Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
440ad999
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
440ad999
编写于
10月 16, 2017
作者:
T
Tao Luo
提交者:
GitHub
10月 16, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #4788 from luotao1/seqpool
add SQRT/LAST/FIRST strategy for Seqpool
上级
4da6e86f
6a4282a2
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
97 addition
and
8 deletion
+97
-8
paddle/operators/sequence_pool_op.cc
paddle/operators/sequence_pool_op.cc
+7
-8
paddle/operators/sequence_pool_op.h
paddle/operators/sequence_pool_op.h
+25
-0
python/paddle/v2/framework/tests/test_seq_pool.py
python/paddle/v2/framework/tests/test_seq_pool.py
+65
-0
未找到文件。
paddle/operators/sequence_pool_op.cc
浏览文件 @
440ad999
...
...
@@ -36,11 +36,10 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
SequencePoolOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"A float LoDTensor, the variable-length input of SequencePoolOp"
);
AddOutput
(
"Out"
,
"A float LoDTensor, the variable-length output of SequencePoolOp."
);
AddInput
(
"X"
,
"(LoDTensor), the variable-length input of SequencePoolOp"
);
AddOutput
(
"Out"
,
"(Tensor), output of SequencePoolOp, which does not contain LoD "
"infomation."
);
AddAttr
<
int
>
(
"strategy"
,
"(int, default AVERAGE) the pooling strategy of SequencePoolOp."
)
...
...
@@ -49,13 +48,13 @@ class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
SequencePoolOp pools features of all time-steps of each instance.
For a mini-batch of 3 variable
lengths
sentences, containing 2, 3, and 2 time-steps:
For a mini-batch of 3 variable
-length
sentences, containing 2, 3, and 2 time-steps:
Assume X is a [7,M,N]
float LoDTensor, and X->lod()[0] = [0, 2, 5, 7]
.
Assume X is a [7,M,N]
LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2
.
Besides, for the sake of simplicity, we assume M=1 and N=1,
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
Thus, Out is a [3,1,1]
float LoDTensor, but Out->lod() is nullptr
.
Thus, Out is a [3,1,1]
Tensor without LoD infomation
.
And for different strategy, the value of Out is as follows:
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
...
...
paddle/operators/sequence_pool_op.h
浏览文件 @
440ad999
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -77,6 +78,16 @@ class SequencePoolKernel : public framework::OpKernel<T> {
case
SUM
:
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
break
;
case
SQRT
:
out_e
.
device
(
place
)
=
in_e
.
sum
(
Eigen
::
array
<
int
,
1
>
({{
0
}}))
/
std
::
sqrt
(
static_cast
<
T
>
(
h
));
break
;
case
LAST
:
out_e
.
device
(
place
)
=
in_e
.
chip
(
h
-
1
,
0
);
break
;
case
FIRST
:
out_e
.
device
(
place
)
=
in_e
.
chip
(
0
,
0
);
break
;
default:
PADDLE_THROW
(
"unsupported pooling strategy"
);
}
...
...
@@ -98,6 +109,10 @@ class SequencePoolGradKernel : public framework::OpKernel<T> {
int64_t
w
=
in
->
numel
()
/
dims
[
0
];
in_g
->
mutable_data
<
T
>
(
context
.
GetPlace
());
if
(
strategy
==
LAST
||
strategy
==
FIRST
)
{
// set X@Grad be zero at first when strategy is LAST/FIRST
math
::
SetConstant
<
Place
,
T
>
(
context
.
device_context
(),
in_g
,
0
);
}
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
for
(
int
i
=
0
;
i
<
static_cast
<
int
>
(
lod
.
size
())
-
1
;
++
i
)
{
auto
in_g_t
=
in_g
->
Slice
<
T
>
(
static_cast
<
int
>
(
lod
[
i
]),
...
...
@@ -115,6 +130,16 @@ class SequencePoolGradKernel : public framework::OpKernel<T> {
case
SUM
:
in_g_e
.
device
(
place
)
=
(
out_g_e
).
broadcast
(
bcast
);
break
;
case
SQRT
:
in_g_e
.
device
(
place
)
=
(
out_g_e
/
std
::
sqrt
(
static_cast
<
T
>
(
h
))).
broadcast
(
bcast
);
break
;
case
LAST
:
in_g_e
.
chip
(
h
-
1
,
0
).
device
(
place
)
=
out_g_e
;
break
;
case
FIRST
:
in_g_e
.
chip
(
0
,
0
).
device
(
place
)
=
out_g_e
;
break
;
default:
PADDLE_THROW
(
"unsupported pooling strategy"
);
}
...
...
python/paddle/v2/framework/tests/test_seq_pool.py
浏览文件 @
440ad999
...
...
@@ -82,5 +82,70 @@ class TestSeqSumPool2D(TestSeqAvgPool2D):
out
[
i
]
=
np
.
reshape
(
sub_x
.
sum
(
axis
=
0
),
(
3
,
17
))
class
TestSeqSqrtPool
(
TestSeqAvgPool
):
def
compute
(
self
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
SQRT
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
len
=
lod
[
0
][
i
+
1
]
-
lod
[
0
][
i
]
out
[
i
]
=
sub_x
.
sum
(
axis
=
0
)
/
np
.
sqrt
(
len
)
class
TestSeqSqrtPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
SQRT
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
len
=
lod
[
0
][
i
+
1
]
-
lod
[
0
][
i
]
out
[
i
]
=
np
.
reshape
(
sub_x
.
sum
(
axis
=
0
)
/
np
.
sqrt
(
len
),
(
3
,
17
))
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
,
max_relative_error
=
0.06
)
class
TestSeqLastPool
(
TestSeqAvgPool
):
def
compute
(
self
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
LAST
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
[
-
1
,
:]
class
TestSeqLastPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
LAST
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
[
-
1
,
:],
(
3
,
17
))
class
TestSeqFirstPool
(
TestSeqAvgPool
):
def
compute
(
self
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
FIRST
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
[
0
,
:]
class
TestSeqFirstPool2D
(
TestSeqAvgPool2D
):
def
compute
(
self
):
self
.
attrs
=
{
'strategy'
:
SeqPoolType
.
FIRST
}
x
,
lod
=
self
.
inputs
[
'X'
]
out
=
self
.
outputs
[
'Out'
]
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
[
0
,
:],
(
3
,
17
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录