提交 3db9fad7 编写于 作者: M minqiyang

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix_vlog

test=develop
...@@ -174,6 +174,7 @@ paddle.fluid.layers.mean ArgSpec(args=['x', 'name'], varargs=None, keywords=None ...@@ -174,6 +174,7 @@ paddle.fluid.layers.mean ArgSpec(args=['x', 'name'], varargs=None, keywords=None
paddle.fluid.layers.mul ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None)) paddle.fluid.layers.mul ArgSpec(args=['x', 'y', 'x_num_col_dims', 'y_num_col_dims', 'name'], varargs=None, keywords=None, defaults=(1, 1, None))
paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=['x', 'label', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.sigmoid_cross_entropy_with_logits ArgSpec(args=['x', 'label', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.maxout ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.maxout ArgSpec(args=['x', 'groups', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.space_to_depth ArgSpec(args=['x', 'blocksize', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.affine_grid ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.affine_grid ArgSpec(args=['theta', 'out_shape', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_reverse ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.sequence_reverse ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.affine_channel ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None)) paddle.fluid.layers.affine_channel ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None))
......
...@@ -37,8 +37,9 @@ struct TestBroadcastOpHandle { ...@@ -37,8 +37,9 @@ struct TestBroadcastOpHandle {
std::vector<Scope*> local_scopes_; std::vector<Scope*> local_scopes_;
std::vector<Scope*> param_scopes_; std::vector<Scope*> param_scopes_;
Scope g_scope_; Scope g_scope_;
std::unique_ptr<OpHandleBase> op_handle_; OpHandleBase* op_handle_;
std::vector<std::unique_ptr<VarHandleBase>> vars_; std::vector<VarHandleBase*> vars_;
std::vector<std::unique_ptr<ir::Node>> nodes_;
std::vector<p::Place> place_list_; std::vector<p::Place> place_list_;
bool use_gpu_; bool use_gpu_;
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
...@@ -90,6 +91,7 @@ struct TestBroadcastOpHandle { ...@@ -90,6 +91,7 @@ struct TestBroadcastOpHandle {
} }
void InitBroadcastOp(size_t input_scope_idx) { void InitBroadcastOp(size_t input_scope_idx) {
nodes_.clear();
for (size_t j = 0; j < place_list_.size(); ++j) { for (size_t j = 0; j < place_list_.size(); ++j) {
local_scopes_.push_back(&(g_scope_.NewScope())); local_scopes_.push_back(&(g_scope_.NewScope()));
Scope& local_scope = local_scopes_.back()->NewScope(); Scope& local_scope = local_scopes_.back()->NewScope();
...@@ -101,39 +103,39 @@ struct TestBroadcastOpHandle { ...@@ -101,39 +103,39 @@ struct TestBroadcastOpHandle {
} }
param_scopes_[input_scope_idx]->Var("input"); param_scopes_[input_scope_idx]->Var("input");
std::unique_ptr<ir::Node> n = nodes_.emplace_back(
ir::CreateNodeForTest("node0", ir::Node::Type::kOperation); ir::CreateNodeForTest("node0", ir::Node::Type::kOperation));
if (use_gpu_) { if (use_gpu_) {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
op_handle_.reset(new BroadcastOpHandle(n.get(), local_scopes_, op_handle_ = new BroadcastOpHandle(nodes_.back().get(), local_scopes_,
place_list_, nccl_ctxs_.get())); place_list_, nccl_ctxs_.get());
#else #else
PADDLE_THROW("CUDA is not support."); PADDLE_THROW("CUDA is not support.");
#endif #endif
} else { } else {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
op_handle_.reset(new BroadcastOpHandle(n.get(), local_scopes_, op_handle_ = new BroadcastOpHandle(nodes_.back().get(), local_scopes_,
place_list_, nccl_ctxs_.get())); place_list_, nccl_ctxs_.get());
#else #else
op_handle_.reset( op_handle_ = new BroadcastOpHandle(nodes_.back().get(), local_scopes_,
new BroadcastOpHandle(n.get(), local_scopes_, place_list_)); place_list_);
#endif #endif
} }
std::unique_ptr<ir::Node> v = nodes_.emplace_back(
ir::CreateNodeForTest("node1", ir::Node::Type::kVariable); ir::CreateNodeForTest("node1", ir::Node::Type::kVariable));
auto* in_var_handle = new VarHandle(v.get(), 1, input_scope_idx, "input", auto* in_var_handle = new VarHandle(nodes_.back().get(), 1, input_scope_idx,
place_list_[input_scope_idx]); "input", place_list_[input_scope_idx]);
vars_.emplace_back(in_var_handle); vars_.emplace_back(in_var_handle);
op_handle_->AddInput(in_var_handle); op_handle_->AddInput(in_var_handle);
// add dummy var // add dummy var
std::unique_ptr<ir::Node> v2 = nodes_.emplace_back(
ir::CreateNodeForTest("node2", ir::Node::Type::kVariable); ir::CreateNodeForTest("node2", ir::Node::Type::kVariable));
vars_.emplace_back(new DummyVarHandle(v2.get())); vars_.emplace_back(new DummyVarHandle(nodes_.back().get()));
DummyVarHandle* dummy_var_handle = DummyVarHandle* dummy_var_handle =
static_cast<DummyVarHandle*>(vars_.back().get()); static_cast<DummyVarHandle*>(vars_.back());
dummy_var_handle->ClearGeneratedOp(); dummy_var_handle->ClearGeneratedOp();
op_handle_->AddInput(dummy_var_handle); op_handle_->AddInput(dummy_var_handle);
...@@ -141,20 +143,20 @@ struct TestBroadcastOpHandle { ...@@ -141,20 +143,20 @@ struct TestBroadcastOpHandle {
if (!use_gpu_) { if (!use_gpu_) {
op_handle_->SetDeviceContext(place_list_[j], ctxs_[j].get()); op_handle_->SetDeviceContext(place_list_[j], ctxs_[j].get());
} }
std::unique_ptr<ir::Node> v3 = nodes_.emplace_back(
ir::CreateNodeForTest("node3", ir::Node::Type::kVariable); ir::CreateNodeForTest("node3", ir::Node::Type::kVariable));
VarHandle* out_var_handle = VarHandle* out_var_handle =
new VarHandle(v3.get(), 2, j, "out", place_list_[j]); new VarHandle(nodes_.back().get(), 2, j, "out", place_list_[j]);
vars_.emplace_back(out_var_handle); vars_.emplace_back(out_var_handle);
op_handle_->AddOutput(out_var_handle); op_handle_->AddOutput(out_var_handle);
} }
// add dummy var // add dummy var
std::unique_ptr<ir::Node> v4 = nodes_.emplace_back(
ir::CreateNodeForTest("node4", ir::Node::Type::kVariable); ir::CreateNodeForTest("node4", ir::Node::Type::kVariable));
vars_.emplace_back(new DummyVarHandle(v4.get())); vars_.emplace_back(new DummyVarHandle(nodes_.back().get()));
DummyVarHandle* out_dummy_var_handle = DummyVarHandle* out_dummy_var_handle =
static_cast<DummyVarHandle*>(vars_.back().get()); static_cast<DummyVarHandle*>(vars_.back());
out_dummy_var_handle->ClearGeneratedOp(); out_dummy_var_handle->ClearGeneratedOp();
op_handle_->AddOutput(out_dummy_var_handle); op_handle_->AddOutput(out_dummy_var_handle);
} }
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include <vector> #include <vector>
#include "paddle/fluid/framework/details/fetch_op_handle.h" #include "paddle/fluid/framework/details/fetch_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h" #include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -32,13 +33,11 @@ FastThreadedSSAGraphExecutor::FastThreadedSSAGraphExecutor( ...@@ -32,13 +33,11 @@ FastThreadedSSAGraphExecutor::FastThreadedSSAGraphExecutor(
pool_(strategy.num_threads_ + pool_(strategy.num_threads_ +
1), // add one more thread for generate op_deps 1), // add one more thread for generate op_deps
fetch_ctxs_(places) { fetch_ctxs_(places) {
auto &ops = graph_->Get<details::GraphOps>("ops"); for (auto &op : ir::FilterByNodeWrapper<OpHandleBase>(*graph_)) {
for (auto &op : ops) {
int dep = static_cast<int>(op->NotReadyInputSize()); int dep = static_cast<int>(op->NotReadyInputSize());
op_deps_.emplace(op.get(), dep); op_deps_.emplace(op, dep);
if (dep == 0) { if (dep == 0) {
bootstrap_ops_.emplace_back(op.get()); bootstrap_ops_.emplace_back(op);
} }
} }
...@@ -54,13 +53,13 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run( ...@@ -54,13 +53,13 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run(
paddle::framework::FeedFetchList fetches; paddle::framework::FeedFetchList fetches;
fetches.resize(fetch_tensors.size()); fetches.resize(fetch_tensors.size());
std::unordered_map<std::string, std::vector<VarHandleBase *>> fetched_vars; std::unordered_map<std::string, std::vector<VarHandleBase *>> fetched_vars;
std::vector<std::unique_ptr<FetchOpHandle>> fetch_ops; std::vector<FetchOpHandle *> fetch_ops;
for (auto &fetch_var_name : fetch_tensors) { for (auto &fetch_var_name : fetch_tensors) {
for (auto &var_map : graph_->Get<details::GraphVars>("vars")) { for (auto &var_map : graph_->Get<details::GraphVars>("vars")) {
auto it = var_map.find(fetch_var_name); auto it = var_map.find(fetch_var_name);
if (it != var_map.end()) { if (it != var_map.end()) {
fetched_vars[fetch_var_name].push_back(it->second.rbegin()->get()); fetched_vars[fetch_var_name].push_back(*it->second.rbegin());
} }
} }
} }
...@@ -110,7 +109,10 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run( ...@@ -110,7 +109,10 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run(
complete_q->Pop(); complete_q->Pop();
} }
} }
exception_.ReThrow(); if (exception_.IsCaught()) {
ClearFetchOp(graph_.get(), &fetch_ops);
exception_.ReThrow();
}
} }
num_complete += num_comp; num_complete += num_comp;
} }
......
