' '.join([str(i) for i in mark]) + '\t' \
+ labels + labels
feature_out.write(feature_str + '\n') feature_out.write(feature_str + '\n')
src_dict_out.write('<unk>\n')
src_dict_out.write('\n'.join(list(src_dict)))
tgt_dict_out.write('\n'.join(list(tgt_dict)))
if __name__ == '__main__': if __name__ == '__main__':
usage = '-p pair_file -f feature_file -s source dictionary -t target dictionary ' usage = '-p pair_file -f feature_file'
parser = OptionParser(usage) parser = OptionParser(usage)
parser.add_option('-p', dest='pair_file', help='the pair file') parser.add_option('-p', dest='pair_file', help='the pair file')
parser.add_option( parser.add_option('-f', dest='feature_file', help='the feature file')
'-f', dest='feature_file', help='the file to store feature')
parser.add_option(
'-s', dest='src_dict', help='the file to store source dictionary')
parser.add_option(
'-t', dest='tgt_dict', help='the file to store target dictionary')
(options, args) = parser.parse_args() (options, args) = parser.parse_args()
extract_dict_features(options.pair_file, options.feature_file, extract_dict_features(options.pair_file, options.feature_file)
options.src_dict, options.tgt_dict)
...@@ -51,7 +51,7 @@ def read_sentences(words_file): ...@@ -51,7 +51,7 @@ def read_sentences(words_file):
for line in fin: for line in fin:
line = line.strip() line = line.strip()
if line == '': if line == '':
sentences.append(s.lower()) sentences.append(s)
s = '' s = ''
else: else:
s += line + ' ' s += line + ' '
...@@ -64,6 +64,11 @@ def transform_labels(sentences, labels): ...@@ -64,6 +64,11 @@ def transform_labels(sentences, labels):
if len(labels[i]) == 1: if len(labels[i]) == 1:
continue continue
else: else:
verb_list = []
for x in labels[i][0]:
if x !='-':
verb_list.append(x)
for j in xrange(1, len(labels[i])): for j in xrange(1, len(labels[i])):
label_list = labels[i][j] label_list = labels[i][j]
current_tag = 'O' current_tag = 'O'
...@@ -88,8 +93,7 @@ def transform_labels(sentences, labels): ...@@ -88,8 +93,7 @@ def transform_labels(sentences, labels):
is_in_bracket = True is_in_bracket = True
else: else:
print 'error:', ll print 'error:', ll
sen_lab_pair.append((sentences[i], verb_list[j-1], label_seq))
sen_lab_pair.append((sentences[i], label_seq))
return sen_lab_pair return sen_lab_pair
...@@ -97,9 +101,9 @@ def write_file(sen_lab_pair, output_file): ...@@ -97,9 +101,9 @@ def write_file(sen_lab_pair, output_file):
with open(output_file, 'w') as fout: with open(output_file, 'w') as fout:
for x in sen_lab_pair: for x in sen_lab_pair:
sentence = x[0] sentence = x[0]
label_seq = ' '.join(x[1]) label_seq = ' '.join(x[2])
assert len(sentence.split()) == len(x[1]) assert len(sentence.split()) == len(x[2])
fout.write(sentence + '\t' + label_seq + '\n') fout.write(sentence + '\t' + x[1]+'\t' +label_seq + '\n')
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -14,6 +14,10 @@ ...@@ -14,6 +14,10 @@
# limitations under the License. # limitations under the License.
set -e set -e
wget http://www.cs.upc.edu/~srlconll/conll05st-tests.tar.gz wget http://www.cs.upc.edu/~srlconll/conll05st-tests.tar.gz
wget https://www.googledrive.com/host/0B7Q8d52jqeI9ejh6Q1RpMTFQT1k/semantic_role_labeling/verbDict.txt --no-check-certificate
wget https://www.googledrive.com/host/0B7Q8d52jqeI9ejh6Q1RpMTFQT1k/semantic_role_labeling/targetDict.txt --no-check-certificate
wget https://www.googledrive.com/host/0B7Q8d52jqeI9ejh6Q1RpMTFQT1k/semantic_role_labeling/wordDict.txt --no-check-certificate
wget https://www.googledrive.com/host/0B7Q8d52jqeI9ejh6Q1RpMTFQT1k/semantic_role_labeling/emb --no-check-certificate
tar -xzvf conll05st-tests.tar.gz tar -xzvf conll05st-tests.tar.gz
rm conll05st-tests.tar.gz rm conll05st-tests.tar.gz
cp ./conll05st-release/test.wsj/words/test.wsj.words.gz . cp ./conll05st-release/test.wsj/words/test.wsj.words.gz .
...@@ -22,4 +26,4 @@ gunzip test.wsj.words.gz ...@@ -22,4 +26,4 @@ gunzip test.wsj.words.gz
gunzip test.wsj.props.gz gunzip test.wsj.props.gz
python extract_pairs.py -w test.wsj.words -p test.wsj.props -o test.wsj.seq_pair python extract_pairs.py -w test.wsj.words -p test.wsj.props -o test.wsj.seq_pair
python extract_dict_feature.py -p test.wsj.seq_pair -f feature -s src.dict -t tgt.dict python extract_dict_feature.py -p test.wsj.seq_pair -f feature
...@@ -17,11 +17,15 @@ from paddle.trainer.PyDataProvider2 import * ...@@ -17,11 +17,15 @@ from paddle.trainer.PyDataProvider2 import *
UNK_IDX = 0 UNK_IDX = 0
def hook(settings, word_dict, label_dict, **kwargs): def hook(settings, word_dict, label_dict, predicate_dict, **kwargs):
settings.word_dict = word_dict settings.word_dict = word_dict
settings.label_dict = label_dict settings.label_dict = label_dict
settings.predicate_dict = predicate_dict
#all inputs are integral and sequential type #all inputs are integral and sequential type
settings.slots = [ settings.slots = [
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(predicate_dict)),
integer_value_sequence(len(word_dict)), integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)), integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)), integer_value_sequence(len(word_dict)),
...@@ -31,27 +35,33 @@ def hook(settings, word_dict, label_dict, **kwargs): ...@@ -31,27 +35,33 @@ def hook(settings, word_dict, label_dict, **kwargs):
] ]
@provider(init_hook=hook) def get_batch_size(yeild_data):
def process(obj, file_name): return len(yeild_data[0])
@provider(init_hook=hook, should_shuffle=True, calc_batch_size=get_batch_size,
can_over_batch_size=False, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
with open(file_name, 'r') as fdata: with open(file_name, 'r') as fdata:
for line in fdata: for line in fdata:
sentence, predicate, ctx_n1, ctx_0, ctx_p1, mark, label = \ sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = \
line.strip().split('\t') line.strip().split('\t')
words = sentence.split() words = sentence.split()
sen_len = len(words) sen_len = len(words)
word_slot = [obj.word_dict.get(w, UNK_IDX) for w in words] word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words]
predicate_slot = [obj.word_dict.get(predicate, UNK_IDX)] * sen_len predicate_slot = [settings.predicate_dict.get(predicate)] * sen_len
ctx_n1_slot = [obj.word_dict.get(ctx_n1, UNK_IDX)] * sen_len ctx_n2_slot = [settings.word_dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_0_slot = [obj.word_dict.get(ctx_0, UNK_IDX)] * sen_len ctx_n1_slot = [settings.word_dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_p1_slot = [obj.word_dict.get(ctx_p1, UNK_IDX)] * sen_len ctx_0_slot = [settings.word_dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_slot = [settings.word_dict.get(ctx_p1, UNK_IDX)] * sen_len
ctx_p2_slot = [settings.word_dict.get(ctx_p2, UNK_IDX)] * sen_len
marks = mark.split() marks = mark.split()
mark_slot = [int(w) for w in marks] mark_slot = [int(w) for w in marks]
label_list = label.split() label_list = label.split()
label_slot = [obj.label_dict.get(w) for w in label_list] label_slot = [settings.label_dict.get(w) for w in label_list]
yield word_slot, predicate_slot, ctx_n2_slot, ctx_n1_slot, \
yield word_slot, predicate_slot, ctx_n1_slot, \ ctx_0_slot, ctx_p1_slot, ctx_p2_slot, mark_slot, label_slot
ctx_0_slot, ctx_p1_slot, mark_slot, label_slot
...@@ -18,8 +18,9 @@ import sys ...@@ -18,8 +18,9 @@ import sys
from paddle.trainer_config_helpers import * from paddle.trainer_config_helpers import *
#file paths #file paths
word_dict_file = './data/src.dict' word_dict_file = './data/wordDict.txt'
label_dict_file = './data/tgt.dict' label_dict_file = './data/targetDict.txt'
predicate_file= './data/verbDict.txt'
train_list_file = './data/train.list' train_list_file = './data/train.list'
test_list_file = './data/test.list' test_list_file = './data/test.list'
...@@ -30,8 +31,10 @@ if not is_predict: ...@@ -30,8 +31,10 @@ if not is_predict:
#load dictionaries #load dictionaries
word_dict = dict() word_dict = dict()
label_dict = dict() label_dict = dict()
predicate_dict = dict()
with open(word_dict_file, 'r') as f_word, \ with open(word_dict_file, 'r') as f_word, \
open(label_dict_file, 'r') as f_label: open(label_dict_file, 'r') as f_label, \
open(predicate_file, 'r') as f_pre:
for i, line in enumerate(f_word): for i, line in enumerate(f_word):
w = line.strip() w = line.strip()
word_dict[w] = i word_dict[w] = i
...@@ -40,6 +43,11 @@ if not is_predict: ...@@ -40,6 +43,11 @@ if not is_predict:
w = line.strip() w = line.strip()
label_dict[w] = i label_dict[w] = i
for i, line in enumerate(f_pre):
w = line.strip()
predicate_dict[w] = i
if is_test: if is_test:
train_list_file = None train_list_file = None
...@@ -50,91 +58,157 @@ if not is_predict: ...@@ -50,91 +58,157 @@ if not is_predict:
module='dataprovider', module='dataprovider',
obj='process', obj='process',
