未验证 提交 40f62737 编写于 作者: J Jackwaterveg 提交者: GitHub

[NPU] Add leaky Relu (#34894)

* test=develop

* test=develop
上级 a9673b44
......@@ -207,6 +207,47 @@ class SqrtNPUKernel : public framework::OpKernel<T> {
}
};
template <typename DeviceContext, typename T>
class LeakyReluNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");
auto alpha = ctx.Attr<float>("alpha");
out->mutable_data<T>(ctx.GetPlace());
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
const auto& runner =
NpuOpRunner("LeakyRelu", {*x}, {*out}, {{"negative_slope", alpha}});
runner.Run(stream);
}
};
template <typename DeviceContext, typename T>
class LeakyReluGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto alpha = ctx.Attr<float>("alpha");
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
dx->mutable_data<T>(ctx.GetPlace());
const auto& runner = NpuOpRunner("LeakyReluGrad", {*dout, *x}, {*dx},
{{"negative_slope", alpha}});
runner.Run(stream);
}
};
template <typename DeviceContext, typename T>
class SqrtGradNPUKernel : public framework::OpKernel<T> {
public:
......@@ -778,6 +819,18 @@ REGISTER_OP_NPU_KERNEL(
ops::Relu6GradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
leaky_relu,
ops::LeakyReluNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::LeakyReluNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
leaky_relu_grad,
ops::LeakyReluGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::LeakyReluGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
sqrt, ops::SqrtNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::SqrtNPUKernel<paddle::platform::NPUDeviceContext,
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
from test_activation_op import ref_leaky_relu
import paddle
import paddle.fluid as fluid
paddle.enable_static()
SEED = 2021
class TestLeadyRelu(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "leaky_relu"
self.place = paddle.NPUPlace(0)
self.init_dtype()
np.random.seed(SEED)
self.set_inputs()
self.set_attrs()
self.set_outputs()
def set_inputs(self):
x = np.random.uniform(-1, 1, [11, 17]).astype(self.dtype)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
def set_attrs(self):
self.attrs = {}
def set_outputs(self):
alpha = 0.02 if 'alpha' not in self.attrs else self.attrs['alpha']
out = ref_leaky_relu(self.inputs['X'], alpha)
self.outputs = {'Out': out}
def set_npu(self):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place)
def test_check_grad(self):
if self.dtype == np.float16:
return
self.check_grad_with_place(self.place, ['X'], 'Out')
class TestLeadyReluFP16(TestLeadyRelu):
def init_dtype(self):
self.dtype = np.float16
class TestLeadyRelu2(TestLeadyRelu):
def set_attrs(self):
self.attrs = {'alpha': 0.5}
class TestLeadyRelu3(TestLeadyRelu):
def set_attrs(self):
self.attrs = {'alpha': -0.5}
class TestLeakyReluNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
x_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data(name="x", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
y = paddle.nn.functional.leaky_relu(x)
fc_1 = fluid.layers.fc(input=y, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(main_prog,
feed={"x": x_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)
self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册