未验证 提交 426912df 编写于 作者: C Chengmo 提交者: GitHub

Add Index sample OP (#23218)

* add index_sample op
上级 638d924d
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/index_sample_op.h"
#include <vector>
#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
class IndexSampleOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "Input(Tensor), dtype support int32/int64/float/double");
AddInput("Index", "Index(Tensor), dtype support int32/int64");
AddOutput("Out", "Return the element of input at index");
AddComment(R"DOC(
IndexSample OP returns the element of the specified location of X,
and the location is specified by Index.
X tensor and Index tensor's shape must be 2-D,
dimension at 0 which usually is batch size must be equal.
The returned tensor has the same shape and dimensions as the Index tensor.
)DOC");
}
};
class IndexSampleOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
platform::errors::InvalidArgument(
"Inputs(Input) of FindByIndex should not be null."));
PADDLE_ENFORCE_EQ(ctx->HasInput("Index"), true,
platform::errors::InvalidArgument(
"Inputs(Index) of FindByIndex should not be null."));
auto input_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE_EQ(
input_dims.size(), 2,
platform::errors::InvalidArgument(
"Inputs(X) shape of IndexSample op should be 2-D, but "
"got X's shape = [%s], please check X shape.",
input_dims));
auto index_dims = ctx->GetInputDim("Index");
PADDLE_ENFORCE_EQ(
input_dims.size(), 2,
platform::errors::InvalidArgument(
"Inputs(Index) shape of IndexSample op should be 2-D, but "
"got Index's shape [%s] , please check index shape.",
input_dims));
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(input_dims[0], index_dims[0],
platform::errors::InvalidArgument(
"Inputs(X)'s value of dimension 0 must same with "
"Inputs(Index)'s value of dimension 0, but "
"got %d of Inputs(X), and got %d of Inputs(Index), "
"please check Inputs shape.",
input_dims[0], index_dims[0]));
}
ctx->SetOutputDim("Out", index_dims);
auto type = ctx->GetInputsVarType("Index")[0];
if (type == framework::proto::VarType::LOD_TENSOR) {
ctx->ShareLoD("Index", /*->*/ "Out");
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
return framework::OpKernelType(data_type, ctx.device_context());
}
};
class IndexSampleGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE_EQ(
ctx->HasInput("Index"), true,
platform::errors::InvalidArgument("Input(Index) should be not null."));
PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
platform::errors::InvalidArgument(
"Input(Out@GRAD) should be not null."));
PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
platform::errors::InvalidArgument(
"Output(X@GRAD) should be not null."));
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
auto data_type = OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));
return framework::OpKernelType(data_type, ctx.device_context());
}
};
template <typename T>
class IndexSampleGradMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("index_sample_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("Index", this->Input("Index"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(IndexSampleGradNoNeedBufferVarInferer, "X");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(index_sample, ops::IndexSampleOp, ops::IndexSampleOpMaker,
ops::IndexSampleGradMaker<paddle::framework::OpDesc>,
ops::IndexSampleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(index_sample_grad, ops::IndexSampleGradOp,
ops::IndexSampleGradNoNeedBufferVarInferer);
REGISTER_OP_CPU_KERNEL(
index_sample, ops::IndexSampleKernel<paddle::platform::CPUPlace, float>,
ops::IndexSampleKernel<paddle::platform::CPUPlace, double>,
ops::IndexSampleKernel<paddle::platform::CPUPlace, int>,
ops::IndexSampleKernel<paddle::platform::CPUPlace, int64_t>);
REGISTER_OP_CPU_KERNEL(
index_sample_grad,
ops::IndexSampleGradKernel<paddle::platform::CPUPlace, float>,
ops::IndexSampleGradKernel<paddle::platform::CPUPlace, double>,
ops::IndexSampleGradKernel<paddle::platform::CPUPlace, int>,