args={'word_dict': word_dict, args={'word_dict': word_dict,
'label_dict': label_dict}) 'label_dict': label_dict,
'predicate_dict': predicate_dict })
word_dict_len = len(word_dict) word_dict_len = len(word_dict)
label_dict_len = len(label_dict) label_dict_len = len(label_dict)
pred_len = len(predicate_dict)
else: else:
word_dict_len = get_config_arg('dict_len', int) word_dict_len = get_config_arg('dict_len', int)
label_dict_len = get_config_arg('label_len', int) label_dict_len = get_config_arg('label_len', int)
pred_len = get_config_arg('pred_len', int)
############################## Hyper-parameters ##################################
mark_dict_len = 2 mark_dict_len = 2
word_dim = 32 word_dim = 32
mark_dim = 5 mark_dim = 5
hidden_dim = 128 hidden_dim = 512
depth = 8 depth = 8
emb_lr = 1e-2
fc_lr = 1e-2
lstm_lr = 2e-2
########################### Optimizer #######################################
settings( settings(
batch_size=150, batch_size=150,
learning_method=AdamOptimizer(), learning_method=MomentumOptimizer(momentum=0),
learning_rate=1e-3, learning_rate=2e-2,
regularization=L2Regularization(8e-4), regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25) is_async=False,
model_average=ModelAverage(average_window=0.5,
max_average_window=10000),
)
#6 features
####################################### network ##############################
#8 features and 1 target
word = data_layer(name='word_data', size=word_dict_len) word = data_layer(name='word_data', size=word_dict_len)
predicate = data_layer(name='verb_data', size=word_dict_len) predicate = data_layer(name='verb_data', size=pred_len)
ctx_n2 = data_layer(name='ctx_n2_data', size=word_dict_len)
ctx_n1 = data_layer(name='ctx_n1_data', size=word_dict_len) ctx_n1 = data_layer(name='ctx_n1_data', size=word_dict_len)
ctx_0 = data_layer(name='ctx_0_data', size=word_dict_len) ctx_0 = data_layer(name='ctx_0_data', size=word_dict_len)
ctx_p1 = data_layer(name='ctx_p1_data', size=word_dict_len) ctx_p1 = data_layer(name='ctx_p1_data', size=word_dict_len)
ctx_p2 = data_layer(name='ctx_p2_data', size=word_dict_len)
mark = data_layer(name='mark_data', size=mark_dict_len) mark = data_layer(name='mark_data', size=mark_dict_len)
if not is_predict: if not is_predict:
target = data_layer(name='target', size=label_dict_len) target = data_layer(name='target', size=label_dict_len)
ptt = ParameterAttribute(name='src_emb', learning_rate=emb_lr)
layer_attr = ExtraLayerAttribute(drop_rate=0.5)
fc_para_attr = ParameterAttribute(learning_rate=fc_lr)
lstm_para_attr = ParameterAttribute(initial_std=0., learning_rate=lstm_lr)
para_attr = [fc_para_attr, lstm_para_attr]
word_embedding = embedding_layer(size=word_dim, input=word, param_attr=ptt) default_std=1/math.sqrt(hidden_dim)/3.0
predicate_embedding = embedding_layer(
size=word_dim, input=predicate, param_attr=ptt) emb_para = ParameterAttribute(name='emb', initial_std=0., learning_rate=0.)
ctx_n1_embedding = embedding_layer(size=word_dim, input=ctx_n1, param_attr=ptt) std_0 = ParameterAttribute(initial_std=0.)
ctx_0_embedding = embedding_layer(size=word_dim, input=ctx_0, param_attr=ptt) std_default = ParameterAttribute(initial_std=default_std)
ctx_p1_embedding = embedding_layer(size=word_dim, input=ctx_p1, param_attr=ptt)
mark_embedding = embedding_layer(size=mark_dim, input=mark) predicate_embedding = embedding_layer(size=word_dim, input=predicate, param_attr=ParameterAttribute(name='vemb',initial_std=default_std))
mark_embedding = embedding_layer(name='word_ctx-in_embedding', size=mark_dim, input=mark, param_attr=std_0)
word_input=[word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [embedding_layer(size=word_dim, input=x, param_attr=emb_para) for x in word_input]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
hidden_0 = mixed_layer( hidden_0 = mixed_layer(
name='hidden0',
size=hidden_dim, size=hidden_dim,
input=[ bias_attr=std_default,
full_matrix_projection(input=word_embedding), input=[ full_matrix_projection(input=emb, param_attr=std_default ) for emb in emb_layers ])
full_matrix_projection(input=predicate_embedding),
full_matrix_projection(input=ctx_n1_embedding),
full_matrix_projection(input=ctx_0_embedding),
full_matrix_projection(input=ctx_p1_embedding),
full_matrix_projection(input=mark_embedding),
])
lstm_0 = lstmemory(input=hidden_0, layer_attr=layer_attr) mix_hidden_lr = 1e-3
lstm_para_attr = ParameterAttribute(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = ParameterAttribute(initial_std=default_std, learning_rate=mix_hidden_lr)
lstm_0 = lstmemory(name='lstm0',
input=hidden_0,
act=ReluActivation(),
gate_act=SigmoidActivation(),
state_act=SigmoidActivation(),
bias_attr=std_0,
param_attr=lstm_para_attr)
#stack L-LSTM and R-LSTM with direct edges #stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0] input_tmp = [hidden_0, lstm_0]
for i in range(1, depth): for i in range(1, depth):
fc = fc_layer(input=input_tmp, size=hidden_dim, param_attr=para_attr) mix_hidden = mixed_layer(name='hidden'+str(i),
size=hidden_dim,
bias_attr=std_default,
input=[full_matrix_projection(input=input_tmp[0], param_attr=hidden_para_attr),
full_matrix_projection(input=input_tmp[1], param_attr=lstm_para_attr)
]
)
lstm = lstmemory(name='lstm'+str(i),
input=mix_hidden,
act=ReluActivation(),
gate_act=SigmoidActivation(),
state_act=SigmoidActivation(),
reverse=((i % 2)==1),
bias_attr=std_0,
param_attr=lstm_para_attr)
input_tmp = [mix_hidden, lstm]
feature_out = mixed_layer(name='output',
size=label_dict_len,
bias_attr=std_default,
input=[full_matrix_projection(input=input_tmp[0], param_attr=hidden_para_attr),
full_matrix_projection(input=input_tmp[1], param_attr=lstm_para_attr)
],
)
lstm = lstmemory(
input=fc,
act=ReluActivation(),
reverse=(i % 2) == 1,
layer_attr=layer_attr)
input_tmp = [fc, lstm]
prob = fc_layer(
input=input_tmp,
size=label_dict_len,
act=SoftmaxActivation(),
param_attr=para_attr)
if not is_predict: if not is_predict:
cls = classification_cost(input=prob, label=target) crf_l = crf_layer( name = 'crf',
outputs(cls) size = label_dict_len,
input = feature_out,
label = target,
param_attr=ParameterAttribute(name='crfw',initial_std=default_std, learning_rate=mix_hidden_lr)
)
crf_dec_l = crf_decoding_layer(name = 'crf_dec_l',
size = label_dict_len,
input = feature_out,
label = target,
param_attr=ParameterAttribute(name='crfw')
)
eval = sum_evaluator(input=crf_dec_l)
outputs(crf_l)
else: else:
outputs(prob) crf_dec_l = crf_decoding_layer(name = 'crf_dec_l',
size = label_dict_len,
input = feature_out,
param_attr=ParameterAttribute(name='crfw')
)
outputs(crf_dec_l)
...@@ -26,7 +26,7 @@ UNK_IDX = 0 ...@@ -26,7 +26,7 @@ UNK_IDX = 0
class Prediction(): class Prediction():
def __init__(self, train_conf, dict_file, model_dir, label_file): def __init__(self, train_conf, dict_file, model_dir, label_file, predicate_dict_file):
""" """
train_conf: trainer configure. train_conf: trainer configure.
dict_file: word dictionary file name. dict_file: word dictionary file name.
...@@ -35,26 +35,41 @@ class Prediction(): ...@@ -35,26 +35,41 @@ class Prediction():
self.dict = {} self.dict = {}
self.labels = {} self.labels = {}
self.predicate_dict={}
self.labels_reverse = {} self.labels_reverse = {}
self.load_dict_label(dict_file, label_file) self.load_dict_label(dict_file, label_file, predicate_dict_file)
len_dict = len(self.dict) len_dict = len(self.dict)
len_label = len(self.labels) len_label = len(self.labels)
len_pred = len(self.predicate_dict)
conf = parse_config(train_conf, 'dict_len=' + str(len_dict) +
',label_len=' + str(len_label) + ',is_predict=True') conf = parse_config(
train_conf,
'dict_len=' + str(len_dict) +
',label_len=' + str(len_label) +
',pred_len=' + str(len_pred) +
',is_predict=True')
self.network = swig_paddle.GradientMachine.createFromConfigProto( self.network = swig_paddle.GradientMachine.createFromConfigProto(
conf.model_config) conf.model_config)
self.network.loadParameters(model_dir) self.network.loadParameters(model_dir)
slots = [ slots = [
integer_value_sequence(len_dict),
integer_value_sequence(len_pred),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(2)
]
integer_value_sequence(len_dict), integer_value_sequence(len_dict), integer_value_sequence(len_dict), integer_value_sequence(len_dict),
integer_value_sequence(len_dict), integer_value_sequence(len_dict), integer_value_sequence(len_dict), integer_value_sequence(len_dict),
integer_value_sequence(len_dict), integer_value_sequence(2) integer_value_sequence(len_dict), integer_value_sequence(2)
] ]
self.converter = DataProviderConverter(slots) self.converter = DataProviderConverter(slots)
def load_dict_label(self, dict_file, label_file): def load_dict_label(self, dict_file, label_file, predicate_dict_file):
""" """
Load dictionary from self.dict_file. Load dictionary from self.dict_file.
