Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
4440d7ce
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
4440d7ce
编写于
9月 06, 2019
作者:
W
wangchaochaohu
提交者:
GitHub
9月 06, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=develop cuda realization of label smooth op (#19175)
上级
31c5a5ee
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
90 addition
and
4 deletion
+90
-4
paddle/fluid/operators/label_smooth_op.cu
paddle/fluid/operators/label_smooth_op.cu
+90
-4
未找到文件。
paddle/fluid/operators/label_smooth_op.cu
浏览文件 @
4440d7ce
...
...
@@ -12,15 +12,101 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/label_smooth_op.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
__global__
void
LabelSmoothRunOriginKernel
(
const
int
N
,
const
float
epsilon
,
const
int
label_dim
,
const
T
*
src
,
T
*
dst
)
{
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
for
(;
idx
<
N
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
dst
[
idx
]
=
static_cast
<
T
>
(
1
-
epsilon
)
*
src
[
idx
]
+
static_cast
<
T
>
(
epsilon
/
label_dim
);
}
}
template
<
typename
T
>
__global__
void
LabelSmoothRunDistKernel
(
const
int
N
,
const
float
epsilon
,
const
int
dist_numel
,
const
T
*
src
,
const
T
*
dist_data
,
T
*
dst
)
{
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
for
(;
idx
<
N
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
dist_idx
=
idx
-
(
idx
/
dist_numel
)
*
dist_numel
;
dst
[
idx
]
=
static_cast
<
T
>
(
1
-
epsilon
)
*
src
[
idx
]
+
static_cast
<
T
>
(
epsilon
)
*
dist_data
[
dist_idx
];
}
}
template
<
typename
T
>
__global__
void
LabelSmoothGradRunKernel
(
const
int
N
,
const
float
epsilon
,
const
T
*
src
,
T
*
dst
)
{
int
idx
=
blockDim
.
x
*
blockIdx
.
x
+
threadIdx
.
x
;
for
(;
idx
<
N
;
idx
+=
blockDim
.
x
*
gridDim
.
x
)
{
dst
[
idx
]
=
static_cast
<
T
>
(
1
-
epsilon
)
*
src
[
idx
];
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
LabelSmoothGPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
out_t
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
in_t
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
dist_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
"PriorDist"
);
auto
label_dim
=
in_t
->
dims
()[
1
];
auto
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
&
dev
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
size_prob
=
in_t
->
numel
();
const
T
*
in_data
=
in_t
->
data
<
T
>
();
T
*
out_data
=
out_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
threads
=
512
;
int
grid
=
(
size_prob
+
threads
-
1
)
/
threads
;
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
if
(
dist_t
)
{
auto
dist_numel
=
dist_t
->
numel
();
const
T
*
dist_data
=
dist_t
->
data
<
T
>
();
LabelSmoothRunDistKernel
<
T
><<<
grid
,
threads
,
0
,
stream
>>>
(
size_prob
,
epsilon
,
dist_numel
,
in_data
,
dist_data
,
out_data
);
}
else
{
LabelSmoothRunOriginKernel
<
T
><<<
grid
,
threads
,
0
,
stream
>>>
(
size_prob
,
epsilon
,
label_dim
,
in_data
,
out_data
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
LabelSmoothGradGPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
d_out_t
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_in_t
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
d_in_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
&
dev
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
const
T
*
in_data
=
d_out_t
->
data
<
T
>
();
auto
size_prob
=
d_out_t
->
numel
();
T
*
out_data
=
d_in_t
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
int
threads
=
512
;
int
grid
=
(
size_prob
+
threads
-
1
)
/
threads
;
auto
stream
=
ctx
.
cuda_device_context
().
stream
();
LabelSmoothGradRunKernel
<
T
><<<
grid
,
threads
,
0
,
stream
>>>
(
size_prob
,
epsilon
,
in_data
,
out_data
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
label_smooth
,
ops
::
LabelSmoothKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LabelSmoothKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
LabelSmooth
GPU
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LabelSmooth
GPU
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
label_smooth_grad
,
ops
::
LabelSmoothGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LabelSmoothGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
LabelSmoothGrad
GPU
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LabelSmoothGrad
GPU
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录