Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
43facfd3
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
43facfd3
编写于
7月 01, 2020
作者:
L
LielinJiang
提交者:
GitHub
7月 01, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Cherry-pick]Add DistributedBatchSampler and Colerjitter (#25242)
* add DistributedSampler and ColorJitter, test=develop
上级
693083a4
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
564 addition
and
0 deletion
+564
-0
python/CMakeLists.txt
python/CMakeLists.txt
+1
-0
python/paddle/__init__.py
python/paddle/__init__.py
+3
-0
python/paddle/incubate/__init__.py
python/paddle/incubate/__init__.py
+18
-0
python/paddle/incubate/hapi/__init__.py
python/paddle/incubate/hapi/__init__.py
+18
-0
python/paddle/incubate/hapi/distributed.py
python/paddle/incubate/hapi/distributed.py
+134
-0
python/paddle/incubate/hapi/tests/CMakeLists.txt
python/paddle/incubate/hapi/tests/CMakeLists.txt
+6
-0
python/paddle/incubate/hapi/tests/test_distributed_sampler.py
...on/paddle/incubate/hapi/tests/test_distributed_sampler.py
+69
-0
python/paddle/incubate/hapi/tests/test_transforms.py
python/paddle/incubate/hapi/tests/test_transforms.py
+52
-0
python/paddle/incubate/hapi/vision/__init__.py
python/paddle/incubate/hapi/vision/__init__.py
+18
-0
python/paddle/incubate/hapi/vision/transforms/__init__.py
python/paddle/incubate/hapi/vision/transforms/__init__.py
+19
-0
python/paddle/incubate/hapi/vision/transforms/transforms.py
python/paddle/incubate/hapi/vision/transforms/transforms.py
+222
-0
python/setup.py.in
python/setup.py.in
+4
-0
未找到文件。
python/CMakeLists.txt
浏览文件 @
43facfd3
...
...
@@ -96,6 +96,7 @@ if (WITH_TESTING)
add_subdirectory
(
paddle/fluid/tests
)
add_subdirectory
(
paddle/fluid/contrib/tests
)
add_subdirectory
(
paddle/fluid/contrib/slim/tests
)
add_subdirectory
(
paddle/incubate/hapi/tests
)
endif
()
install
(
DIRECTORY
${
PADDLE_PYTHON_PACKAGE_DIR
}
DESTINATION opt/paddle/share/wheels
...
...
python/paddle/__init__.py
浏览文件 @
43facfd3
...
...
@@ -35,3 +35,6 @@ import paddle.distributed
batch
=
batch
.
batch
import
paddle.sysconfig
import
paddle.complex
from
.
import
incubate
from
.incubate
import
hapi
python/paddle/incubate/__init__.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
hapi
__all__
=
[]
__all__
+=
hapi
.
__all__
python/paddle/incubate/hapi/__init__.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
distributed
from
.
import
vision
__all__
=
[
'distributed'
,
'vision'
]
python/paddle/incubate/hapi/distributed.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
math
import
numpy
as
np
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
from
paddle.fluid.io
import
BatchSampler
__all__
=
[
'DistributedBatchSampler'
]
class
DistributedBatchSampler
(
BatchSampler
):
"""Sampler that restricts data loading to a subset of the dataset.
In such case, each process can pass a DistributedBatchSampler instance
as a DataLoader sampler, and load a subset of the original dataset that
is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Args:
dataset(paddle.io.Dataset): this could be a `paddle.io.Dataset` implement
or other python object which implemented
`__len__` for BatchSampler to get sample
number of data source.
batch_size(int): sample indice number in a mini-batch indices.
shuffle(bool): whther to shuffle indices order before genrating
batch indices. Default False.
drop_last(bool): whether drop the last incomplete batch dataset size
is not divisible by the batch size. Default False
Examples:
.. code-block:: python
from paddle.incubate.hapi.distributed import DistributedBatchSampler
class FakeDataset():
def __init__(self):
pass
def __getitem__(self, idx):
return idx,
def __len__(self):
return 10
train_dataset = FakeDataset()
dist_train_dataloader = DistributedBatchSampler(train_dataset, batch_size=4)
for data in dist_train_dataloader:
# do something
break
"""
def
__init__
(
self
,
dataset
,
batch_size
,
shuffle
=
False
,
drop_last
=
False
):
self
.