""" """
...@@ -65,39 +80,42 @@ class Prediction(): ...@@ -65,39 +80,42 @@ class Prediction():
self.labels[line.strip()] = line_count self.labels[line.strip()] = line_count
self.labels_reverse[line_count] = line.strip() self.labels_reverse[line_count] = line.strip()
for line_count, line in enumerate(open(predicate_dict_file, 'r')):
self.predicate_dict[line.strip()] = line_count
def get_data(self, data_file): def get_data(self, data_file):
""" """
Get input data of paddle format. Get input data of paddle format.
""" """
with open(data_file, 'r') as fdata: with open(data_file, 'r') as fdata:
for line in fdata: for line in fdata:
sentence, predicate, ctx_n1, ctx_0, ctx_p1, mark, label = line.strip( sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = line.strip(
).split('\t') ).split('\t')
words = sentence.split() words = sentence.split()
sen_len = len(words) sen_len = len(words)
word_slot = [self.dict.get(w, UNK_IDX) for w in words] word_slot = [self.dict.get(w, UNK_IDX) for w in words]
predicate_slot = [self.dict.get(predicate, UNK_IDX)] * sen_len predicate_slot = [self.predicate_dict.get(predicate, UNK_IDX)] * sen_len
ctx_n2_slot = [self.dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_n1_slot = [self.dict.get(ctx_n1, UNK_IDX)] * sen_len ctx_n1_slot = [self.dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_slot = [self.dict.get(ctx_0, UNK_IDX)] * sen_len ctx_0_slot = [self.dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_slot = [self.dict.get(ctx_p1, UNK_IDX)] * sen_len ctx_p1_slot = [self.dict.get(ctx_p1, UNK_IDX)] * sen_len
ctx_p2_slot = [self.dict.get(ctx_p2, UNK_IDX)] * sen_len
marks = mark.split() marks = mark.split()
mark_slot = [int(w) for w in marks] mark_slot = [int(w) for w in marks]
yield word_slot, predicate_slot, ctx_n2_slot, ctx_n1_slot, \
ctx_0_slot, ctx_p1_slot, ctx_p2_slot, mark_slot
yield word_slot, predicate_slot, ctx_n1_slot, \ def predict(self, data_file, output_file):
ctx_0_slot, ctx_p1_slot, mark_slot
def predict(self, data_file):
""" """
data_file: file name of input data. data_file: file name of input data.
""" """
input = self.converter(self.get_data(data_file)) input = self.converter(self.get_data(data_file))
output = self.network.forwardTest(input) output = self.network.forwardTest(input)
prob = output[0]["value"] lab = output[0]["id"].tolist()
lab = list(np.argsort(-prob)[:, 0])
with open(data_file, 'r') as fin, open('predict.res', 'w') as fout: with open(data_file, 'r') as fin, open(output_file, 'w') as fout:
index = 0 index = 0
for line in fin: for line in fin:
sen = line.split('\t')[0] sen = line.split('\t')[0]
...@@ -109,8 +127,8 @@ class Prediction(): ...@@ -109,8 +127,8 @@ class Prediction():
def option_parser(): def option_parser():
usage = ("python predict.py -c config -w model_dir " usage = ("python predict.py -c config -w model_dir "
"-d word dictionary -l label_file -i input_file") "-d word dictionary -l label_file -i input_file -p pred_dict_file")
parser = OptionParser(usage="usage: %s [options]" % usage) parser = OptionParser(usage="usage: %s [options]" % usage)
parser.add_option( parser.add_option(
"-c", "-c",
...@@ -131,6 +149,13 @@ def option_parser(): ...@@ -131,6 +149,13 @@ def option_parser():
dest="label_file", dest="label_file",
default=None, default=None,
help="label file") help="label file")
parser.add_option(
"-p",
"--predict_dict_file",
action="store",
dest="predict_dict_file",
default=None,
help="predict_dict_file")
parser.add_option( parser.add_option(
"-i", "-i",
"--data", "--data",
...@@ -144,6 +169,14 @@ def option_parser(): ...@@ -144,6 +169,14 @@ def option_parser():
dest="model_path", dest="model_path",
default=None, default=None,
help="model path") help="model path")
parser.add_option(
"-o",
"--output_file",
action="store",
dest="output_file",
default=None,
help="output file")
return parser.parse_args() return parser.parse_args()
...@@ -154,10 +187,12 @@ def main(): ...@@ -154,10 +187,12 @@ def main():
dict_file = options.dict_file dict_file = options.dict_file
model_path = options.model_path model_path = options.model_path
label_file = options.label_file label_file = options.label_file
predict_dict_file = options.predict_dict_file
output_file = options.output_file
swig_paddle.initPaddle("--use_gpu=0") swig_paddle.initPaddle("--use_gpu=0")
predict = Prediction(train_conf, dict_file, model_path, label_file) predict = Prediction(train_conf, dict_file, model_path, label_file, predict_dict_file)
predict.predict(data_file) predict.predict(data_file,output_file)
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -26,15 +26,18 @@ LOG=`get_best_pass $log` ...@@ -26,15 +26,18 @@ LOG=`get_best_pass $log`
LOG=(${LOG}) LOG=(${LOG})
best_model_path="output/pass-${LOG[1]}" best_model_path="output/pass-${LOG[1]}"
config_file=db_lstm.py config_file=db_lstm.py
dict_file=./data/src.dict dict_file=./data/wordDict.txt
label_file=./data/tgt.dict label_file=./data/targetDict.txt
predicate_dict_file=./data/verbDict.txt
input_file=./data/feature input_file=./data/feature
output_file=predict.res
python predict.py \ python predict.py \
-c $config_file \ -c $config_file \
-w $best_model_path \ -w $best_model_path \
-l $label_file \ -l $label_file \
-p $predicate_dict_file \
-d $dict_file \ -d $dict_file \
-i $input_file -i $input_file \
-o $output_file
...@@ -36,4 +36,5 @@ paddle train \ ...@@ -36,4 +36,5 @@ paddle train \
--job=test \ --job=test \
--use_gpu=false \ --use_gpu=false \
--config_args=is_test=1 \ --config_args=is_test=1 \
--test_all_data_in_one_period=1 \
2>&1 | tee 'test.log' 2>&1 | tee 'test.log'
...@@ -16,11 +16,14 @@ ...@@ -16,11 +16,14 @@
set -e set -e
paddle train \ paddle train \
--config=./db_lstm.py \ --config=./db_lstm.py \
--use_gpu=0 \
--log_period=5000 \
--trainer_count=1 \
--show_parameter_stats_period=5000 \
--save_dir=./output \ --save_dir=./output \
--trainer_count=4 \ --num_passes=10000 \
--log_period=10 \ --average_test_period=10000000 \
--num_passes=500 \ --init_model_path=./data \
--use_gpu=false \ --load_missing_parameter_strategy=rand \
--show_parameter_stats_period=10 \
--test_all_data_in_one_period=1 \ --test_all_data_in_one_period=1 \
2>&1 | tee 'train.log' 2>&1 | tee 'train.log'
# Semantic Role labeling Tutorial # # Semantic Role labeling Tutorial #
Semantic role labeling (SRL) is a form of shallow semantic parsing whose goal is to discover the predicate-argument structure of each predicate in a given input sentence. SRL is useful as an intermediate step in a wide range of natural language processing tasks, such as information extraction. automatic document categorization and question answering. An instance is as following [1]: Semantic role labeling (SRL) is a form of shallow semantic parsing whose goal is to discover the predicate-argument structure of each predicate in a given input sentence. SRL is useful as an intermediate step in a wide range of natural language processing tasks, such as information extraction. automatic document categorization and question answering. An instance is as following [1]:
[ <sub>A0</sub> He ] [ <sub>AM-MOD</sub> would ][ <sub>AM-NEG</sub> n’t ] [ <sub>V</sub> accept] [ <sub>A1</sub> anything of value ] from [<sub>A2</sub> those he was writing about ]. [ <sub>A0</sub> He ] [ <sub>AM-MOD</sub> would ][ <sub>AM-NEG</sub> n’t ] [ <sub>V</sub> accept] [ <sub>A1</sub> anything of value ] from [<sub>A2</sub> those he was writing about ].
- V: verb - V: verb
- A0: acceptor - A0: acceptor
- A1: thing accepted - A1: thing accepted
- A2: accepted-from - A2: accepted-from
- A3: Attribute - A3: Attribute
- AM-MOD: modal - AM-MOD: modal
- AM-NEG: negation - AM-NEG: negation
Given the verb "accept", the chunks in sentence would play certain semantic roles. Here, the label scheme is from Penn Proposition Bank. Given the verb "accept", the chunks in sentence would play certain semantic roles. Here, the label scheme is from Penn Proposition Bank.
To this date, most of the successful SRL systems are built on top of some form of parsing results where pre-defined feature templates over the syntactic structure are used. This tutorial will present an end-to-end system using deep bidirectional long short-term memory (DB-LSTM)[2] for solving the SRL task, which largely outperforms the previous state-of-the-art systems. The system regards SRL task as the sequence labelling problem. To this date, most of the successful SRL systems are built on top of some form of parsing results where pre-defined feature templates over the syntactic structure are used. This tutorial will present an end-to-end system using deep bidirectional long short-term memory (DB-LSTM)[2] for solving the SRL task, which largely outperforms the previous state-of-the-art systems. The system regards SRL task as the sequence labelling problem.