...@@ -28,11 +28,7 @@ FetchOpHandle::FetchOpHandle(ir::Node *node, FeedFetchList *data, size_t offset, ...@@ -28,11 +28,7 @@ FetchOpHandle::FetchOpHandle(ir::Node *node, FeedFetchList *data, size_t offset,
offset_(offset), offset_(offset),
local_scopes_(local_scopes) {} local_scopes_(local_scopes) {}
FetchOpHandle::~FetchOpHandle() { FetchOpHandle::~FetchOpHandle() {}
for (auto *input_var : inputs_) {
input_var->RemoveOutput(this, this->Node());
}
}
void FetchOpHandle::RecordWaitEventOnCtx(platform::DeviceContext *waited_ctx) { void FetchOpHandle::RecordWaitEventOnCtx(platform::DeviceContext *waited_ctx) {
PADDLE_THROW("Nobody should wait FetchOp. Unexpceted Error"); PADDLE_THROW("Nobody should wait FetchOp. Unexpceted Error");
......
...@@ -22,8 +22,10 @@ namespace details { ...@@ -22,8 +22,10 @@ namespace details {
struct TestFusedBroadcastOpHandle : TestBroadcastOpHandle { struct TestFusedBroadcastOpHandle : TestBroadcastOpHandle {
std::vector<std::string> out_varnames_; std::vector<std::string> out_varnames_;
std::vector<std::unique_ptr<ir::Node>> nodes_;
void InitFusedBroadcastOp(std::vector<size_t> input_scope_idxes) { void InitFusedBroadcastOp(std::vector<size_t> input_scope_idxes) {
nodes_.clear();
// initialize scope and var // initialize scope and var
for (size_t i = 0; i < place_list_.size(); ++i) { for (size_t i = 0; i < place_list_.size(); ++i) {
local_scopes_.push_back(&(g_scope_.NewScope())); local_scopes_.push_back(&(g_scope_.NewScope()));
...@@ -39,41 +41,41 @@ struct TestFusedBroadcastOpHandle : TestBroadcastOpHandle { ...@@ -39,41 +41,41 @@ struct TestFusedBroadcastOpHandle : TestBroadcastOpHandle {
} }
// create op handle node // create op handle node
std::unique_ptr<ir::Node> n = nodes_.emplace_back(
ir::CreateNodeForTest("fused_broadcast", ir::Node::Type::kOperation); ir::CreateNodeForTest("fused_broadcast", ir::Node::Type::kOperation));
if (use_gpu_) { if (use_gpu_) {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
op_handle_.reset(new FusedBroadcastOpHandle( op_handle_ = new FusedBroadcastOpHandle(
n.get(), local_scopes_, place_list_, nccl_ctxs_.get())); nodes_.back().get(), local_scopes_, place_list_, nccl_ctxs_.get());
#else #else
PADDLE_THROW("CUDA is not supported."); PADDLE_THROW("CUDA is not supported.");
#endif #endif
} else { } else {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
op_handle_.reset(new FusedBroadcastOpHandle( op_handle_ = new FusedBroadcastOpHandle(
n.get(), local_scopes_, place_list_, nccl_ctxs_.get())); nodes_.back().get(), local_scopes_, place_list_, nccl_ctxs_.get());
#else #else
op_handle_.reset( op_handle_ = new FusedBroadcastOpHandle(nodes_.back().get(),
new FusedBroadcastOpHandle(n.get(), local_scopes_, place_list_)); local_scopes_, place_list_);
#endif #endif
} }
for (size_t i = 0; i < input_scope_idxes.size(); ++i) { for (size_t i = 0; i < input_scope_idxes.size(); ++i) {
// add input var handle // add input var handle
std::unique_ptr<ir::Node> in_node = nodes_.emplace_back(
ir::CreateNodeForTest("in_node" + i, ir::Node::Type::kVariable); ir::CreateNodeForTest("in_node" + i, ir::Node::Type::kVariable));
VarHandle* in_var_handle = VarHandle* in_var_handle =
new VarHandle(in_node.get(), 1, input_scope_idxes[i], "in_var" + i, new VarHandle(nodes_.back().get(), 1, input_scope_idxes[i],
place_list_[input_scope_idxes[i]]); "in_var" + i, place_list_[input_scope_idxes[i]]);
vars_.emplace_back(in_var_handle); vars_.emplace_back(in_var_handle);
op_handle_->AddInput(in_var_handle); op_handle_->AddInput(in_var_handle);
// add output var handle // add output var handle
for (size_t j = 0; j < place_list_.size(); ++j) { for (size_t j = 0; j < place_list_.size(); ++j) {
std::unique_ptr<ir::Node> out_node = nodes_.emplace_back(
ir::CreateNodeForTest("out_node" + i, ir::Node::Type::kVariable); ir::CreateNodeForTest("out_node" + i, ir::Node::Type::kVariable));
VarHandle* out_var_handle = VarHandle* out_var_handle = new VarHandle(
new VarHandle(out_node.get(), 2, j, "out_var" + i, place_list_[j]); nodes_.back().get(), 2, j, "out_var" + i, place_list_[j]);
vars_.emplace_back(out_var_handle); vars_.emplace_back(out_var_handle);
op_handle_->AddOutput(out_var_handle); op_handle_->AddOutput(out_var_handle);
} }
......