ops::IndexSampleGradKernel<paddle::platform::CPUPlace, int64_t>);
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <gflags/gflags.h>
#include <cmath>
#include <fstream>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DDim = framework::DDim;
template <typename T, typename IndexT = int>
void IndexSampleInner(const framework::ExecutionContext &context,
const LoDTensor &input, const LoDTensor &index,
LoDTensor *output) {
auto input_dims = input.dims();
auto index_dims = index.dims();
int batch_size = input_dims[0];
auto value_length = input_dims[1];
auto index_length = index_dims[1];
int index_ids_num = index.numel();
auto *input_data = input.data<T>();
auto *index_data = index.data<IndexT>();
std::vector<T> res{};
for (int i = 0; i < index_ids_num; i++) {
int b = floor(i / index_length);
PADDLE_ENFORCE_GE(
index_data[i], 0,
platform::errors::InvalidArgument(
"Variable value (index) of OP(index_sample) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value.",
value_length, index_data[i]));
PADDLE_ENFORCE_LT(
index_data[i], value_length,
platform::errors::InvalidArgument(
"Variable value (index) of OP(index_sample) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value.",
value_length, index_data[i]));
int v_i = b * value_length + static_cast<int>(index_data[i]);
T v = input_data[v_i];
VLOG(4) << "Index Sample: batch = " << b << " index = " << v_i
<< " value = " << v;
res.push_back(v);
}
auto ddim = framework::make_ddim({batch_size, index_length});
output->Resize(ddim);
T *out_data = output->mutable_data<T>(context.GetPlace());
memcpy(out_data, &res[0], sizeof(T) * index_ids_num);
}
template <typename DeviceContext, typename T>
class IndexSampleKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *input_var = ctx.InputVar("X");
auto *index_var = ctx.InputVar("Index");
auto &input_tensor = input_var->Get<LoDTensor>();
auto &index_tensor = index_var->Get<LoDTensor>();
auto *out_var = ctx.OutputVar("Out");
auto *out_tensor = out_var->GetMutable<framework::LoDTensor>();
const auto &index_type = index_tensor.type();
bool index_type_match = index_type == framework::proto::VarType::INT32 ||
index_type == framework::proto::VarType::INT64;
PADDLE_ENFORCE_EQ(index_type_match, true,
platform::errors::InvalidArgument(
"Input(Index) holds the wrong type, it holds %s, but "
"desires to be %s or %s",
paddle::framework::DataTypeToString(index_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT64)));
if (index_type == framework::proto::VarType::INT32) {
IndexSampleInner<T, int>(ctx, input_tensor, index_tensor, out_tensor);
} else if (index_type == framework::proto::VarType::INT64) {
IndexSampleInner<T, int64_t>(ctx, input_tensor, index_tensor, out_tensor);
}
}
};
template <typename T, typename IndexT = int>
void IndexSampleGradInner(const framework::ExecutionContext &context,
const LoDTensor &out_grad, const LoDTensor &index,
LoDTensor *x_grad) {
auto index_dims = index.dims();
auto x_grad_dims = x_grad->dims();
int batch_size = x_grad_dims[0];
auto value_length = x_grad_dims[1];
auto index_length = index_dims[1];
int index_ids_num = index.numel();
T *x_grad_data = x_grad->mutable_data<T>(context.GetPlace());
auto *out_grad_data = out_grad.data<T>();
auto *index_data = index.data<IndexT>();
memset(x_grad_data, 0, batch_size * value_length * sizeof(T));
for (int i = 0; i < index_ids_num; i++) {
int b = floor(i / index_length);
PADDLE_ENFORCE_GE(
index_data[i], 0,
platform::errors::InvalidArgument(
"Variable value (index) of OP(index_sample_grad) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value.",
value_length, index_data[i]));
PADDLE_ENFORCE_LT(
index_data[i], value_length,
platform::errors::InvalidArgument(
"Variable value (index) of OP(index_sample_grad) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value.",
value_length, index_data[i]));
int v_i = b * value_length + static_cast<int>(index_data[i]);
x_grad_data[v_i] += out_grad_data[i];
}
}
template <typename DeviceContext, typename T>
class IndexSampleGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto *index_var = context.InputVar("Index");
auto *x_grad_var = context.OutputVar(framework::GradVarName("X"));
auto *out_grad_var = context.InputVar(framework::GradVarName("Out"));
auto &index_tensor = index_var->Get<LoDTensor>();
auto &out_grad_tensor = out_grad_var->Get<LoDTensor>();
auto *x_grad_tensor = x_grad_var->GetMutable<framework::LoDTensor>();
const auto &index_type = index_tensor.type();
bool index_type_match = index_type == framework::proto::VarType::INT32 ||
index_type == framework::proto::VarType::INT64;
PADDLE_ENFORCE_EQ(index_type_match, true,
platform::errors::InvalidArgument(
"Input(Index) holds the wrong type, it holds %s, but "
"desires to be %s or %s",
paddle::framework::DataTypeToString(index_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT64)));
if (index_type == framework::proto::VarType::INT32) {
IndexSampleGradInner<T, int>(context, out_grad_tensor, index_tensor,
x_grad_tensor);
} else if (index_type == framework::proto::VarType::INT64) {
IndexSampleGradInner<T, int64_t>(context, out_grad_tensor, index_tensor,
x_grad_tensor);
}
}
};
} // namespace operators
} // namespace paddle
......@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from paddle.check_import_scipy import check_import_scipy
......@@ -33,10 +34,10 @@ import paddle.compat
import paddle.distributed
batch = batch.batch
import paddle.sysconfig
import paddle.nn
import paddle.tensor
import paddle.nn
#TODO: define alias in tensor and framework directory
# TODO: define alias in tensor and framework directory
# from .tensor.creation import create_.tensor #DEFINE_ALIAS
# from .tensor.creation import create_lod_.tensor #DEFINE_ALIAS
# from .tensor.creation import create_random_int_lod.tensor #DEFINE_ALIAS
......@@ -191,6 +192,7 @@ from .tensor.search import argmax #DEFINE_ALIAS
# from .tensor.search import topk #DEFINE_ALIAS
# from .tensor.search import where #DEFINE_ALIAS
# from .tensor.search import index_select #DEFINE_ALIAS
from .tensor.search import index_sample #DEFINE_ALIAS
# from .tensor.search import nonzero #DEFINE_ALIAS
from .tensor.search import sort #DEFINE_ALIAS
# from .framework.framework import set_default_dtype #DEFINE_ALIAS
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
class TestIndexSampleOp(OpTest):
def setUp(self):
self.op_type = "index_sample"
self.config()
xnp = np.random.random(self.x_shape).astype(self.x_type)
indexnp = np.random.randint(
low=0, high=self.x_shape[1],
size=self.index_shape).astype(self.index_type)
self.inputs = {'X': xnp, 'Index': indexnp}
index_array = []
for i in range(self.index_shape[0]):
for j in indexnp[i]:
index_array.append(xnp[i, j])
out = np.reshape(index_array, self.index_shape)
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out')
def config(self):
"""
For multi-dimension input
"""
self.x_shape = (10, 20)
self.x_type = "float64"
self.index_shape = (10, 10)
self.index_type = "int32"
class TestCase1(TestIndexSampleOp):
def config(self):
"""
For one dimension input
"""
self.x_shape = (100, 1)
self.x_type = "float64"
self.index_shape = (100, 1)
self.index_type = "int32"
class TestCase2(TestIndexSampleOp):
def config(self):
"""
For int64_t index type
"""
self.x_shape = (10, 100)
self.x_type = "float64"
self.index_shape = (10, 10)
self.index_type = "int64"
class TestCase3(TestIndexSampleOp):
def config(self):
"""
For int index type
"""
self.x_shape = (10, 100)
self.x_type = "float64"
self.index_shape = (10, 10)
self.index_type = "int32"
class TestCase4(TestIndexSampleOp):
def config(self):
"""
For int64 index type
"""
self.x_shape = (10, 100)
self.x_type = "float64"
self.index_shape = (10, 10)
self.index_type = "int64"
class TestIndexSampleShape(unittest.TestCase):
def test_shape(self):
import paddle.fluid as fluid
import paddle
# create x value
x_shape = (2, 5)
x_type = "float64"
x_np = np.random.random(x_shape).astype(x_type)
# create index value
index_shape = (2, 3)
index_type = "int32"
index_np = np.random.randint(