## Data Description ## Data Description
The relevant paper[2] takes the data set in CoNLL-2005&2012 Shared Task for training and testing. Accordingto data license, the demo adopts the test data set of CoNLL-2005, which can be reached on website. The relevant paper[2] takes the data set in CoNLL-2005&2012 Shared Task for training and testing. Accordingto data license, the demo adopts the test data set of CoNLL-2005, which can be reached on website.
To download and process the original data, user just need to execute the following command: To download and process the original data, user just need to execute the following command:
```bash ```bash
cd data cd data
./get_data.sh ./get_data.sh
``` ```
Several new files appear in the `data `directory as follows. Several new files appear in the `data `directory as follows.
```bash ```bash
conll05st-release:the test data set of CoNll-2005 shared task conll05st-release:the test data set of CoNll-2005 shared task
test.wsj.words:the Wall Street Journal data sentences test.wsj.words:the Wall Street Journal data sentences
test.wsj.props: the propositional arguments test.wsj.props: the propositional arguments
src.dict:the dictionary of words in sentences feature: the extracted features from data set
tgt.dict:the labels dictionary ```
feature: the extracted features from data set
``` ## Training
### DB-LSTM
## Training Please refer to the Sentiment Analysis demo to learn more about the long short-term memory unit.
### DB-LSTM
Please refer to the Sentiment Analysis demo to learn more about the long short-term memory unit. Unlike Bidirectional-LSTM that used in Sentiment Analysis demo, the DB-LSTM adopts another way to stack LSTM layer. First a standard LSTM processes the sequence in forward direction. The input and output of this LSTM layer are taken by the next LSTM layer as input, processed in reversed direction. These two standard LSTM layers compose a pair of LSTM. Then we stack LSTM layers pair after pair to obtain the deep LSTM model.
Unlike Bidirectional-LSTM that used in Sentiment Analysis demo, the DB-LSTM adopts another way to stack LSTM layer. First a standard LSTM processes the sequence in forward direction. The input and output of this LSTM layer are taken by the next LSTM layer as input, processed in reversed direction. These two standard LSTM layers compose a pair of LSTM. Then we stack LSTM layers pair after pair to obtain the deep LSTM model. The following figure shows a temporal expanded 2-layer DB-LSTM network.
<center>
The following figure shows a temporal expanded 2-layer DB-LSTM network. ![pic](./network_arch.png)
<center> </center>
![pic](./network_arch.png)
</center> ### Features
Two input features play an essential role in this pipeline: predicate (pred) and argument (argu). Two other features: predicate context (ctx-p) and region mark (mr) are also adopted. Because a single predicate word can not exactly describe the predicate information, especially when the same words appear more than one times in a sentence. With the predicate context, the ambiguity can be largely eliminated. Similarly, we use region mark m<sub>r</sub> = 1 to denote the argument position if it locates in the predicate context region, or m<sub>r</sub> = 0 if does not. These four simple features are all we need for our SRL system. Features of one sample with context size set to 1 is showed as following[2]:
### Features <center>
Two input features play an essential role in this pipeline: predicate (pred) and argument (argu). Two other features: predicate context (ctx-p) and region mark (mr) are also adopted. Because a single predicate word can not exactly describe the predicate information, especially when the same words appear more than one times in a sentence. With the predicate context, the ambiguity can be largely eliminated. Similarly, we use region mark m<sub>r</sub> = 1 to denote the argument position if it locates in the predicate context region, or m<sub>r</sub> = 0 if does not. These four simple features are all we need for our SRL system. Features of one sample with context size set to 1 is showed as following[2]: ![pic](./feature.jpg)
<center> </center>
![pic](./feature.jpg)
</center> In this sample, the coresponding labelled sentence is:
In this sample, the coresponding labelled sentence is: [ <sub>A1</sub> A record date ] has [ <sub>AM-NEG</sub> n't ] been [ <sub>V</sub> set ] .
[ <sub>A1</sub> A record date ] has [ <sub>AM-NEG</sub> n't ] been [ <sub>V</sub> set ] . In the demo, we adopt the feature template as above, consists of : `argument`, `predicate`, `ctx-p (p=-1,0,1)`, `mark` and use `B/I/O` scheme to label each argument. These features and labels are stored in `feature` file, and separated by `\t`.
In the demo, we adopt the feature template as above, consists of : `argument`, `predicate`, `ctx-p (p=-1,0,1)`, `mark` and use `B/I/O` scheme to label each argument. These features and labels are stored in `feature` file, and separated by `\t`. ### Data Provider
### Data Provider `dataprovider.py` is the python file to wrap data. `hook()` function is to define the data slots for network. The Six features and label are all IndexSlots.
```
`dataprovider.py` is the python file to wrap data. `hook()` function is to define the data slots for network. The Six features and label are all IndexSlots. def hook(settings, word_dict, label_dict, **kwargs):
``` settings.word_dict = word_dict
def hook(settings, word_dict, label_dict, **kwargs): settings.label_dict = label_dict
settings.word_dict = word_dict #all inputs are integral and sequential type
settings.label_dict = label_dict settings.slots = [
#all inputs are integral and sequential type integer_value_sequence(len(word_dict)),
settings.slots = [ integer_value_sequence(len(predicate_dict)),
integer_value_sequence(len(word_dict)), integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)), integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)), integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)), integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)), integer_value_sequence(len(word_dict)),
integer_value_sequence(2), integer_value_sequence(2),
integer_value_sequence(len(label_dict))] integer_value_sequence(len(label_dict))]
``` ```
The corresponding data iterator is as following: The corresponding data iterator is as following:
``` ```
@provider(use_seq=True, init_hook=hook) @provider(init_hook=hook, should_shuffle=True, calc_batch_size=get_batch_size,
def process(obj, file_name): can_over_batch_size=False, cache=CacheType.CACHE_PASS_IN_MEM)
with open(file_name, 'r') as fdata: def process(settings, file_name):
for line in fdata: with open(file_name, 'r') as fdata:
sentence, predicate, ctx_n1, ctx_0, ctx_p1, mark, label = line.strip().split('\t') for line in fdata:
words = sentence.split() sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = \
sen_len = len(words) line.strip().split('\t')
word_slot = [obj.word_dict.get(w, UNK_IDX) for w in words]
words = sentence.split()
predicate_slot = [obj.word_dict.get(predicate, UNK_IDX)] * sen_len sen_len = len(words)
ctx_n1_slot = [obj.word_dict.get(ctx_n1, UNK_IDX) ] * sen_len word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words]
ctx_0_slot = [obj.word_dict.get(ctx_0, UNK_IDX) ] * sen_len
ctx_p1_slot = [obj.word_dict.get(ctx_p1, UNK_IDX) ] * sen_len predicate_slot = [settings.predicate_dict.get(predicate)] * sen_len
ctx_n2_slot = [settings.word_dict.get(ctx_n2, UNK_IDX)] * sen_len
marks = mark.split() ctx_n1_slot = [settings.word_dict.get(ctx_n1, UNK_IDX)] * sen_len
mark_slot = [int(w) for w in marks] ctx_0_slot = [settings.word_dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_slot = [settings.word_dict.get(ctx_p1, UNK_IDX)] * sen_len
label_list = label.split() ctx_p2_slot = [settings.word_dict.get(ctx_p2, UNK_IDX)] * sen_len
label_slot = [obj.label_dict.get(w) for w in label_list]
marks = mark.split()
yield word_slot, predicate_slot, ctx_n1_slot, ctx_0_slot, ctx_p1_slot, mark_slot, label_slot mark_slot = [int(w) for w in marks]
```
The `process`function yield 7 lists which are six features and labels. label_list = label.split()
label_slot = [settings.label_dict.get(w) for w in label_list]
### Neural Network Config yield word_slot, predicate_slot, ctx_n2_slot, ctx_n1_slot, \
`db_lstm.py` is the neural network config file to load the dictionaries and define the data provider module and network architecture during the training procedure. ctx_0_slot, ctx_p1_slot, ctx_p2_slot, mark_slot, label_slot
```
Seven `data_layer` load instances from data provider. Six features are transformed into embedddings respectively, and mixed by `mixed_layer` . Deep bidirectional LSTM layers extract features for the softmax layer. The objective function is cross entropy of labels. The `process`function yield 9 lists which are 8 features and label.
### Run Training ### Neural Network Config
The script for training is `train.sh`, user just need to execute: `db_lstm.py` is the neural network config file to load the dictionaries and define the data provider module and network architecture during the training procedure.
```bash
./train.sh Nine `data_layer` load instances from data provider. Eight features are transformed into embedddings respectively, and mixed by `mixed_layer` . Deep bidirectional LSTM layers extract features for the softmax layer. The objective function is cross entropy of labels.
```
The content in `train.sh`: ### Run Training
``` The script for training is `train.sh`, user just need to execute:
paddle train \ ```bash
--config=./db_lstm.py \ ./train.sh
--save_dir=./output \ ```
--trainer_count=4 \ The content in `train.sh`:
--log_period=10 \ ```
--num_passes=500 \ paddle train \
--use_gpu=false \ --config=./db_lstm.py \
--show_parameter_stats_period=10 \ --use_gpu=0 \
--test_all_data_in_one_period=1 \ --log_period=5000 \
2>&1 | tee 'train.log' --trainer_count=1 \
``` --show_parameter_stats_period=5000 \
--save_dir=./output \
- \--config=./db_lstm.py : network config file. --num_passes=10000 \
- \--save_di=./output: output path to save models. --average_test_period=10000000 \
- \--trainer_count=4 : set thread number (or GPU count). --init_model_path=./data \
- \--log_period=10 : print log every 20 batches. --load_missing_parameter_strategy=rand \
- \--num_passes=500: set pass number, one pass in PaddlePaddle means training all samples in dataset one time. --test_all_data_in_one_period=1 \
- \--use_gpu=false: use CPU to train, set true, if you install GPU version of PaddlePaddle and want to use GPU to train. 2>&1 | tee 'train.log'
- \--show_parameter_stats_period=10: show parameter statistic every 100 batches. ```
- \--test_all_data_in_one_period=1: test all data in every testing.