dataset
=
dataset
assert
isinstance
(
batch_size
,
int
)
and
batch_size
>
0
,
\
"batch_size should be a positive integer"
self
.
batch_size
=
batch_size
assert
isinstance
(
shuffle
,
bool
),
\
"shuffle should be a boolean value"
self
.
shuffle
=
shuffle
assert
isinstance
(
drop_last
,
bool
),
\
"drop_last should be a boolean number"
self
.
drop_last
=
drop_last
self
.
nranks
=
ParallelEnv
().
nranks
self
.
local_rank
=
ParallelEnv
().
local_rank
self
.
epoch
=
0
self
.
num_samples
=
int
(
math
.
ceil
(
len
(
self
.
dataset
)
*
1.0
/
self
.
nranks
))
self
.
total_size
=
self
.
num_samples
*
self
.
nranks
def
__iter__
(
self
):
num_samples
=
len
(
self
.
dataset
)
indices
=
np
.
arange
(
num_samples
).
tolist
()
indices
+=
indices
[:(
self
.
total_size
-
len
(
indices
))]
assert
len
(
indices
)
==
self
.
total_size
if
self
.
shuffle
:
np
.
random
.
RandomState
(
self
.
epoch
).
shuffle
(
indices
)
self
.
epoch
+=
1
# subsample
def
_get_indices_by_batch_size
(
indices
):
subsampled_indices
=
[]
last_batch_size
=
self
.
total_size
%
(
self
.
batch_size
*
self
.
nranks
)
assert
last_batch_size
%
self
.
nranks
==
0
last_local_batch_size
=
last_batch_size
//
self
.
nranks
for
i
in
range
(
self
.
local_rank
*
self
.
batch_size
,
len
(
indices
)
-
last_batch_size
,
self
.
batch_size
*
self
.
nranks
):
subsampled_indices
.
extend
(
indices
[
i
:
i
+
self
.
batch_size
])
indices
=
indices
[
len
(
indices
)
-
last_batch_size
:]
subsampled_indices
.
extend
(
indices
[
self
.
local_rank
*
last_local_batch_size
:(
self
.
local_rank
+
1
)
*
last_local_batch_size
])
return
subsampled_indices
if
self
.
nranks
>
1
:
indices
=
_get_indices_by_batch_size
(
indices
)
assert
len
(
indices
)
==
self
.
num_samples
_sample_iter
=
iter
(
indices
)
batch_indices
=
[]
for
idx
in
_sample_iter
:
batch_indices
.
append
(
idx
)
if
len
(
batch_indices
)
==
self
.
batch_size
:
yield
batch_indices
batch_indices
=
[]
if
not
self
.
drop_last
and
len
(
batch_indices
)
>
0
:
yield
batch_indices
def
__len__
(
self
):
num_samples
=
self
.
num_samples
num_samples
+=
int
(
not
self
.
drop_last
)
*
(
self
.
batch_size
-
1
)
return
num_samples
//
self
.
batch_size
def
set_epoch
(
self
,
epoch
):
self
.
epoch
=
epoch
python/paddle/incubate/hapi/tests/CMakeLists.txt
0 → 100644
浏览文件 @
43facfd3
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
python/paddle/incubate/hapi/tests/test_distributed_sampler.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
math
import
unittest
from
paddle.incubate.hapi.distributed
import
DistributedBatchSampler
class
FakeDataset
():
def
__init__
(
self
):
pass
def
__getitem__
(
self
,
index
):
return
index
def
__len__
(
self
):
return
10
class
TestDistributedBatchSampler
(
unittest
.
TestCase
):
def
test_sampler
(
self
):
dataset
=
FakeDataset
()
sampler
=
DistributedBatchSampler
(
dataset
,
batch_size
=
1
,
shuffle
=
True
)
for
batch_idx
in
sampler
:
batch_idx
pass
def
test_multiple_gpus_sampler
(
self
):
dataset
=
FakeDataset
()
sampler1
=
DistributedBatchSampler
(
dataset
,
batch_size
=
4
,
shuffle
=
True
,
drop_last
=
True
)
sampler2
=
DistributedBatchSampler
(
dataset
,
batch_size
=
4
,
shuffle
=
True
,
drop_last
=
True
)
sampler1
.