...@@ -31,9 +31,10 @@ struct TestGatherOpHandle { ...@@ -31,9 +31,10 @@ struct TestGatherOpHandle {
std::vector<Scope*> local_scopes_; std::vector<Scope*> local_scopes_;
std::vector<Scope*> param_scopes_; std::vector<Scope*> param_scopes_;
Scope g_scope_; Scope g_scope_;
std::unique_ptr<OpHandleBase> op_handle_; OpHandleBase* op_handle_;
std::vector<std::unique_ptr<VarHandleBase>> vars_; std::vector<VarHandleBase*> vars_;
std::vector<p::Place> gpu_list_; std::vector<p::Place> gpu_list_;
std::vector<std::unique_ptr<ir::Node>> nodes_;
void WaitAll() { void WaitAll() {
for (size_t j = 0; j < ctxs_.size(); ++j) { for (size_t j = 0; j < ctxs_.size(); ++j) {
...@@ -70,7 +71,7 @@ struct TestGatherOpHandle { ...@@ -70,7 +71,7 @@ struct TestGatherOpHandle {
} }
void InitGatherOp(size_t input_scope_idx) { void InitGatherOp(size_t input_scope_idx) {
std::vector<std::unique_ptr<ir::Node>> nodes; nodes_.clear();
for (size_t j = 0; j < gpu_list_.size(); ++j) { for (size_t j = 0; j < gpu_list_.size(); ++j) {
local_scopes_.push_back(&(g_scope_.NewScope())); local_scopes_.push_back(&(g_scope_.NewScope()));
Scope& local_scope = local_scopes_.back()->NewScope(); Scope& local_scope = local_scopes_.back()->NewScope();
...@@ -82,44 +83,45 @@ struct TestGatherOpHandle { ...@@ -82,44 +83,45 @@ struct TestGatherOpHandle {
} }
param_scopes_[input_scope_idx]->Var("out"); param_scopes_[input_scope_idx]->Var("out");
nodes.emplace_back( nodes_.emplace_back(
ir::CreateNodeForTest("node", ir::Node::Type::kOperation).release()); ir::CreateNodeForTest("node", ir::Node::Type::kOperation).release());
op_handle_.reset( op_handle_ =
new GatherOpHandle(nodes.back().get(), local_scopes_, gpu_list_)); new GatherOpHandle(nodes_.back().get(), local_scopes_, gpu_list_);
// add input // add input
for (size_t j = 0; j < gpu_list_.size(); ++j) { for (size_t j = 0; j < gpu_list_.size(); ++j) {
op_handle_->SetDeviceContext(gpu_list_[j], ctxs_[j].get()); op_handle_->SetDeviceContext(gpu_list_[j], ctxs_[j].get());
nodes.emplace_back( nodes_.emplace_back(
ir::CreateNodeForTest("node1", ir::Node::Type::kVariable).release()); ir::CreateNodeForTest("node1", ir::Node::Type::kVariable).release());
auto* in_var_handle = auto* in_var_handle =
new VarHandle(nodes.back().get(), 1, j, "input", gpu_list_[j]); new VarHandle(nodes_.back().get(), 1, j, "input", gpu_list_[j]);
vars_.emplace_back(in_var_handle); vars_.emplace_back(in_var_handle);
op_handle_->AddInput(in_var_handle); op_handle_->AddInput(in_var_handle);
} }
// add dummy var // add dummy var
nodes.emplace_back( nodes_.emplace_back(
ir::CreateNodeForTest("node2", ir::Node::Type::kVariable).release()); ir::CreateNodeForTest("node2", ir::Node::Type::kVariable).release());
vars_.emplace_back(new DummyVarHandle(nodes.back().get())); vars_.emplace_back(new DummyVarHandle(nodes_.back().get()));
DummyVarHandle* in_dummy_var_handle = DummyVarHandle* in_dummy_var_handle =
static_cast<DummyVarHandle*>(vars_.back().get()); static_cast<DummyVarHandle*>(vars_.back());
in_dummy_var_handle->ClearGeneratedOp(); in_dummy_var_handle->ClearGeneratedOp();
op_handle_->AddInput(in_dummy_var_handle); op_handle_->AddInput(in_dummy_var_handle);
// add output // add output
nodes.emplace_back( nodes_.emplace_back(
ir::CreateNodeForTest("node3", ir::Node::Type::kVariable).release()); ir::CreateNodeForTest("node3", ir::Node::Type::kVariable).release());
auto* out_var_handle = new VarHandle(nodes.back().get(), 2, input_scope_idx, auto* out_var_handle =
"out", gpu_list_[input_scope_idx]); new VarHandle(nodes_.back().get(), 2, input_scope_idx, "out",
gpu_list_[input_scope_idx]);
vars_.emplace_back(out_var_handle); vars_.emplace_back(out_var_handle);
op_handle_->AddOutput(out_var_handle); op_handle_->AddOutput(out_var_handle);
// add dummy var // add dummy var
nodes.emplace_back( nodes_.emplace_back(
ir::CreateNodeForTest("node4", ir::Node::Type::kVariable).release()); ir::CreateNodeForTest("node4", ir::Node::Type::kVariable).release());
vars_.emplace_back(new DummyVarHandle(nodes.back().get())); vars_.emplace_back(new DummyVarHandle(nodes_.back().get()));
DummyVarHandle* dummy_var_handle = DummyVarHandle* dummy_var_handle =
static_cast<DummyVarHandle*>(vars_.back().get()); static_cast<DummyVarHandle*>(vars_.back());
op_handle_->AddOutput(dummy_var_handle); op_handle_->AddOutput(dummy_var_handle);
} }
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include "paddle/fluid/framework/details/computation_op_handle.h" #include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h" #include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/op_graph_view.h" #include "paddle/fluid/framework/details/op_graph_view.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -35,10 +36,10 @@ static bool IsLockAndRecordEventFreeComputationOpHandle( ...@@ -35,10 +36,10 @@ static bool IsLockAndRecordEventFreeComputationOpHandle(
std::unique_ptr<ir::Graph> ModifyOpLockAndRecordEventPass::ApplyImpl( std::unique_ptr<ir::Graph> ModifyOpLockAndRecordEventPass::ApplyImpl(
std::unique_ptr<ir::Graph> ir_graph) const { std::unique_ptr<ir::Graph> ir_graph) const {
auto &all_ops = ir_graph->Get<GraphOps>(kGraphOps); auto all_ops = ir::FilterByNodeWrapper<OpHandleBase>(*ir_graph);
OpGraphView graph_view(all_ops); OpGraphView graph_view(all_ops);
for (auto &op : all_ops) { for (auto &op : all_ops) {
auto *compute_op = dynamic_cast<ComputationOpHandle *>(op.get()); auto *compute_op = dynamic_cast<ComputationOpHandle *>(op);
if (compute_op == nullptr) continue; if (compute_op == nullptr) continue;
bool is_lock_and_record_event_free = bool is_lock_and_record_event_free =
IsLockAndRecordEventFreeComputationOpHandle(compute_op, graph_view); IsLockAndRecordEventFreeComputationOpHandle(compute_op, graph_view);
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h" #include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h"
#include <string> #include <string>
#include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -36,20 +37,20 @@ bool SSAGraghBuilderWithChecker::IsValidGraph(const ir::Graph *graph) const { ...@@ -36,20 +37,20 @@ bool SSAGraghBuilderWithChecker::IsValidGraph(const ir::Graph *graph) const {
for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) { for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
for (auto &name_pair : var_map) { for (auto &name_pair : var_map) {
for (auto &version_pair : name_pair.second) { for (auto &version_pair : name_pair.second) {
insert_pending_var(version_pair.get()); insert_pending_var(version_pair);
} }
} }
} }
for (auto &var : graph->Get<GraphDepVars>(kGraphDepVars)) { for (auto &var : graph->Get<GraphDepVars>(kGraphDepVars)) {
insert_pending_var(var.get()); insert_pending_var(var);
} }
for (auto &op : graph->Get<GraphOps>(kGraphOps)) { for (OpHandleBase *op : ir::FilterByNodeWrapper<OpHandleBase>(*graph)) {
if (op->Inputs().empty()) { if (op->Inputs().empty()) {
ready_ops.insert(op.get()); ready_ops.insert(op);
} else { } else {
pending_ops.insert({op.get(), op.get()->NoDupInputSize()}); pending_ops.insert({op, op->NoDupInputSize()});
} }
} }
...@@ -89,6 +90,4 @@ bool SSAGraghBuilderWithChecker::IsValidGraph(const ir::Graph *graph) const { ...@@ -89,6 +90,4 @@ bool SSAGraghBuilderWithChecker::IsValidGraph(const ir::Graph *graph) const {
REGISTER_PASS(multi_devices_check_pass, REGISTER_PASS(multi_devices_check_pass,
paddle::framework::details::SSAGraghBuilderWithChecker) paddle::framework::details::SSAGraghBuilderWithChecker)
.RequireGraphAttr(paddle::framework::details::kGraphVars) .RequireGraphAttr(paddle::framework::details::kGraphVars)
.RequireGraphAttr(paddle::framework::details::kGraphDepVars) .RequireGraphAttr(paddle::framework::details::kGraphDepVars);
.RequireGraphAttr(paddle::framework::details::kGraphOps)
.RequireGraphAttr(paddle::framework::details::kShardedVarDevice);
...@@ -34,7 +34,14 @@ ...@@ -34,7 +34,14 @@
namespace paddle { namespace paddle {
namespace framework { namespace framework {
namespace details { namespace details {
namespace { namespace {
// TODO(panyx0718): Clean this up as well.