- \--config=./db_lstm.py : network config file.
- \--use_gpu=false: use CPU to train, set true, if you install GPU version of PaddlePaddle and want to use GPU to train, until now crf_layer do not support GPU
After training, the models will be saved in directory `output`. - \--log_period=500: print log every 20 batches.
- \--trainer_count=1: set thread number (or GPU count).
### Run testing - \--show_parameter_stats_period=5000: show parameter statistic every 100 batches.
The script for testing is `test.sh`, user just need to execute: - \--save_dir=./output: output path to save models.
```bash - \--num_passes=10000: set pass number, one pass in PaddlePaddle means training all samples in dataset one time.
./test.sh - \--average_test_period=10000000: do test on average parameter every average_test_period batches
``` - \--init_model_path=./data: parameter initialization path
The main part in `tesh.sh` - \--load_missing_parameter_strategy=rand: random initialization unexisted parameters
``` - \--test_all_data_in_one_period=1: test all data in one period
paddle train \
--config=./db_lstm.py \
--model_list=$model_list \ After training, the models will be saved in directory `output`. Our training curve is as following:
--job=test \ <center>
--config_args=is_test=1 \ ![pic](./curve.jpg)
``` </center>
- \--config=./db_lstm.py: network config file ### Run testing
- \--model_list=$model_list.list: model list file The script for testing is `test.sh`, user just need to execute:
- \--job=test: indicate the test job ```bash
- \--config_args=is_test=1: flag to indicate test ./test.sh
```
The main part in `tesh.sh`
### Run prediction ```
The script for prediction is `predict.sh`, user just need to execute: paddle train \
```bash --config=./db_lstm.py \
./predict.sh --model_list=$model_list \
--job=test \
``` --config_args=is_test=1 \
In `predict.sh`, user should offer the network config file, model path, label file, word dictionary file, feature file ```
```
python predict.py - \--config=./db_lstm.py: network config file
-c $config_file - \--model_list=$model_list.list: model list file
-w $model_path - \--job=test: indicate the test job
-l $label_file - \--config_args=is_test=1: flag to indicate test
-d $dict_file - \--test_all_data_in_one_period=1: test all data in 1 period
-i $input_file
```
### Run prediction
`predict.py` is the main executable python script, which includes functions: load model, load data, data prediction. The network model will output the probability distribution of labels. In the demo, we take the label with maximum probability as result. User can also implement the beam search or viterbi decoding upon the probability distribution matrix. The script for prediction is `predict.sh`, user just need to execute:
```bash
After prediction, the result is saved in `predict.res`. ./predict.sh
## Reference ```
[1] Martha Palmer, Dan Gildea, and Paul Kingsbury. The Proposition Bank: An Annotated Corpus of Semantic Roles , Computational Linguistics, 31(1), 2005. In `predict.sh`, user should offer the network config file, model path, label file, word dictionary file, feature file
```
[2] Zhou, Jie, and Wei Xu. "End-to-end learning of semantic role labeling using recurrent neural networks." Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015. python predict.py
-c $config_file \
-w $best_model_path \
-l $label_file \
-p $predicate_dict_file \
-d $dict_file \
-i $input_file \
-o $output_file
```
`predict.py` is the main executable python script, which includes functions: load model, load data, data prediction. The network model will output the probability distribution of labels. In the demo, we take the label with maximum probability as result. User can also implement the beam search or viterbi decoding upon the probability distribution matrix.
After prediction, the result is saved in `predict.res`.
## Reference
[1] Martha Palmer, Dan Gildea, and Paul Kingsbury. The Proposition Bank: An Annotated Corpus of Semantic Roles , Computational Linguistics, 31(1), 2005.
[2] Zhou, Jie, and Wei Xu. "End-to-end learning of semantic role labeling using recurrent neural networks." Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.
...@@ -81,5 +81,8 @@ else() ...@@ -81,5 +81,8 @@ else()
add_library(paddle_cuda ${CUDA_SOURCES}) add_library(paddle_cuda ${CUDA_SOURCES})
endif() endif()
add_style_check_target(paddle_cuda ${CUDA_SOURCES}) add_style_check_target(paddle_cuda
add_style_check_target(paddle_cuda ${CUDA_HEADERS}) ${CUDA_SOURCES}
${CUDA_HEADERS}
${CUDA_DSO_SOURCES}
${CUDA_CXX_WITH_GPU_SOURCES})
...@@ -104,7 +104,7 @@ CUBLAS_BLAS_ROUTINE_EACH(DYNAMIC_LOAD_CUBLAS_V2_WRAP) ...@@ -104,7 +104,7 @@ CUBLAS_BLAS_ROUTINE_EACH(DYNAMIC_LOAD_CUBLAS_V2_WRAP)
#endif #endif
const char* hl_cublas_get_error_string(cublasStatus_t status) { const char* hl_cublas_get_error_string(cublasStatus_t status) {
switch(status) { switch (status) {
case CUBLAS_STATUS_NOT_INITIALIZED: case CUBLAS_STATUS_NOT_INITIALIZED:
return "[cublas status]: not initialized"; return "[cublas status]: not initialized";
case CUBLAS_STATUS_ALLOC_FAILED: case CUBLAS_STATUS_ALLOC_FAILED:
...@@ -181,7 +181,7 @@ void hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc) { ...@@ -181,7 +181,7 @@ void hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc) {
real **inout_d = (real **)hl_malloc_device(sizeof(real *)); real **inout_d = (real **)hl_malloc_device(sizeof(real *));
hl_memcpy(inout_d, inout_h, sizeof(real *)); hl_memcpy(inout_d, inout_h, sizeof(real *));
int *pivot_d = (int *)hl_malloc_device(dimN*sizeof(int)); int *pivot_d = (int *)hl_malloc_device(dimN * sizeof(int));
int *info_d = (int *)t_resource.gpu_mem; int *info_d = (int *)t_resource.gpu_mem;
/* Note: cublasSgetrfBatched is used to calculate a number of /* Note: cublasSgetrfBatched is used to calculate a number of
...@@ -189,10 +189,9 @@ void hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc) { ...@@ -189,10 +189,9 @@ void hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc) {
the API for better performance. the API for better performance.
*/ */
CHECK_CUBLAS(CUBLAS_GETRF(t_resource.handle, CHECK_CUBLAS(CUBLAS_GETRF(t_resource.handle,
dimN, inout_d, lda, pivot_d, dimN, inout_d, lda, pivot_d, info_d, 1));
info_d, 1));
int info_h; int info_h;
hl_memcpy(&info_h, info_d, sizeof(int)); hl_memcpy(&info_h, info_d, sizeof(int));
if (info_h != 0) { if (info_h != 0) {
LOG(FATAL) << "Factorization of matrix failed: matrix may be singular.\n"; LOG(FATAL) << "Factorization of matrix failed: matrix may be singular.\n";
...@@ -204,8 +203,8 @@ void hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc) { ...@@ -204,8 +203,8 @@ void hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc) {
hl_memcpy(out_d, out_h, sizeof(real *)); hl_memcpy(out_d, out_h, sizeof(real *));
CHECK_CUBLAS(CUBLAS_GETRI(t_resource.handle, CHECK_CUBLAS(CUBLAS_GETRI(t_resource.handle,
dimN, (const real **)inout_d, lda, pivot_d, dimN, (const real **)inout_d, lda, pivot_d,
out_d, ldc, info_d, 1)); out_d, ldc, info_d, 1));
hl_memcpy(&info_h, info_d, sizeof(int)); hl_memcpy(&info_h, info_d, sizeof(int));
if (info_h != 0) { if (info_h != 0) {
...@@ -215,7 +214,7 @@ void hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc) { ...@@ -215,7 +214,7 @@ void hl_matrix_inverse(real *A_d, real *C_d, int dimN, int lda, int ldc) {
hl_free_mem_device(inout_d); hl_free_mem_device(inout_d);
hl_free_mem_device(pivot_d); hl_free_mem_device(pivot_d);
hl_free_mem_device(out_d); hl_free_mem_device(out_d);
CHECK_SYNC("hl_matrix_inverse failed"); CHECK_SYNC("hl_matrix_inverse failed");
} }
......