nranks
=
2
sampler1
.
local_rank
=
0
sampler1
.
num_samples
=
int
(
math
.
ceil
(
len
(
dataset
)
*
1.0
/
sampler1
.
nranks
))
sampler1
.
total_size
=
sampler1
.
num_samples
*
sampler1
.
nranks
sampler2
.
nranks
=
2
sampler2
.
local_rank
=
1
sampler2
.
num_samples
=
int
(
math
.
ceil
(
len
(
dataset
)
*
1.0
/
sampler2
.
nranks
))
sampler2
.
total_size
=
sampler2
.
num_samples
*
sampler2
.
nranks
for
batch_idx
in
sampler1
:
batch_idx
pass
for
batch_idx
in
sampler2
:
batch_idx
pass
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/incubate/hapi/tests/test_transforms.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
from
paddle.incubate.hapi.vision.transforms
import
transforms
class
TestTransforms
(
unittest
.
TestCase
):
def
do_transform
(
self
,
trans
):
fake_img
=
(
np
.
random
.
random
((
400
,
300
,
3
))
*
255
).
astype
(
'uint8'
)
for
t
in
trans
:
fake_img
=
t
(
fake_img
)
def
test_color_jitter
(
self
):
trans
=
[
transforms
.
BrightnessTransform
(
0.0
),
transforms
.
HueTransform
(
0.0
),
transforms
.
SaturationTransform
(
0.0
),
transforms
.
ContrastTransform
(
0.0
),
transforms
.
ColorJitter
(
0.2
,
0.2
,
0.2
,
0.2
)
]
self
.
do_transform
(
trans
)
def
test_exception
(
self
):
with
self
.
assertRaises
(
ValueError
):
transforms
.
ContrastTransform
(
-
1.0
)
with
self
.
assertRaises
(
ValueError
):
transforms
.
SaturationTransform
(
-
1.0
),
with
self
.
assertRaises
(
ValueError
):
transforms
.
HueTransform
(
-
1.0
)
with
self
.
assertRaises
(
ValueError
):
transforms
.
BrightnessTransform
(
-
1.0
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/incubate/hapi/vision/__init__.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
transforms
from
.transforms
import
*
__all__
=
transforms
.
__all__
python/paddle/incubate/hapi/vision/transforms/__init__.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
transforms
from
.transforms
import
*
__all__
=
transforms
.
__all__
python/paddle/incubate/hapi/vision/transforms/transforms.py
0 → 100644
浏览文件 @
43facfd3
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
sys
import
cv2
import
random
import
numpy
as
np
import
collections
if
sys
.
version_info
<
(
3
,
3
):
Sequence
=
collections
.
Sequence
Iterable
=
collections
.
Iterable
else
:
Sequence
=
collections
.
abc
.
Sequence
Iterable
=
collections
.
abc
.
Iterable
__all__
=
[
"BrightnessTransform"
,
"SaturationTransform"
,
"ContrastTransform"
,
"HueTransform"
,
"ColorJitter"
,
]
class
BrightnessTransform
(
object
):
"""Adjust brightness of the image.
Args:
value (float): How much to adjust the brightness. Can be any
non negative number. 0 gives the original image
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import BrightnessTransform
transform = BrightnessTransform(0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
value
):
if
value
<
0
:
raise
ValueError
(
"brightness value should be non-negative"
)
self
.
value
=
value
def
__call__
(
self
,
img
):
if
self
.
value
==
0
:
return
img
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
float32
)
alpha
=
np
.
random
.
uniform
(
max
(
0
,
1
-
self
.
value
),
1
+
self
.
value
)
img
=
img
*
alpha
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
class
ContrastTransform
(
object
):
"""Adjust contrast of the image.
Args:
value (float): How much to adjust the contrast. Can be any
non negative number. 0 gives the original image
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import ContrastTransform
transform = ContrastTransform(0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
value
):
if
value
<
0
:
raise
ValueError
(
"contrast value should be non-negative"
)
self
.
value
=
value
def
__call__
(
self
,
img
):
if
self
.
value
==
0
:
return
img
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
float32
)
alpha
=
np
.
random
.
uniform
(
max
(
0
,
1
-
self
.
value
),
1
+
self
.
value
)
img
=
img
*
alpha
+
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2GRAY
).
mean
()
*
(
1
-
alpha
)
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
class
SaturationTransform
(
object
):
"""Adjust saturation of the image.