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef std::vector<OpHandleBase *> GraphOps;
const char kGraphOps[] = "ops";
void PolishGraphToSupportDataHazards(ir::Graph *graph) { void PolishGraphToSupportDataHazards(ir::Graph *graph) {
for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) { for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
for (auto &name_pair : var_map) { for (auto &name_pair : var_map) {
...@@ -92,7 +99,7 @@ VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node, ...@@ -92,7 +99,7 @@ VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
} }
var_holder.emplace_back(var); var_holder.emplace_back(var);
} else { } else {
var = var_holder.rbegin()->get(); var = *var_holder.rbegin();
} }
return var; return var;
} }
...@@ -154,7 +161,7 @@ void MultiDevSSAGraphBuilder::CreateOpHandleIOs(ir::Graph *result, ...@@ -154,7 +161,7 @@ void MultiDevSSAGraphBuilder::CreateOpHandleIOs(ir::Graph *result,
ir::Node *node, ir::Node *node,
size_t place_id) const { size_t place_id) const {
auto p = places_[place_id]; auto p = places_[place_id];
auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get(); auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
op_handle->SetDeviceContext(p, op_handle->SetDeviceContext(p,
platform::DeviceContextPool::Instance().Get(p)); platform::DeviceContextPool::Instance().Get(p));
...@@ -303,7 +310,6 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl( ...@@ -303,7 +310,6 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
result.Set(kGraphVars, new GraphVars(places_.size())); result.Set(kGraphVars, new GraphVars(places_.size()));
result.Set(kGraphDepVars, new GraphDepVars); result.Set(kGraphDepVars, new GraphDepVars);
result.Set(kGraphOps, new GraphOps); result.Set(kGraphOps, new GraphOps);
result.Set(kShardedVarDevice, new ShardedVarDevice);
// find send/recv vars so that we can place the distributed training // find send/recv vars so that we can place the distributed training
// related op in the place 0 // related op in the place 0
...@@ -317,11 +323,13 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl( ...@@ -317,11 +323,13 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
bool is_forwarding = true; bool is_forwarding = true;
bool is_dist_train = false; bool is_dist_train = false;
std::unordered_map<std::string, int> sharded_var_device;
for (ir::Node *node : sorted_ops) { for (ir::Node *node : sorted_ops) {
if (boost::get<int>( if (boost::get<int>(
node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) == node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
static_cast<int>(OpRole::kRPC)) { static_cast<int>(OpRole::kRPC)) {
int op_dev_id = CreateRPCOp(&result, node); int op_dev_id = CreateRPCOp(&result, node, &sharded_var_device);
PADDLE_ENFORCE(op_dev_id != -1, PADDLE_ENFORCE(op_dev_id != -1,
"Can not schedule the RPC operator to the right place."); "Can not schedule the RPC operator to the right place.");
if (node->Op()->Type() == "recv") { if (node->Op()->Type() == "recv") {
...@@ -337,7 +345,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl( ...@@ -337,7 +345,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
} else if (boost::get<int>(node->Op()->GetAttr( } else if (boost::get<int>(node->Op()->GetAttr(
OpProtoAndCheckerMaker::OpRoleAttrName())) == OpProtoAndCheckerMaker::OpRoleAttrName())) ==
static_cast<int>(OpRole::kDist)) { static_cast<int>(OpRole::kDist)) {
int op_dev_id = CreateDistTrainOp(&result, node); int op_dev_id = CreateDistTrainOp(&result, node, &sharded_var_device);
if (node->Op()->Type() == "concat") { if (node->Op()->Type() == "concat") {
auto origin_param_name = node->Op()->OutputArgumentNames()[0]; auto origin_param_name = node->Op()->OutputArgumentNames()[0];
bcast_var_name_set[op_dev_id].emplace(origin_param_name); bcast_var_name_set[op_dev_id].emplace(origin_param_name);
...@@ -356,12 +364,11 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl( ...@@ -356,12 +364,11 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
// the block. // the block.
is_forwarding = false; is_forwarding = false;
} else { } else {
int op_dev_id = GetOpDeviceID(result, node); int op_dev_id = GetOpDeviceID(result, node, sharded_var_device);
if (op_dev_id != -1) { // This op only runs on one specific device. if (op_dev_id != -1) { // This op only runs on one specific device.
CreateComputationalOp(&result, node, op_dev_id); CreateComputationalOp(&result, node, op_dev_id);
for (ir::Node *n : node->outputs) { for (ir::Node *n : node->outputs) {
graph->Get<ShardedVarDevice>(kShardedVarDevice) sharded_var_device.emplace(n->Name(), op_dev_id);
.emplace(n->Name(), op_dev_id);
} }
} else { } else {
// This op runs on all devices, and its output may have parameter's // This op runs on all devices, and its output may have parameter's
...@@ -398,8 +405,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl( ...@@ -398,8 +405,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
case BuildStrategy::ReduceStrategy::kReduce: case BuildStrategy::ReduceStrategy::kReduce:
cur_device_id = GetAppropriateDeviceID({g_name}); cur_device_id = GetAppropriateDeviceID({g_name});
CreateReduceOp(&result, g_name, cur_device_id); CreateReduceOp(&result, g_name, cur_device_id);
graph->Get<ShardedVarDevice>(kShardedVarDevice) sharded_var_device.emplace(g_name, cur_device_id);
.emplace(g_name, cur_device_id);
if (!is_dist_train) { if (!is_dist_train) {
bcast_var_name_set[cur_device_id].emplace(p_name); bcast_var_name_set[cur_device_id].emplace(p_name);
} }
...@@ -458,7 +464,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl( ...@@ -458,7 +464,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
* Only variables should be the leaves of graph. * Only variables should be the leaves of graph.
*/ */
AddOutputToLeafOps(&result); AddOutputToLeafOps(&result);
PADDLE_ENFORCE(!ir::HasCircle(result)); result.Erase<GraphOps>(kGraphOps);
return graph; return graph;
} }
...@@ -498,7 +504,7 @@ void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result, ...@@ -498,7 +504,7 @@ void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result,
result->Get<GraphOps>(kGraphOps).emplace_back(op_handle); result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
auto *in = auto *in =
result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back().get(); result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back();
op_handle->AddInput(in); op_handle->AddInput(in);
for (size_t i = 0; i < places_.size(); ++i) { for (size_t i = 0; i < places_.size(); ++i) {
...@@ -535,7 +541,7 @@ void MultiDevSSAGraphBuilder::CreateFusedBroadcastOp( ...@@ -535,7 +541,7 @@ void MultiDevSSAGraphBuilder::CreateFusedBroadcastOp(
for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) { for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) {
for (auto &p_name : bcast_varnames[dev_id]) { for (auto &p_name : bcast_varnames[dev_id]) {
auto *in = auto *in =
result->Get<GraphVars>(kGraphVars).at(dev_id).at(p_name).back().get(); result->Get<GraphVars>(kGraphVars).at(dev_id).at(p_name).back();
op_handle->AddInput(in); op_handle->AddInput(in);
for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) { for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) {
auto &p = places_[out_dev_id]; auto &p = places_[out_dev_id];
...@@ -571,7 +577,7 @@ void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result, ...@@ -571,7 +577,7 @@ void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result,
result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation), result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
local_scopes_, places_)); local_scopes_, places_));
#endif #endif
auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get(); auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
for (size_t i = 0; i < places_.size(); ++i) { for (size_t i = 0; i < places_.size(); ++i) {
auto &p = places_[i]; auto &p = places_[i];
...@@ -579,7 +585,7 @@ void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result, ...@@ -579,7 +585,7 @@ void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result,
auto &vars = result->Get<GraphVars>(kGraphVars)[i][og]; auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
PADDLE_ENFORCE(!vars.empty()); PADDLE_ENFORCE(!vars.empty());
auto &prev_grad = vars.back(); auto &prev_grad = vars.back();
op_handle->AddInput(prev_grad.get()); op_handle->AddInput(prev_grad);
auto var = auto var =
new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable), new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
...@@ -600,14 +606,14 @@ void MultiDevSSAGraphBuilder::InsertDataBalanceOp( ...@@ -600,14 +606,14 @@ void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation), result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
local_scopes_, places_)); local_scopes_, places_));
#endif #endif
auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get(); auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
for (size_t i = 0; i < places_.size(); ++i) { for (size_t i = 0; i < places_.size(); ++i) {
auto &p = places_[i]; auto &p = places_[i];
SetCommunicationContext(op_handle, p); SetCommunicationContext(op_handle, p);
for (const std::string &d_name : datas) { for (const std::string &d_name : datas) {
auto &vars = result->Get<GraphVars>(kGraphVars)[i][d_name]; auto &vars = result->Get<GraphVars>(kGraphVars)[i][d_name];
PADDLE_ENFORCE(!vars.empty()); PADDLE_ENFORCE(!vars.empty());
op_handle->AddInput(vars.back().get()); op_handle->AddInput(vars.back());
auto var = new VarHandle( auto var = new VarHandle(
result->CreateEmptyNode(d_name, ir::Node::Type::kVariable), result->CreateEmptyNode(d_name, ir::Node::Type::kVariable),
vars.size(), i, d_name, p); vars.size(), i, d_name, p);
...@@ -617,8 +623,9 @@ void MultiDevSSAGraphBuilder::InsertDataBalanceOp( ...@@ -617,8 +623,9 @@ void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
} }
} }
int MultiDevSSAGraphBuilder::GetOpDeviceID(const ir::Graph &graph, int MultiDevSSAGraphBuilder::GetOpDeviceID(
ir::Node *node) const { const ir::Graph &graph, ir::Node *node,
const std::unordered_map<std::string, int> &sharded_var_device) const {
if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) { if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
return -1; return -1;
} }
...@@ -631,15 +638,15 @@ int MultiDevSSAGraphBuilder::GetOpDeviceID(const ir::Graph &graph, ...@@ -631,15 +638,15 @@ int MultiDevSSAGraphBuilder::GetOpDeviceID(const ir::Graph &graph,
node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName())); node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
PADDLE_ENFORCE_EQ(param_grad.size(), 2U); PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