...@@ -159,13 +159,11 @@ CUDNN_DNN_ROUTINE_EACH_R5(DYNAMIC_LOAD_CUDNN_WRAP) ...@@ -159,13 +159,11 @@ CUDNN_DNN_ROUTINE_EACH_R5(DYNAMIC_LOAD_CUDNN_WRAP)
bool g_is_libcudnn_init = false; bool g_is_libcudnn_init = false;
int g_cudnn_lib_version = 0; int g_cudnn_lib_version = 0;
void hl_cudnn_desc_init(cudnnTensorDescriptor_t* cudnn_desc) void hl_cudnn_desc_init(cudnnTensorDescriptor_t* cudnn_desc) {
{
CHECK_CUDNN(dynload::cudnnCreateTensorDescriptor(cudnn_desc)); CHECK_CUDNN(dynload::cudnnCreateTensorDescriptor(cudnn_desc));
} }
void hl_cudnn_init(cudnnHandle_t *cudnn_handle, cudaStream_t stream) void hl_cudnn_init(cudnnHandle_t *cudnn_handle, cudaStream_t stream) {
{
size_t cudnn_dso_ver = dynload::cudnnGetVersion(); size_t cudnn_dso_ver = dynload::cudnnGetVersion();
size_t cudnn_dso_major = cudnn_dso_ver / 1000; size_t cudnn_dso_major = cudnn_dso_ver / 1000;
size_t cudnn_cuh_major = CUDNN_VERSION / 1000; size_t cudnn_cuh_major = CUDNN_VERSION / 1000;
...@@ -212,13 +210,18 @@ void hl_conv_workspace(hl_tensor_descriptor input, ...@@ -212,13 +210,18 @@ void hl_conv_workspace(hl_tensor_descriptor input,
CHECK_NOTNULL(conv); CHECK_NOTNULL(conv);
// Specify workspace limit directly // Specify workspace limit directly
size_t memoryLimitBytes = (1LL << 20) * FLAGS_cudnn_conv_workspace_limit_in_mb; size_t memoryLimitBytes =
(1LL << 20) * FLAGS_cudnn_conv_workspace_limit_in_mb;
// cudnn convolution forward configuration // cudnn convolution forward configuration
cudnnTensorDescriptor_t fwd_src_desc = GET_TENSOR_DESCRIPTOR(input); cudnnTensorDescriptor_t fwd_src_desc =
cudnnTensorDescriptor_t fwd_dest_desc = GET_TENSOR_DESCRIPTOR(output); GET_TENSOR_DESCRIPTOR(input);
cudnnFilterDescriptor_t fwd_filter_desc = GET_FILTER_DESCRIPTOR(filter); cudnnTensorDescriptor_t fwd_dest_desc =
cudnnConvolutionDescriptor_t fwd_conv_desc = GET_CONVOLUTION_DESCRIPTOR(conv); GET_TENSOR_DESCRIPTOR(output);
cudnnFilterDescriptor_t fwd_filter_desc =
GET_FILTER_DESCRIPTOR(filter);
cudnnConvolutionDescriptor_t fwd_conv_desc =
GET_CONVOLUTION_DESCRIPTOR(conv);
CHECK_CUDNN(dynload::cudnnGetConvolutionForwardAlgorithm( CHECK_CUDNN(dynload::cudnnGetConvolutionForwardAlgorithm(
t_resource.cudnn_handle, t_resource.cudnn_handle,
...@@ -250,23 +253,23 @@ void hl_conv_workspace(hl_tensor_descriptor input, ...@@ -250,23 +253,23 @@ void hl_conv_workspace(hl_tensor_descriptor input,
GET_CONVOLUTION_DESCRIPTOR(conv); GET_CONVOLUTION_DESCRIPTOR(conv);
CHECK_CUDNN(dynload::cudnnGetConvolutionBackwardDataAlgorithm( CHECK_CUDNN(dynload::cudnnGetConvolutionBackwardDataAlgorithm(
t_resource.cudnn_handle, t_resource.cudnn_handle,
bwd_data_filter_desc, bwd_data_filter_desc,
bwd_data_diff_desc, bwd_data_diff_desc,
bwd_data_conv_desc, bwd_data_conv_desc,
bwd_data_grad_desc, bwd_data_grad_desc,
CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT, CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
memoryLimitBytes, memoryLimitBytes,
reinterpret_cast<cudnnConvolutionBwdDataAlgo_t*>(convBwdDataAlgo))); reinterpret_cast<cudnnConvolutionBwdDataAlgo_t*>(convBwdDataAlgo)));
CHECK_CUDNN(dynload::cudnnGetConvolutionBackwardDataWorkspaceSize( CHECK_CUDNN(dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
t_resource.cudnn_handle, t_resource.cudnn_handle,
bwd_data_filter_desc, bwd_data_filter_desc,
bwd_data_diff_desc, bwd_data_diff_desc,
bwd_data_conv_desc, bwd_data_conv_desc,
bwd_data_grad_desc, bwd_data_grad_desc,
static_cast<cudnnConvolutionBwdDataAlgo_t>(*convBwdDataAlgo), static_cast<cudnnConvolutionBwdDataAlgo_t>(*convBwdDataAlgo),
bwdDataLimitBytes)); bwdDataLimitBytes));
// cudnn convolution backward filter configuration // cudnn convolution backward filter configuration
cudnnTensorDescriptor_t bwd_filter_src_desc = cudnnTensorDescriptor_t bwd_filter_src_desc =
...@@ -279,21 +282,21 @@ void hl_conv_workspace(hl_tensor_descriptor input, ...@@ -279,21 +282,21 @@ void hl_conv_workspace(hl_tensor_descriptor input,
GET_FILTER_DESCRIPTOR(filter); GET_FILTER_DESCRIPTOR(filter);
CHECK_CUDNN(dynload::cudnnGetConvolutionBackwardFilterAlgorithm( CHECK_CUDNN(dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
t_resource.cudnn_handle, t_resource.cudnn_handle,
bwd_filter_src_desc, bwd_filter_src_desc,
bwd_filter_diff_desc, bwd_filter_diff_desc,
bwd_filter_conv_desc, bwd_filter_conv_desc,
bwd_filter_grad_desc, bwd_filter_grad_desc,
CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT, CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
memoryLimitBytes, memoryLimitBytes,
reinterpret_cast<cudnnConvolutionBwdFilterAlgo_t*>(convBwdFilterAlgo))); reinterpret_cast<cudnnConvolutionBwdFilterAlgo_t*>(convBwdFilterAlgo)));
CHECK_CUDNN(dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize( CHECK_CUDNN(dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
t_resource.cudnn_handle, bwd_filter_src_desc, t_resource.cudnn_handle, bwd_filter_src_desc,
bwd_filter_diff_desc, bwd_filter_conv_desc, bwd_filter_diff_desc, bwd_filter_conv_desc,
bwd_filter_grad_desc, bwd_filter_grad_desc,
static_cast<cudnnConvolutionBwdFilterAlgo_t>(*convBwdFilterAlgo), static_cast<cudnnConvolutionBwdFilterAlgo_t>(*convBwdFilterAlgo),
bwdFilterLimitBytes)); bwdFilterLimitBytes));
#endif #endif
} }
...@@ -302,8 +305,7 @@ void hl_create_tensor_descriptor(hl_tensor_descriptor* image_desc, ...@@ -302,8 +305,7 @@ void hl_create_tensor_descriptor(hl_tensor_descriptor* image_desc,
int batch_size, int batch_size,
int feature_maps, int feature_maps,
int height, int height,
int width) int width) {
{
CHECK_NOTNULL(image_desc); CHECK_NOTNULL(image_desc);
cudnn_tensor_descriptor hl_desc = cudnn_tensor_descriptor hl_desc =
...@@ -359,8 +361,7 @@ void hl_tensor_reshape(hl_tensor_descriptor image_desc, ...@@ -359,8 +361,7 @@ void hl_tensor_reshape(hl_tensor_descriptor image_desc,
int batch_size, int batch_size,
int feature_maps, int feature_maps,
int height, int height,
int width) int width) {
{
const int stride_w = 1; const int stride_w = 1;
const int stride_h = width * stride_w; const int stride_h = width * stride_w;
const int stride_c = height * stride_h; const int stride_c = height * stride_h;
...@@ -384,8 +385,7 @@ void hl_tensor_reshape(hl_tensor_descriptor image_desc, ...@@ -384,8 +385,7 @@ void hl_tensor_reshape(hl_tensor_descriptor image_desc,
int nStride, int nStride,
int cStride, int cStride,
int hStride, int hStride,
int wStride) int wStride) {
{
CHECK_NOTNULL(image_desc); CHECK_NOTNULL(image_desc);
cudnn_tensor_descriptor hl_desc = (cudnn_tensor_descriptor)image_desc; cudnn_tensor_descriptor hl_desc = (cudnn_tensor_descriptor)image_desc;
...@@ -408,8 +408,7 @@ void hl_tensor_reshape(hl_tensor_descriptor image_desc, ...@@ -408,8 +408,7 @@ void hl_tensor_reshape(hl_tensor_descriptor image_desc,
hl_desc->width = width; hl_desc->width = width;
} }
void hl_destroy_tensor_descriptor(hl_tensor_descriptor image_desc) void hl_destroy_tensor_descriptor(hl_tensor_descriptor image_desc) {
{
CHECK_NOTNULL(image_desc); CHECK_NOTNULL(image_desc);
cudnn_tensor_descriptor hl_desc = (cudnn_tensor_descriptor)image_desc; cudnn_tensor_descriptor hl_desc = (cudnn_tensor_descriptor)image_desc;
...@@ -430,11 +429,9 @@ void hl_create_pooling_descriptor(hl_pooling_descriptor* pooling_desc, ...@@ -430,11 +429,9 @@ void hl_create_pooling_descriptor(hl_pooling_descriptor* pooling_desc,
int height_padding, int height_padding,
int width_padding, int width_padding,
int stride_height, int stride_height,
int stride_width) int stride_width) {
{
cudnnPoolingMode_t cudnn_mode; cudnnPoolingMode_t cudnn_mode;
switch (mode) switch (mode) {
{
case HL_POOLING_MAX: case HL_POOLING_MAX:
cudnn_mode = CUDNN_POOLING_MAX; cudnn_mode = CUDNN_POOLING_MAX;
break; break;
...@@ -478,13 +475,13 @@ void hl_create_pooling_descriptor(hl_pooling_descriptor* pooling_desc, ...@@ -478,13 +475,13 @@ void hl_create_pooling_descriptor(hl_pooling_descriptor* pooling_desc,
*pooling_desc = (hl_pooling_descriptor)hl_pooling_desc; *pooling_desc = (hl_pooling_descriptor)hl_pooling_desc;
} }
void hl_destroy_pooling_descriptor(hl_pooling_descriptor pooling_desc) void hl_destroy_pooling_descriptor(hl_pooling_descriptor pooling_desc) {
{
CHECK_NOTNULL(pooling_desc); CHECK_NOTNULL(pooling_desc);
cudnn_pooling_descriptor hl_pooling = (cudnn_pooling_descriptor)pooling_desc; cudnn_pooling_descriptor hl_pooling =
CHECK_NOTNULL(hl_pooling->desc); (cudnn_pooling_descriptor)pooling_desc;
CHECK_NOTNULL(hl_pooling->desc);
CHECK_CUDNN(dynload::cudnnDestroyPoolingDescriptor(hl_pooling->desc)); CHECK_CUDNN(dynload::cudnnDestroyPoolingDescriptor(hl_pooling->desc));