low=0, high=x_shape[1], size=index_shape).astype(index_type)
x = fluid.data(name='x', shape=[-1, 5], dtype='float64')
index = fluid.data(name='index', shape=[-1, 3], dtype='int32')
output = paddle.index_sample(x=x, index=index)
place = fluid.CPUPlace()
exe = fluid.Executor(place=place)
exe.run(fluid.default_startup_program())
feed = {'x': x_np, 'index': index_np}
res = exe.run(feed=feed, fetch_list=[output])
if __name__ == "__main__":
unittest.main()
......@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#TODO: define alias in tensor and framework directory
# TODO: define alias in tensor and framework directory
# from .creation import create_tensor #DEFINE_ALIAS
# from .creation import create_lod_tensor #DEFINE_ALIAS
# from .creation import create_random_int_lod #DEFINE_ALIAS
......@@ -29,7 +29,7 @@ from .creation import linspace #DEFINE_ALIAS
# from .creation import zeros_like #DEFINE_ALIAS
# from .creation import arrange #DEFINE_ALIAS
# from .creation import eye #DEFINE_ALIAS
from .creation import full #DEFINE_ALIAS
from .creation import full # DEFINE_ALIAS
# from .creation import linspace #DEFINE_ALIAS
# from .creation import full_like #DEFINE_ALIAS
from .creation import triu #DEFINE_ALIAS
......@@ -167,5 +167,6 @@ from .search import argmax #DEFINE_ALIAS
# from .search import topk #DEFINE_ALIAS
# from .search import where #DEFINE_ALIAS
# from .search import index_select #DEFINE_ALIAS
from .search import index_sample # DEFINE_ALIAS
# from .search import nonzero #DEFINE_ALIAS
from .search import sort #DEFINE_ALIAS
......@@ -11,8 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
# TODO: define searching & indexing functions of a tensor
# TODO: define searching & indexing functions of a tensor
__all__ = [
'argmax',
# 'argmin',
......@@ -24,7 +27,8 @@ __all__ = [
# 'where',
# 'index_select',
# 'nonzero',
'sort'
'sort',
'index_sample'
]
from paddle.common_ops_import import *
......@@ -125,7 +129,7 @@ def sort(input, axis=-1, descending=False, out=None, name=None):
This OP sorts the input along the given axis, and returns sorted output
data Varibale and its corresponding index Variable with the same shape as
:attr:`input`.
**NOTICE**: The Variable in the output of this OP has gradient. You could\
set Variable :attr:`stop_gradient`.
Args:
......@@ -207,3 +211,75 @@ def sort(input, axis=-1, descending=False, out=None, name=None):
attrs={'axis': axis,
'descending': descending})
return out, ids
def index_sample(x, index):
"""
**IndexSample Layer**
IndexSample OP returns the element of the specified location of X,
and the location is specified by Index.
.. code-block:: text
Given:
X = [[1, 2, 3, 4, 5],
[6, 7, 8, 9, 10]]
Index = [[0, 1, 3],
[0, 2, 4]]
Then:
Out = [[1, 2, 4],
[6, 8, 10]]
Args:
x (Variable): The source input tensor with 2-D shape. Supported data type is
int32, int64, float32, float64.
index (Variable): The index input tensor with 2-D shape, first dimension should be same with X.
Data type is int32 or int64.
Returns:
output (Variable): The output is a tensor with the same shape as index.
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
# create x value
x_shape = (2, 5)
x_type = "float64"
x_np = np.random.random(x_shape).astype(x_type)
# create index value
index_shape = (2, 3)
index_type = "int32"
index_np = np.random.randint(low=0,
high=x_shape[1],
size=index_shape).astype(index_type)
x = fluid.data(name='x', shape=[-1, 5], dtype='float64')
index = fluid.data(name='index', shape=[-1, 3], dtype='int32')
output = paddle.index_sample(x=x, index=index)
"""
helper = LayerHelper("index_sample", **locals())
check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
'paddle.tensor.search.index_sample')
check_variable_and_dtype(index, 'index', ['int32', 'int64'],
'paddle.tensor.search.index_sample')
out = helper.create_variable_for_type_inference(dtype=x.dtype)
helper.append_op(
type='index_sample',
inputs={'X': x,
'Index': index},
outputs={'Out': out})
return out
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册