int dev_id = GetVarDeviceID(graph, param_grad[1]); int dev_id = GetVarDeviceID(graph, param_grad[1], sharded_var_device);
PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]", PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
node->Op()->Type(), param_grad[0], param_grad[1]); node->Op()->Type(), param_grad[0], param_grad[1]);
return dev_id; return dev_id;
} }
int MultiDevSSAGraphBuilder::GetVarDeviceID(const ir::Graph &graph, int MultiDevSSAGraphBuilder::GetVarDeviceID(
const std::string &varname) const { const ir::Graph &graph, const std::string &varname,
auto &sharded_var_device = graph.Get<ShardedVarDevice>(kShardedVarDevice); const std::unordered_map<std::string, int> &sharded_var_device) const {
auto got = sharded_var_device.find(varname); auto got = sharded_var_device.find(varname);
return got == sharded_var_device.end() ? -1 : got->second; return got == sharded_var_device.end() ? -1 : got->second;
} }
...@@ -690,7 +697,7 @@ VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result, ...@@ -690,7 +697,7 @@ VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
result->CreateEmptyNode("reduce", ir::Node::Type::kOperation), result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
local_scopes_, places_)); local_scopes_, places_));
#endif #endif
auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get(); auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
for (size_t i = 0; i < places_.size(); ++i) { for (size_t i = 0; i < places_.size(); ++i) {
auto &p = places_[i]; auto &p = places_[i];
...@@ -698,7 +705,7 @@ VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result, ...@@ -698,7 +705,7 @@ VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
auto &vars = result->Get<GraphVars>(kGraphVars)[i][og]; auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
PADDLE_ENFORCE(!vars.empty()); PADDLE_ENFORCE(!vars.empty());
auto &prev_grad = vars.back(); auto &prev_grad = vars.back();
op_handle->AddInput(prev_grad.get()); op_handle->AddInput(prev_grad);
} }
auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og]; auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
auto var = auto var =
...@@ -709,8 +716,9 @@ VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result, ...@@ -709,8 +716,9 @@ VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
return var; return var;
} }
int MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result, int MultiDevSSAGraphBuilder::CreateDistTrainOp(
ir::Node *node) const { ir::Graph *result, ir::Node *node,
std::unordered_map<std::string, int> *sharded_var_device) const {
int op_dev_id = -1; int op_dev_id = -1;
std::vector<std::string> input_var_names; std::vector<std::string> input_var_names;
std::vector<std::string> output_var_names; std::vector<std::string> output_var_names;
...@@ -725,23 +733,22 @@ int MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result, ...@@ -725,23 +733,22 @@ int MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
node->Op()->Type() == "split_selected_rows" || node->Op()->Type() == "split_selected_rows" ||
node->Op()->Type() == "split_ids") { node->Op()->Type() == "split_ids") {
// TODO(paddle-dev): getting the first var is not safe. // TODO(paddle-dev): getting the first var is not safe.
op_dev_id = GetVarDeviceID(*result, input_var_names[0]); op_dev_id =
GetVarDeviceID(*result, input_var_names[0], *sharded_var_device);
if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) { if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
op_dev_id = GetAppropriateDeviceID(input_var_names); op_dev_id = GetAppropriateDeviceID(input_var_names);
for (auto &varname : input_var_names) { for (auto &varname : input_var_names) {
result->Get<ShardedVarDevice>(kShardedVarDevice) sharded_var_device->emplace(varname, op_dev_id);
.emplace(varname, op_dev_id);
} }
} }
for (auto &varname : output_var_names) { for (auto &varname : output_var_names) {
result->Get<ShardedVarDevice>(kShardedVarDevice) sharded_var_device->emplace(varname, op_dev_id);
.emplace(varname, op_dev_id);
} }
} else if (node->Op()->Type() == "concat") { } else if (node->Op()->Type() == "concat") {
op_dev_id = GetVarDeviceID(*result, input_var_names[0]); op_dev_id =
GetVarDeviceID(*result, input_var_names[0], *sharded_var_device);
for (auto &varname : output_var_names) { for (auto &varname : output_var_names) {
result->Get<ShardedVarDevice>(kShardedVarDevice) sharded_var_device->emplace(varname, op_dev_id);
.emplace(varname, op_dev_id);
} }
} else { } else {
LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type(); LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
...@@ -759,14 +766,14 @@ int MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result, ...@@ -759,14 +766,14 @@ int MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
} }
void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) { void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get(); auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
for (ir::Node *input : node->inputs) { for (ir::Node *input : node->inputs) {
VarHandle *var = nullptr; VarHandle *var = nullptr;
for (int place_offset = 0; place_offset < num_places; ++place_offset) { for (int place_offset = 0; place_offset < num_places; ++place_offset) {
auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset]; auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
auto &var_holder = var_holders[input->Name()]; auto &var_holder = var_holders[input->Name()];
if (!var_holder.empty()) { if (!var_holder.empty()) {
var = var_holder.rbegin()->get(); var = *var_holder.rbegin();
op_handle->AddInput(var); op_handle->AddInput(var);
} }
} }
...@@ -774,12 +781,14 @@ void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) { ...@@ -774,12 +781,14 @@ void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
} }
// Create RPC related op handles that connects its in ops and out ops. // Create RPC related op handles that connects its in ops and out ops.
int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result, int MultiDevSSAGraphBuilder::CreateRPCOp(
ir::Node *node) const { ir::Graph *result, ir::Node *node,
std::unordered_map<std::string, int> *sharded_var_device) const {
int op_dev_id = -1; int op_dev_id = -1;
if (node->Op()->Type() == "send") { if (node->Op()->Type() == "send") {
// TODO(paddle-dev): getting the first var is not safe. // TODO(paddle-dev): getting the first var is not safe.
op_dev_id = GetVarDeviceID(*result, node->inputs[0]->Name()); op_dev_id =
GetVarDeviceID(*result, node->inputs[0]->Name(), *sharded_var_device);
PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]), PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
"This hack no longer holds, please fix."); "This hack no longer holds, please fix.");
// the variable name which contains .block means it was splited by // the variable name which contains .block means it was splited by
...@@ -797,11 +806,9 @@ int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result, ...@@ -797,11 +806,9 @@ int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
VLOG(100) << "send grad " << input_var_names[0] << " origin " VLOG(100) << "send grad " << input_var_names[0] << " origin "
<< send_param_grad[1] << " place: " << op_dev_id; << send_param_grad[1] << " place: " << op_dev_id;
for (auto &varname : input_var_names) { for (auto &varname : input_var_names) {
result->Get<ShardedVarDevice>(kShardedVarDevice) sharded_var_device->emplace(varname, op_dev_id);
.emplace(varname, op_dev_id);
} }
result->Get<ShardedVarDevice>(kShardedVarDevice) sharded_var_device->emplace(send_param_grad[1], op_dev_id);
.emplace(send_param_grad[1], op_dev_id);
} }
} else if (node->Op()->Type() == "recv") { } else if (node->Op()->Type() == "recv") {
std::vector<std::string> output_var_names; std::vector<std::string> output_var_names;
...@@ -811,7 +818,8 @@ int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result, ...@@ -811,7 +818,8 @@ int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
auto recv_param_grad = boost::get<std::vector<std::string>>( auto recv_param_grad = boost::get<std::vector<std::string>>(
node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName())); node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
if (recv_param_grad.size() == 2U) { if (recv_param_grad.size() == 2U) {
op_dev_id = GetVarDeviceID(*result, recv_param_grad[1]); op_dev_id =
GetVarDeviceID(*result, recv_param_grad[1], *sharded_var_device);
VLOG(100) << "recv param " << recv_param_grad[0] VLOG(100) << "recv param " << recv_param_grad[0]
<< " get grad place: " << recv_param_grad[1] << " get grad place: " << recv_param_grad[1]
<< " place: " << op_dev_id; << " place: " << op_dev_id;
...@@ -819,8 +827,7 @@ int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result, ...@@ -819,8 +827,7 @@ int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
op_dev_id = GetAppropriateDeviceID(output_var_names); op_dev_id = GetAppropriateDeviceID(output_var_names);
} }
for (auto &varname : output_var_names) { for (auto &varname : output_var_names) {
result->Get<ShardedVarDevice>(kShardedVarDevice) sharded_var_device->emplace(varname, op_dev_id);
.emplace(varname, op_dev_id);
} }
} else { } else {
// send_barrier, fetch_barrier will run on place 0; // send_barrier, fetch_barrier will run on place 0;
...@@ -839,7 +846,7 @@ int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result, ...@@ -839,7 +846,7 @@ int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
// send_barrier, recv, fetch_barrier's inputs are deps var, get them from // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
// all places // all places
auto p = places_[op_dev_id]; auto p = places_[op_dev_id];
auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get(); auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
op_handle->SetDeviceContext(p, op_handle->SetDeviceContext(p,
platform::DeviceContextPool::Instance().Get(p)); platform::DeviceContextPool::Instance().Get(p));
...@@ -847,7 +854,8 @@ int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result, ...@@ -847,7 +854,8 @@ int MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
for (ir::Node *output : node->outputs) { for (ir::Node *output : node->outputs) {
int outvar_dev_id = op_dev_id; int outvar_dev_id = op_dev_id;
if (node->Op()->Type() == "fetch_barrier") { if (node->Op()->Type() == "fetch_barrier") {
outvar_dev_id = GetVarDeviceID(*result, output->Name()); outvar_dev_id =
GetVarDeviceID(*result, output->Name(), *sharded_var_device);
PADDLE_ENFORCE_NE(outvar_dev_id, -1); PADDLE_ENFORCE_NE(outvar_dev_id, -1);
} }
p = places_[outvar_dev_id]; p = places_[outvar_dev_id];
......