hl_pooling->desc = NULL; hl_pooling->desc = NULL;
...@@ -496,8 +493,7 @@ void hl_pooling_forward(hl_tensor_descriptor input, ...@@ -496,8 +493,7 @@ void hl_pooling_forward(hl_tensor_descriptor input,
real* input_image, real* input_image,
hl_tensor_descriptor output, hl_tensor_descriptor output,
real* output_image, real* output_image,
hl_pooling_descriptor pooling) hl_pooling_descriptor pooling) {
{
cudnnPoolingDescriptor_t pooling_desc; cudnnPoolingDescriptor_t pooling_desc;
cudnnTensorDescriptor_t input_desc; cudnnTensorDescriptor_t input_desc;
cudnnTensorDescriptor_t output_desc; cudnnTensorDescriptor_t output_desc;
...@@ -531,8 +527,7 @@ void hl_pooling_backward(hl_tensor_descriptor input, ...@@ -531,8 +527,7 @@ void hl_pooling_backward(hl_tensor_descriptor input,
hl_tensor_descriptor output, hl_tensor_descriptor output,
real* output_image, real* output_image,
real* output_image_grad, real* output_image_grad,
hl_pooling_descriptor pooling) hl_pooling_descriptor pooling) {
{
cudnnPoolingDescriptor_t pooling_desc; cudnnPoolingDescriptor_t pooling_desc;
cudnnTensorDescriptor_t input_desc; cudnnTensorDescriptor_t input_desc;
cudnnTensorDescriptor_t output_desc; cudnnTensorDescriptor_t output_desc;
...@@ -571,8 +566,7 @@ void hl_create_filter_descriptor(hl_filter_descriptor* filter, ...@@ -571,8 +566,7 @@ void hl_create_filter_descriptor(hl_filter_descriptor* filter,
int input_feature_maps, int input_feature_maps,
int output_feature_maps, int output_feature_maps,
int height, int height,
int width) int width) {
{
CHECK_NOTNULL(filter); CHECK_NOTNULL(filter);
cudnn_filter_descriptor hl_filter = cudnn_filter_descriptor hl_filter =
...@@ -607,8 +601,7 @@ void hl_create_filter_descriptor(hl_filter_descriptor* filter, ...@@ -607,8 +601,7 @@ void hl_create_filter_descriptor(hl_filter_descriptor* filter,
} }
void hl_destroy_filter_descriptor(hl_filter_descriptor filter) void hl_destroy_filter_descriptor(hl_filter_descriptor filter) {
{
CHECK_NOTNULL(filter); CHECK_NOTNULL(filter);
cudnn_filter_descriptor hl_filter = (cudnn_filter_descriptor)filter; cudnn_filter_descriptor hl_filter = (cudnn_filter_descriptor)filter;
...@@ -627,14 +620,13 @@ void hl_create_convolution_descriptor(hl_convolution_descriptor* conv, ...@@ -627,14 +620,13 @@ void hl_create_convolution_descriptor(hl_convolution_descriptor* conv,
int padding_height, int padding_height,
int padding_width, int padding_width,
int stride_height, int stride_height,
int stride_width) int stride_width) {
{
CHECK_NOTNULL(conv); CHECK_NOTNULL(conv);
cudnn_convolution_descriptor hl_conv = cudnn_convolution_descriptor hl_conv = (cudnn_convolution_descriptor)
(cudnn_convolution_descriptor)malloc(sizeof(_cudnn_convolution_descriptor)); malloc(sizeof(_cudnn_convolution_descriptor));
CHECK_NOTNULL(hl_conv);
CHECK_NOTNULL(hl_conv);
CHECK_CUDNN(dynload::cudnnCreateConvolutionDescriptor(&hl_conv->desc)); CHECK_CUDNN(dynload::cudnnCreateConvolutionDescriptor(&hl_conv->desc));
cudnnConvolutionMode_t mode = CUDNN_CROSS_CORRELATION; cudnnConvolutionMode_t mode = CUDNN_CROSS_CORRELATION;
...@@ -667,8 +659,7 @@ void hl_reset_convolution_descriptor(hl_convolution_descriptor conv, ...@@ -667,8 +659,7 @@ void hl_reset_convolution_descriptor(hl_convolution_descriptor conv,
int padding_height, int padding_height,
int padding_width, int padding_width,
int stride_height, int stride_height,
int stride_width) int stride_width) {
{
CHECK_NOTNULL(conv); CHECK_NOTNULL(conv);
CHECK_NOTNULL(image); CHECK_NOTNULL(image);
CHECK_NOTNULL(filter); CHECK_NOTNULL(filter);
...@@ -697,8 +688,7 @@ void hl_reset_convolution_descriptor(hl_convolution_descriptor conv, ...@@ -697,8 +688,7 @@ void hl_reset_convolution_descriptor(hl_convolution_descriptor conv,
hl_conv->mode = mode; hl_conv->mode = mode;
} }
void hl_destroy_convolution_descriptor(hl_convolution_descriptor conv) void hl_destroy_convolution_descriptor(hl_convolution_descriptor conv) {
{
CHECK_NOTNULL(conv); CHECK_NOTNULL(conv);
cudnn_convolution_descriptor hl_conv = (cudnn_convolution_descriptor)conv; cudnn_convolution_descriptor hl_conv = (cudnn_convolution_descriptor)conv;
...@@ -753,8 +743,7 @@ void hl_convolution_forward(hl_tensor_descriptor input, ...@@ -753,8 +743,7 @@ void hl_convolution_forward(hl_tensor_descriptor input,
void hl_convolution_forward_add_bias(hl_tensor_descriptor bias, void hl_convolution_forward_add_bias(hl_tensor_descriptor bias,
real* bias_data, real* bias_data,
hl_tensor_descriptor output, hl_tensor_descriptor output,
real* output_data) real* output_data) {
{
CHECK_NOTNULL(bias); CHECK_NOTNULL(bias);
CHECK_NOTNULL(output); CHECK_NOTNULL(output);
CHECK_NOTNULL(bias_data); CHECK_NOTNULL(bias_data);
...@@ -782,8 +771,7 @@ void hl_convolution_forward_add_bias(hl_tensor_descriptor bias, ...@@ -782,8 +771,7 @@ void hl_convolution_forward_add_bias(hl_tensor_descriptor bias,
void hl_convolution_backward_bias(hl_tensor_descriptor bias, void hl_convolution_backward_bias(hl_tensor_descriptor bias,
real* bias_grad_data, real* bias_grad_data,
hl_tensor_descriptor output, hl_tensor_descriptor output,
real* output_grad_data) real* output_grad_data) {
{
CHECK_NOTNULL(bias); CHECK_NOTNULL(bias);
CHECK_NOTNULL(output); CHECK_NOTNULL(output);
CHECK_NOTNULL(bias_grad_data); CHECK_NOTNULL(bias_grad_data);
...@@ -814,7 +802,6 @@ void hl_convolution_backward_filter(hl_tensor_descriptor input, ...@@ -814,7 +802,6 @@ void hl_convolution_backward_filter(hl_tensor_descriptor input,
void* gpuWorkSpace, void* gpuWorkSpace,
size_t sizeInBytes, size_t sizeInBytes,
int convBwdFilterAlgo) { int convBwdFilterAlgo) {
CHECK_NOTNULL(input); CHECK_NOTNULL(input);
CHECK_NOTNULL(output); CHECK_NOTNULL(output);
CHECK_NOTNULL(filter); CHECK_NOTNULL(filter);
...@@ -889,8 +876,7 @@ void hl_convolution_backward_data(hl_tensor_descriptor input, ...@@ -889,8 +876,7 @@ void hl_convolution_backward_data(hl_tensor_descriptor input,
void hl_softmax_forward(real *input, void hl_softmax_forward(real *input,
real *output, real *output,
int height, int height,
int width) int width) {
{
#ifndef PADDLE_TYPE_DOUBLE #ifndef PADDLE_TYPE_DOUBLE
cudnnDataType_t data_type = CUDNN_DATA_FLOAT; cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
#else #else
...@@ -923,8 +909,7 @@ void hl_softmax_forward(real *input, ...@@ -923,8 +909,7 @@ void hl_softmax_forward(real *input,
void hl_softmax_backward(real *output_value, void hl_softmax_backward(real *output_value,
real *output_grad, real *output_grad,
int height, int height,
int width) int width) {
{
#ifndef PADDLE_TYPE_DOUBLE #ifndef PADDLE_TYPE_DOUBLE
cudnnDataType_t data_type = CUDNN_DATA_FLOAT; cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
#else #else
......
...@@ -203,8 +203,8 @@ inline pid_t gettid() { ...@@ -203,8 +203,8 @@ inline pid_t gettid() {
#endif #endif
pid_t tid = syscall(__NR_gettid); pid_t tid = syscall(__NR_gettid);
#endif #endif
CHECK_NE(tid, -1); CHECK_NE((int)tid, -1);
return tid; return tid;
} }
void hl_init(int device) { void hl_init(int device) {
...@@ -355,7 +355,8 @@ void* hl_malloc_host(size_t size) { ...@@ -355,7 +355,8 @@ void* hl_malloc_host(size_t size) {
void *dest_h; void *dest_h;
CHECK(size) << __func__ << ": the size for device memory is 0, please check."; CHECK(size) << __func__ << ": the size for device memory is 0, please check.";
CHECK_CUDA(dynload::cudaHostAlloc((void**)&dest_h, size, cudaHostAllocDefault)); CHECK_CUDA(dynload::cudaHostAlloc(
(void**)&dest_h, size, cudaHostAllocDefault));
return dest_h; return dest_h;
} }
...@@ -364,7 +365,7 @@ void hl_free_mem_host(void *dest_h) { ...@@ -364,7 +365,7 @@ void hl_free_mem_host(void *dest_h) {
CHECK_NOTNULL(dest_h); CHECK_NOTNULL(dest_h);
cudaError_t err = dynload::cudaFreeHost(dest_h); cudaError_t err = dynload::cudaFreeHost(dest_h);
CHECK (cudaSuccess == err || cudaErrorCudartUnloading == err) CHECK(cudaSuccess == err || cudaErrorCudartUnloading == err)
<< hl_get_device_error_string(); << hl_get_device_error_string();
} }
...@@ -502,7 +503,8 @@ int hl_get_cuda_version() { ...@@ -502,7 +503,8 @@ int hl_get_cuda_version() {
return g_cuda_lib_version; return g_cuda_lib_version;
} }
void hl_create_thread_resources(int device, thread_device_resources device_res) { void hl_create_thread_resources(int device,
thread_device_resources device_res) {
CHECK_CUDA(dynload::cudaSetDevice(device)); CHECK_CUDA(dynload::cudaSetDevice(device));
/* create thread stream */ /* create thread stream */
......