Args:
value (float): How much to adjust the saturation. Can be any
non negative number. 0 gives the original image
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import SaturationTransform
transform = SaturationTransform(0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
value
):
if
value
<
0
:
raise
ValueError
(
"saturation value should be non-negative"
)
self
.
value
=
value
def
__call__
(
self
,
img
):
if
self
.
value
==
0
:
return
img
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
float32
)
alpha
=
np
.
random
.
uniform
(
max
(
0
,
1
-
self
.
value
),
1
+
self
.
value
)
gray_img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2GRAY
)
gray_img
=
gray_img
[...,
np
.
newaxis
]
img
=
img
*
alpha
+
gray_img
*
(
1
-
alpha
)
return
img
.
clip
(
0
,
255
).
astype
(
dtype
)
class
HueTransform
(
object
):
"""Adjust hue of the image.
Args:
value (float): How much to adjust the hue. Can be any number
between 0 and 0.5, 0 gives the original image
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import HueTransform
transform = HueTransform(0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
value
):
if
value
<
0
or
value
>
0.5
:
raise
ValueError
(
"hue value should be in [0.0, 0.5]"
)
self
.
value
=
value
def
__call__
(
self
,
img
):
if
self
.
value
==
0
:
return
img
dtype
=
img
.
dtype
img
=
img
.
astype
(
np
.
uint8
)
hsv_img
=
cv2
.
cvtColor
(
img
,
cv2
.
COLOR_BGR2HSV_FULL
)
h
,
s
,
v
=
cv2
.
split
(
hsv_img
)
alpha
=
np
.
random
.
uniform
(
-
self
.
value
,
self
.
value
)
h
=
h
.
astype
(
np
.
uint8
)
# uint8 addition take cares of rotation across boundaries
with
np
.
errstate
(
over
=
"ignore"
):
h
+=
np
.
uint8
(
alpha
*
255
)
hsv_img
=
cv2
.
merge
([
h
,
s
,
v
])
return
cv2
.
cvtColor
(
hsv_img
,
cv2
.
COLOR_HSV2BGR_FULL
).
astype
(
dtype
)
class
ColorJitter
(
object
):
"""Randomly change the brightness, contrast, saturation and hue of an image.
Args:
brightness: How much to jitter brightness.
Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
or the given [min, max]. Should be non negative numbers.
contrast: How much to jitter contrast.
Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
or the given [min, max]. Should be non negative numbers.
saturation: How much to jitter saturation.
Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
or the given [min, max]. Should be non negative numbers.
hue: How much to jitter hue.
Chosen uniformly from [-hue, hue] or the given [min, max].
Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
Examples:
.. code-block:: python
import numpy as np
from paddle.incubate.hapi.vision.transforms import ColorJitter
transform = ColorJitter(0.4)
fake_img = np.random.rand(500, 500, 3).astype('float32')
fake_img = transform(fake_img)
print(fake_img.shape)
"""
def
__init__
(
self
,
brightness
=
0
,
contrast
=
0
,
saturation
=
0
,
hue
=
0
):
transforms
=
[]
if
brightness
!=
0
:
transforms
.
append
(
BrightnessTransform
(
brightness
))
if
contrast
!=
0
:
transforms
.
append
(
ContrastTransform
(
contrast
))
if
saturation
!=
0
:
transforms
.
append
(
SaturationTransform
(
saturation
))
if
hue
!=
0
:
transforms
.
append
(
HueTransform
(
hue
))
random
.
shuffle
(
transforms
)
self
.
transforms
=
transforms
def
__call__
(
self
,
img
):
for
t
in
self
.
transforms
:
img
=
t
(
img
)
return
img
python/setup.py.in
浏览文件 @
43facfd3
...
...
@@ -177,6 +177,10 @@ packages=['paddle',
'paddle.fluid.incubate.fleet.parameter_server.pslib',
'paddle.fluid.incubate.fleet.collective',
'paddle.fluid.incubate.fleet.utils',
'paddle.incubate',
'paddle.incubate.hapi',
'paddle.incubate.hapi.vision',
'paddle.incubate.hapi.vision.transforms',
]
with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录