...@@ -44,12 +44,18 @@ class MultiDevSSAGraphBuilder : public ir::Pass { ...@@ -44,12 +44,18 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
mutable platform::NCCLContextMap *nccl_ctxs_; mutable platform::NCCLContextMap *nccl_ctxs_;
#endif #endif
int GetVarDeviceID(const ir::Graph &graph, const std::string &varname) const; int GetVarDeviceID(
const ir::Graph &graph, const std::string &varname,
const std::unordered_map<std::string, int> &sharded_var_device) const;
bool IsScaleLossOp(ir::Node *node) const; bool IsScaleLossOp(ir::Node *node) const;
int CreateRPCOp(ir::Graph *result, ir::Node *node) const; int CreateRPCOp(
int CreateDistTrainOp(ir::Graph *result, ir::Node *node) const; ir::Graph *result, ir::Node *node,
std::unordered_map<std::string, int> *sharded_var_device) const;
int CreateDistTrainOp(
ir::Graph *result, ir::Node *node,
std::unordered_map<std::string, int> *sharded_var_device) const;
std::vector<std::string> FindDistTrainSendVars( std::vector<std::string> FindDistTrainSendVars(
const std::vector<ir::Node *> &nodes) const; const std::vector<ir::Node *> &nodes) const;
...@@ -69,7 +75,9 @@ class MultiDevSSAGraphBuilder : public ir::Pass { ...@@ -69,7 +75,9 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
void CreateComputationalOp(ir::Graph *result, ir::Node *node, void CreateComputationalOp(ir::Graph *result, ir::Node *node,
int dev_id) const; int dev_id) const;
int GetOpDeviceID(const ir::Graph &graph, ir::Node *node) const; int GetOpDeviceID(
const ir::Graph &graph, ir::Node *node,
const std::unordered_map<std::string, int> &sharded_var_device) const;
void InsertAllReduceOp(ir::Graph *result, const std::string &og) const; void InsertAllReduceOp(ir::Graph *result, const std::string &og) const;
......
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h" #include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
#include <string> #include <string>
#include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -62,7 +63,7 @@ void GraphvizSSAGraphPrinter::Print(const ir::Graph &graph, ...@@ -62,7 +63,7 @@ void GraphvizSSAGraphPrinter::Print(const ir::Graph &graph,
}); });
size_t op_id = 0; size_t op_id = 0;
for (auto &op : graph.Get<GraphOps>(kGraphOps)) { for (auto &op : ir::FilterByNodeWrapper<OpHandleBase>(graph)) {
std::string op_name = "op_" + std::to_string(op_id++); std::string op_name = "op_" + std::to_string(op_id++);
sout << op_name << " [label=\"" << op->Name() << "\", shape=rect]" sout << op_name << " [label=\"" << op->Name() << "\", shape=rect]"
<< std::endl; << std::endl;
......
...@@ -35,23 +35,14 @@ namespace details { ...@@ -35,23 +35,14 @@ namespace details {
// The outside vector is the device vector. Each element of this vector is a // The outside vector is the device vector. Each element of this vector is a
// map from variable name to variables. The variables, who have the same name, // map from variable name to variables. The variables, who have the same name,
// will have a differsent version. The offset in the // will have a differsent version. The offset in the
// `std::vector<std::unique_ptr<VarHandle>>` is the version of varaibles. // `std::vector<VarHandle*>` is the version of varaibles.
typedef std::vector< typedef std::vector<std::unordered_map<std::string, std::vector<VarHandle*>>>
std::unordered_map<std::string, std::vector<std::unique_ptr<VarHandle>>>>
GraphVars; GraphVars;
const char kGraphVars[] = "vars"; const char kGraphVars[] = "vars";
// aux variables to represent dependency. Useful to resolve data hazard. // aux variables to represent dependency. Useful to resolve data hazard.
typedef std::unordered_set<std::unique_ptr<VarHandleBase>> GraphDepVars; typedef std::unordered_set<VarHandleBase*> GraphDepVars;
const char kGraphDepVars[] = "dep_vars"; const char kGraphDepVars[] = "dep_vars";
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef std::vector<std::unique_ptr<OpHandleBase>> GraphOps;
const char kGraphOps[] = "ops";
typedef std::unordered_map<std::string, int> ShardedVarDevice;
const char kShardedVarDevice[] = "sharded_var_device";
} // namespace details } // namespace details
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -20,19 +20,16 @@ namespace paddle { ...@@ -20,19 +20,16 @@ namespace paddle {
namespace framework { namespace framework {
namespace details { namespace details {
OpGraphView::OpGraphView( OpGraphView::OpGraphView(const std::vector<OpHandleBase *> &ops) { Build(ops); }
const std::vector<std::unique_ptr<OpHandleBase>> &ops) {
Build(ops);
}
void OpGraphView::Build(const std::vector<std::unique_ptr<OpHandleBase>> &ops) { void OpGraphView::Build(const std::vector<OpHandleBase *> &ops) {
for (auto &op : ops) { for (auto &op : ops) {
preceding_ops_[op.get()]; preceding_ops_[op];
pending_ops_[op.get()]; pending_ops_[op];
for (auto &var : op->Outputs()) { for (auto &var : op->Outputs()) {
for (auto &pending_op : var->PendingOps()) { for (auto &pending_op : var->PendingOps()) {
preceding_ops_[pending_op].insert(op.get()); preceding_ops_[pending_op].insert(op);
pending_ops_[op.get()].insert(pending_op); pending_ops_[op].insert(pending_op);
} }
} }
} }
...@@ -41,8 +38,6 @@ void OpGraphView::Build(const std::vector<std::unique_ptr<OpHandleBase>> &ops) { ...@@ -41,8 +38,6 @@ void OpGraphView::Build(const std::vector<std::unique_ptr<OpHandleBase>> &ops) {
"There are duplicate ops in graph."); "There are duplicate ops in graph.");
} }
size_t OpGraphView::OpNumber() const { return preceding_ops_.size(); }
std::unordered_set<OpHandleBase *> OpGraphView::AllOps() const { std::unordered_set<OpHandleBase *> OpGraphView::AllOps() const {
std::unordered_set<OpHandleBase *> ret; std::unordered_set<OpHandleBase *> ret;
for (auto &pair : preceding_ops_) { for (auto &pair : preceding_ops_) {
...@@ -60,12 +55,6 @@ void OpGraphView::EnforceHasOp(OpHandleBase *op) const { ...@@ -60,12 +55,6 @@ void OpGraphView::EnforceHasOp(OpHandleBase *op) const {
op == nullptr ? "nullptr" : op->DebugString()); op == nullptr ? "nullptr" : op->DebugString());
} }
const std::unordered_set<OpHandleBase *> &OpGraphView::PrecedingOps(
OpHandleBase *op) const {
EnforceHasOp(op);
return preceding_ops_.at(op);
}
const std::unordered_set<OpHandleBase *> &OpGraphView::PendingOps( const std::unordered_set<OpHandleBase *> &OpGraphView::PendingOps(
OpHandleBase *op) const { OpHandleBase *op) const {
EnforceHasOp(op); EnforceHasOp(op);
......