...@@ -78,48 +78,38 @@ __host__ cudaError_t CUDARTAPI cudaLaunchKernel(const void *func, ...@@ -78,48 +78,38 @@ __host__ cudaError_t CUDARTAPI cudaLaunchKernel(const void *func,
dim3 blockDim, dim3 blockDim,
void **args, void **args,
size_t sharedMem, size_t sharedMem,
cudaStream_t stream) cudaStream_t stream) {
{ return dynload::cudaLaunchKernel(func, gridDim, blockDim,
return dynload::cudaLaunchKernel(func, gridDim, blockDim, args, sharedMem, stream); args, sharedMem, stream);
} }
#endif /* CUDART_VERSION >= 7000 */ #endif /* CUDART_VERSION >= 7000 */
__host__ cudaError_t CUDARTAPI cudaLaunch(const void *func) __host__ cudaError_t CUDARTAPI cudaLaunch(const void *func) {
{
return dynload::cudaLaunch(func); return dynload::cudaLaunch(func);
} }
__host__ cudaError_t CUDARTAPI cudaSetupArgument(const void *arg, __host__ cudaError_t CUDARTAPI cudaSetupArgument(const void *arg,
size_t size, size_t size,
size_t offset) size_t offset) {
{
return dynload::cudaSetupArgument(arg, size, offset); return dynload::cudaSetupArgument(arg, size, offset);
} }
__host__ cudaError_t CUDARTAPI cudaConfigureCall(dim3 gridDim, __host__ cudaError_t CUDARTAPI cudaConfigureCall(dim3 gridDim,
dim3 blockDim, dim3 blockDim,
size_t sharedMem, size_t sharedMem,
cudaStream_t stream) cudaStream_t stream) {
{
return dynload::cudaConfigureCall(gridDim, blockDim, return dynload::cudaConfigureCall(gridDim, blockDim,
sharedMem, stream); sharedMem, stream);
} }
extern "C" { extern "C" {
void** CUDARTAPI __cudaRegisterFatBinary( void** CUDARTAPI __cudaRegisterFatBinary(void *fatCubin) {
void *fatCubin
)
{
return dynload::__cudaRegisterFatBinary(fatCubin); return dynload::__cudaRegisterFatBinary(fatCubin);
} }
void CUDARTAPI __cudaUnregisterFatBinary( void CUDARTAPI __cudaUnregisterFatBinary(void **fatCubinHandle) {
void **fatCubinHandle
)
{
return dynload::__cudaUnregisterFatBinary(fatCubinHandle); return dynload::__cudaUnregisterFatBinary(fatCubinHandle);
} }
......
...@@ -19,17 +19,18 @@ limitations under the License. */ ...@@ -19,17 +19,18 @@ limitations under the License. */
P_DEFINE_string(cudnn_dir, "", P_DEFINE_string(cudnn_dir, "",
"Specify path for loading libcudnn.so. For instance, " "Specify path for loading libcudnn.so. For instance, "
"/usr/local/cudnn/lib64. If empty [default], dlopen will search " "/usr/local/cudnn/lib64. If empty [default], dlopen "
"cudnn from LD_LIBRARY_PATH"); "will search cudnn from LD_LIBRARY_PATH");
P_DEFINE_string(cuda_dir, "", P_DEFINE_string(cuda_dir, "",
"Specify path for loading cuda library, such as libcublas, " "Specify path for loading cuda library, such as libcublas, "
"libcurand. For instance, /usr/local/cuda/lib64. " "libcurand. For instance, /usr/local/cuda/lib64. (Note: "
"(Note: libcudart can not be specified by cuda_dir, since some " "libcudart can not be specified by cuda_dir, since some "
"build-in function in cudart already ran before main entry). " "build-in function in cudart already ran before main entry). "
"If empty [default], dlopen will search cuda from LD_LIBRARY_PATH"); "If default, dlopen will search cuda from LD_LIBRARY_PATH");
static inline std::string join(const std::string& part1, const std::string& part2) { static inline std::string join(const std::string& part1,
const std::string& part2) {
// directory separator // directory separator
const char sep = '/'; const char sep = '/';
...@@ -49,10 +50,10 @@ static inline std::string join(const std::string& part1, const std::string& part ...@@ -49,10 +50,10 @@ static inline std::string join(const std::string& part1, const std::string& part
static inline void GetDsoHandleFromDefaultPath( static inline void GetDsoHandleFromDefaultPath(
std::string& dso_path, void** dso_handle, int dynload_flags) { std::string& dso_path, void** dso_handle, int dynload_flags) {
VLOG(3) << "Try to find cuda library: " << dso_path VLOG(3) << "Try to find cuda library: " << dso_path
<< " from default system path."; << " from default system path.";
// default search from LD_LIBRARY_PATH/DYLD_LIBRARY_PATH // default search from LD_LIBRARY_PATH/DYLD_LIBRARY_PATH
*dso_handle = dlopen(dso_path.c_str(), dynload_flags); *dso_handle = dlopen(dso_path.c_str(), dynload_flags);
// DYLD_LIBRARY_PATH is disabled after Mac OS 10.11 to // DYLD_LIBRARY_PATH is disabled after Mac OS 10.11 to
// bring System Integrity Projection (SIP), if dso_handle // bring System Integrity Projection (SIP), if dso_handle
// is null, search from default package path in Mac OS. // is null, search from default package path in Mac OS.
...@@ -62,13 +63,13 @@ static inline void GetDsoHandleFromDefaultPath( ...@@ -62,13 +63,13 @@ static inline void GetDsoHandleFromDefaultPath(
*dso_handle = dlopen(dso_path.c_str(), dynload_flags); *dso_handle = dlopen(dso_path.c_str(), dynload_flags);
if (nullptr == *dso_handle) { if (nullptr == *dso_handle) {
if (dso_path == "libcudnn.dylib") { if (dso_path == "libcudnn.dylib") {
LOG(FATAL) << "Note: [Recommend] copy cudnn into /usr/local/cuda/ \n" LOG(FATAL) << "Note: [Recommend] copy cudnn into /usr/local/cuda/ \n" // NOLINT
<< "For instance, sudo tar -xzf cudnn-7.5-osx-x64-v5.0-ga.tgz -C " << "For instance, sudo tar -xzf cudnn-7.5-osx-x64-v5.0-ga.tgz -C " // NOLINT
<< "/usr/local \n sudo chmod a+r /usr/local/cuda/include/cudnn.h " << "/usr/local \n sudo chmod a+r /usr/local/cuda/include/cudnn.h " // NOLINT
<< "/usr/local/cuda/lib/libcudnn*"; << "/usr/local/cuda/lib/libcudnn*";
} }
} }
} }
#endif #endif
} }
...@@ -96,19 +97,19 @@ static inline void GetDsoHandleFromSearchPath( ...@@ -96,19 +97,19 @@ static inline void GetDsoHandleFromSearchPath(
CHECK(nullptr != *dso_handle) CHECK(nullptr != *dso_handle)
<< "Failed to find cuda library: " << dlPath << std::endl << "Failed to find cuda library: " << dlPath << std::endl
<< "Please specify its path correctly using one of the following ideas: \n" << "Please specify its path correctly using one of the following ways: \n" // NOLINT
<< "Idea 1. set cuda and cudnn lib path at runtime. " << "Method 1. set cuda and cudnn lib path at runtime. "
<< "http://www.paddlepaddle.org/doc/ui/cmd_argument/argument_outline.html \n" << "http://www.paddlepaddle.org/doc/ui/cmd_argument/argument_outline.html \n" // NOLINT
<< "For instance, issue command: paddle train --use_gpu=1 " << "For instance, issue command: paddle train --use_gpu=1 "
<< "--cuda_dir=/usr/local/cudnn/lib --cudnn_dir=/usr/local/cudnn/lib ...\n" << "--cuda_dir=/usr/local/cuda/lib64 --cudnn_dir=/usr/local/cudnn/lib ...\n" // NOLINT
<< "Idea 2. set environment variable LD_LIBRARY_PATH on Linux or " << "Method 2. set environment variable LD_LIBRARY_PATH on Linux or "
<< "DYLD_LIBRARY_PATH on Mac OS. \n" << "DYLD_LIBRARY_PATH on Mac OS. \n"
<< "For instance, issue command: export LD_LIBRARY_PATH=... \n" << "For instance, issue command: export LD_LIBRARY_PATH=... \n"
<< "Note: After Mac OS 10.11, using the DYLD_LIBRARY_PATH is impossible " << "Note: After Mac OS 10.11, using the DYLD_LIBRARY_PATH is impossible "
<< "unless System Integrity Protection (SIP) is disabled. However, @Idea 1" << "unless System Integrity Protection (SIP) is disabled. However, method 1 " // NOLINT
<< "always work well."; << "always work well.";
} }
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册