...@@ -26,21 +26,16 @@ namespace details { ...@@ -26,21 +26,16 @@ namespace details {
class OpGraphView { class OpGraphView {
public: public:
explicit OpGraphView(const std::vector<std::unique_ptr<OpHandleBase>> &ops); explicit OpGraphView(const std::vector<OpHandleBase *> &ops);
size_t OpNumber() const;
std::unordered_set<OpHandleBase *> AllOps() const; std::unordered_set<OpHandleBase *> AllOps() const;
const std::unordered_set<OpHandleBase *> &PrecedingOps(
OpHandleBase *op) const;
const std::unordered_set<OpHandleBase *> &PendingOps(OpHandleBase *op) const; const std::unordered_set<OpHandleBase *> &PendingOps(OpHandleBase *op) const;
bool HasOp(OpHandleBase *op) const; bool HasOp(OpHandleBase *op) const;
private: private:
void Build(const std::vector<std::unique_ptr<OpHandleBase>> &ops); void Build(const std::vector<OpHandleBase *> &ops);
void EnforceHasOp(OpHandleBase *op) const; void EnforceHasOp(OpHandleBase *op) const;
std::unordered_map<OpHandleBase *, std::unordered_set<OpHandleBase *>> std::unordered_map<OpHandleBase *, std::unordered_set<OpHandleBase *>>
......
...@@ -31,7 +31,10 @@ constexpr char kLocalExecScopeName[] = "@LCOAL_SCOPE@"; ...@@ -31,7 +31,10 @@ constexpr char kLocalExecScopeName[] = "@LCOAL_SCOPE@";
// It's responsible for populating necessary fields of ir::Node. // It's responsible for populating necessary fields of ir::Node.
class OpHandleBase { class OpHandleBase {
public: public:
explicit OpHandleBase(ir::Node *node) : node_(node) {} // Owned by `node`. No need to be deleted explicitly.
explicit OpHandleBase(ir::Node *node) : node_(node) {
node_->WrappedBy(this);
}
virtual ~OpHandleBase(); virtual ~OpHandleBase();
......
...@@ -30,8 +30,8 @@ struct TestReduceOpHandle { ...@@ -30,8 +30,8 @@ struct TestReduceOpHandle {
Scope g_scope_; Scope g_scope_;
std::vector<Scope *> local_scopes_; std::vector<Scope *> local_scopes_;
std::vector<Scope *> param_scopes_; std::vector<Scope *> param_scopes_;
std::unique_ptr<OpHandleBase> op_handle_; OpHandleBase *op_handle_;
std::vector<std::unique_ptr<VarHandleBase>> vars_; std::vector<VarHandleBase *> vars_;
std::vector<p::Place> gpu_list_; std::vector<p::Place> gpu_list_;
std::vector<std::unique_ptr<p::DeviceContext>> ctxs_; std::vector<std::unique_ptr<p::DeviceContext>> ctxs_;
......
...@@ -19,6 +19,7 @@ ...@@ -19,6 +19,7 @@
#include "paddle/fluid/framework/details/computation_op_handle.h" #include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h" #include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/reference_count_pass.h" #include "paddle/fluid/framework/details/reference_count_pass.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -71,14 +72,13 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl( ...@@ -71,14 +72,13 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
// Step 2: Find all variables in non-computation ops which refers to variables // Step 2: Find all variables in non-computation ops which refers to variables
// in computation ops // in computation ops
std::unordered_set<std::string> names; std::unordered_set<std::string> names;
std::unordered_map<OpHandleBase *, std::unique_ptr<ReferenceCountOpHandle>> std::unordered_map<OpHandleBase *, ReferenceCountOpHandle *>
compute_ref_cnt_map; compute_ref_cnt_map;
auto get_ref_cnts_from_compute_op = [&]( auto get_ref_cnts_from_compute_op = [&](
const std::unique_ptr<OpHandleBase> &op, OpHandleBase *op, const std::vector<VarHandleBase *> &vars) {
const std::vector<VarHandleBase *> &vars) {
std::vector<std::string> var_names_in_op; std::vector<std::string> var_names_in_op;
auto *compute_op = dynamic_cast<ComputationOpHandle *>(op.get()); auto *compute_op = dynamic_cast<ComputationOpHandle *>(op);
if (compute_op == nullptr || if (compute_op == nullptr ||
!platform::is_gpu_place(compute_op->GetPlace())) !platform::is_gpu_place(compute_op->GetPlace()))
return var_names_in_op; return var_names_in_op;
...@@ -121,9 +121,8 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl( ...@@ -121,9 +121,8 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
}; };
auto update_ref_cnts_from_non_compute_op = [&]( auto update_ref_cnts_from_non_compute_op = [&](
const std::unique_ptr<OpHandleBase> &op, OpHandleBase *op, const std::vector<VarHandleBase *> &vars) {
const std::vector<VarHandleBase *> &vars) { if (dynamic_cast<ComputationOpHandle *>(op) != nullptr) return;
if (dynamic_cast<ComputationOpHandle *>(op.get()) != nullptr) return;
for (VarHandleBase *var_handle_base : vars) { for (VarHandleBase *var_handle_base : vars) {
auto *var_handle = dynamic_cast<VarHandle *>(var_handle_base); auto *var_handle = dynamic_cast<VarHandle *>(var_handle_base);
if (var_handle == nullptr || !var_handle->Node()->IsVar()) continue; if (var_handle == nullptr || !var_handle->Node()->IsVar()) continue;
...@@ -151,21 +150,21 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl( ...@@ -151,21 +150,21 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
ref_cnt_node, next_compute_op->GetScope(), place, {var_name}, ref_cnt_node, next_compute_op->GetScope(), place, {var_name},
gcs[place.device].get(), cur_ref_cnts[place.device].get()); gcs[place.device].get(), cur_ref_cnts[place.device].get());
AddDependencyBetween(next_compute_op, ref_cnt_handle, graph.get()); AddDependencyBetween(next_compute_op, ref_cnt_handle, graph.get());
compute_ref_cnt_map[next_compute_op].reset(ref_cnt_handle); compute_ref_cnt_map[next_compute_op] = ref_cnt_handle;
} }
} }
} }
} }
}; };
auto &all_ops = graph->Get<GraphOps>(kGraphOps); auto all_ops = ir::FilterByNodeWrapper<OpHandleBase>(*graph);
for (auto &op : all_ops) { for (auto &op : all_ops) {
auto in_var_names = get_ref_cnts_from_compute_op(op, op->Inputs()); auto in_var_names = get_ref_cnts_from_compute_op(op, op->Inputs());
auto out_var_names = get_ref_cnts_from_compute_op(op, op->Outputs()); auto out_var_names = get_ref_cnts_from_compute_op(op, op->Outputs());
if (in_var_names.empty() && out_var_names.empty()) continue; if (in_var_names.empty() && out_var_names.empty()) continue;
in_var_names.insert(in_var_names.end(), out_var_names.begin(), in_var_names.insert(in_var_names.end(), out_var_names.begin(),
out_var_names.end()); out_var_names.end());
auto *compute_op = dynamic_cast<ComputationOpHandle *>(op.get()); auto *compute_op = dynamic_cast<ComputationOpHandle *>(op);
auto place = boost::get<platform::CUDAPlace>(compute_op->GetPlace()); auto place = boost::get<platform::CUDAPlace>(compute_op->GetPlace());
ir::Node *ref_cnt_node = ir::Node *ref_cnt_node =
graph->CreateEmptyNode("reference_count", ir::Node::Type::kOperation); graph->CreateEmptyNode("reference_count", ir::Node::Type::kOperation);
...@@ -173,7 +172,7 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl( ...@@ -173,7 +172,7 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
ref_cnt_node, compute_op->GetScope(), place, in_var_names, ref_cnt_node, compute_op->GetScope(), place, in_var_names,
gcs[place.device].get(), cur_ref_cnts[place.device].get()); gcs[place.device].get(), cur_ref_cnts[place.device].get());
AddDependencyBetween(compute_op, ref_cnt_handle, graph.get()); AddDependencyBetween(compute_op, ref_cnt_handle, graph.get());
compute_ref_cnt_map[compute_op].reset(ref_cnt_handle); compute_ref_cnt_map[compute_op] = ref_cnt_handle;
} }
for (auto &op : all_ops) { for (auto &op : all_ops) {
...@@ -181,11 +180,11 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl( ...@@ -181,11 +180,11 @@ std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
update_ref_cnts_from_non_compute_op(op, op->Outputs()); update_ref_cnts_from_non_compute_op(op, op->Outputs());
} }
std::vector<std::unique_ptr<OpHandleBase>> new_all_ops; std::vector<OpHandleBase *> new_all_ops;
new_all_ops.reserve(compute_ref_cnt_map.size() + all_ops.size()); new_all_ops.reserve(compute_ref_cnt_map.size() + all_ops.size());
for (auto &op : all_ops) { for (auto &op : all_ops) {
new_all_ops.emplace_back(std::move(op)); new_all_ops.emplace_back(std::move(op));
auto it = compute_ref_cnt_map.find(new_all_ops.back().get()); auto it = compute_ref_cnt_map.find(new_all_ops.back());
if (it != compute_ref_cnt_map.end()) { if (it != compute_ref_cnt_map.end()) {
// Add LeafNode to ReferenceCountOpHandle // Add LeafNode to ReferenceCountOpHandle
auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar()); auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
......
...@@ -19,14 +19,16 @@ namespace framework { ...@@ -19,14 +19,16 @@ namespace framework {
namespace details { namespace details {
SSAGraphExecutor::~SSAGraphExecutor() {} SSAGraphExecutor::~SSAGraphExecutor() {}
void ClearFetchOp(ir::Graph* graph, void ClearFetchOp(ir::Graph* graph, std::vector<FetchOpHandle*>* fetch_ops) {
std::vector<std::unique_ptr<FetchOpHandle>>* fetch_ops) {
if (fetch_ops->empty()) return; if (fetch_ops->empty()) return;
for (auto& op : *fetch_ops) { for (auto& op : *fetch_ops) {
for (auto& out_var : op->Node()->outputs) { for (auto& out_var : op->Node()->outputs) {
graph->RemoveNode(out_var); graph->RemoveNode(out_var);
} }
for (auto& in_var : op->Inputs()) {
in_var->RemoveOutput(op, op->Node());
}
graph->RemoveNode(op->Node()); graph->RemoveNode(op->Node());
} }
fetch_ops->clear(); fetch_ops->clear();
......
...@@ -38,8 +38,7 @@ class SSAGraphExecutor { ...@@ -38,8 +38,7 @@ class SSAGraphExecutor {
virtual FeedFetchList Run(const std::vector<std::string>& fetch_tensors) = 0; virtual FeedFetchList Run(const std::vector<std::string>& fetch_tensors) = 0;
}; };
void ClearFetchOp(ir::Graph* graph, void ClearFetchOp(ir::Graph* graph, std::vector<FetchOpHandle*>* fetch_ops);
std::vector<std::unique_ptr<FetchOpHandle>>* fetch_ops);
} // namespace details } // namespace details
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h" #include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h" #include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/platform/profiler.h"
namespace paddle { namespace paddle {
...@@ -51,25 +52,25 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -51,25 +52,25 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
for (auto &var_map : graph_->Get<details::GraphVars>(details::kGraphVars)) { for (auto &var_map : graph_->Get<details::GraphVars>(details::kGraphVars)) {
for (auto &name_pair : var_map) { for (auto &name_pair : var_map) {
for (auto &version_pair : name_pair.second) { for (auto &version_pair : name_pair.second) {
InsertPendingVar(&pending_vars, ready_vars.get(), version_pair.get()); InsertPendingVar(&pending_vars, ready_vars.get(), version_pair);
} }
} }
} }
for (auto &var : graph_->Get<details::GraphDepVars>(details::kGraphDepVars)) { for (auto &var : graph_->Get<details::GraphDepVars>(details::kGraphDepVars)) {
InsertPendingVar(&pending_vars, ready_vars.get(), var.get()); InsertPendingVar(&pending_vars, ready_vars.get(), var);
} }
for (auto &op : graph_->Get<details::GraphOps>(details::kGraphOps)) { for (auto &op : ir::FilterByNodeWrapper<OpHandleBase>(*graph_)) {
if (op->Inputs().empty()) { // Special case, Op has no input. if (op->Inputs().empty()) { // Special case, Op has no input.
ready_ops.insert(op.get()); ready_ops.insert(op);
} else { } else {
InsertPendingOp(&pending_ops, op.get()); InsertPendingOp(&pending_ops, op);
} }
} }
// Step 2. Insert FetchOps // Step 2. Insert FetchOps
std::vector<std::unique_ptr<FetchOpHandle>> fetch_ops; std::vector<FetchOpHandle *> fetch_ops;
std::unordered_set<std::unique_ptr<VarHandleBase>> fetch_dependencies; std::unordered_set<VarHandleBase *> fetch_dependencies;
FeedFetchList fetch_data(fetch_tensors.size()); FeedFetchList fetch_data(fetch_tensors.size());
InsertFetchOps(fetch_tensors, &fetch_ops, &fetch_dependencies, &pending_ops, InsertFetchOps(fetch_tensors, &fetch_ops, &fetch_dependencies, &pending_ops,
...@@ -109,6 +110,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -109,6 +110,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
for (auto &run_op_future : run_op_futures_) { for (auto &run_op_future : run_op_futures_) {
run_op_future.wait(); run_op_future.wait();
} }
ClearFetchOp(graph_.get(), &fetch_ops);
exception_holder_.ReThrow(); exception_holder_.ReThrow();
} else { } else {
continue; continue;
...@@ -140,8 +142,8 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -140,8 +142,8 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
void ThreadedSSAGraphExecutor::InsertFetchOps( void ThreadedSSAGraphExecutor::InsertFetchOps(
const std::vector<std::string> &fetch_tensors, const std::vector<std::string> &fetch_tensors,
std::vector<std::unique_ptr<FetchOpHandle>> *fetch_ops, std::vector<FetchOpHandle *> *fetch_ops,
std::unordered_set<std::unique_ptr<VarHandleBase>> *fetch_dependencies, std::unordered_set<VarHandleBase *> *fetch_dependencies,
std::unordered_map<OpHandleBase *, size_t> *pending_ops, std::unordered_map<OpHandleBase *, size_t> *pending_ops,
std::unordered_set<VarHandleBase *> *pending_vars, std::unordered_set<VarHandleBase *> *pending_vars,
BlockingQueue<VarHandleBase *> *ready_vars, FeedFetchList *fetch_data) { BlockingQueue<VarHandleBase *> *ready_vars, FeedFetchList *fetch_data) {
...@@ -151,7 +153,7 @@ void ThreadedSSAGraphExecutor::InsertFetchOps( ...@@ -151,7 +153,7 @@ void ThreadedSSAGraphExecutor::InsertFetchOps(
for (auto &var_map : graph_->Get<details::GraphVars>(details::kGraphVars)) { for (auto &var_map : graph_->Get<details::GraphVars>(details::kGraphVars)) {
auto it = var_map.find(fetch_var_name); auto it = var_map.find(fetch_var_name);
if (it != var_map.end()) { if (it != var_map.end()) {
fetched_vars[fetch_var_name].push_back(it->second.rbegin()->get()); fetched_vars[fetch_var_name].push_back(*it->second.rbegin());
} }
} }
} }
......
...@@ -70,13 +70,13 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor { ...@@ -70,13 +70,13 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
BlockingQueue<VarHandleBase *> *ready_vars, BlockingQueue<VarHandleBase *> *ready_vars,
VarHandleBase *var) const; VarHandleBase *var) const;
void InsertFetchOps( void InsertFetchOps(const std::vector<std::string> &fetch_tensors,
const std::vector<std::string> &fetch_tensors, std::vector<FetchOpHandle *> *fetch_ops,
std::vector<std::unique_ptr<FetchOpHandle>> *fetch_ops, std::unordered_set<VarHandleBase *> *fetch_dependencies,
std::unordered_set<std::unique_ptr<VarHandleBase>> *fetch_dependencies, std::unordered_map<OpHandleBase *, size_t> *pending_ops,
std::unordered_map<OpHandleBase *, size_t> *pending_ops, std::unordered_set<VarHandleBase *> *pending_vars,
std::unordered_set<VarHandleBase *> *pending_vars, BlockingQueue<VarHandleBase *> *ready_vars,
BlockingQueue<VarHandleBase *> *ready_vars, FeedFetchList *fetch_data); FeedFetchList *fetch_data);
private: private:
ExecutionStrategy strategy_; ExecutionStrategy strategy_;
......
...@@ -20,6 +20,8 @@ namespace details { ...@@ -20,6 +20,8 @@ namespace details {
VarHandleBase::~VarHandleBase() {} VarHandleBase::~VarHandleBase() {}
VarHandle::~VarHandle() { VLOG(4) << "deleting var handle " << DebugString(); }
std::string VarHandle::DebugString() const { std::string VarHandle::DebugString() const {
std::stringstream ss; std::stringstream ss;
ss << name_ << ":" << place_; ss << name_ << ":" << place_;
...@@ -27,6 +29,10 @@ std::string VarHandle::DebugString() const { ...@@ -27,6 +29,10 @@ std::string VarHandle::DebugString() const {
} }
std::string DummyVarHandle::DebugString() const { return node_->Name(); } std::string DummyVarHandle::DebugString() const { return node_->Name(); }
DummyVarHandle::~DummyVarHandle() {
VLOG(4) << "deleting dummy var handle " << DebugString();
}
} // namespace details } // namespace details
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -35,7 +35,10 @@ class OpHandleBase; ...@@ -35,7 +35,10 @@ class OpHandleBase;
// A variable can only be generated by a single operator. i.e. // A variable can only be generated by a single operator. i.e.
// This is a single assignment graph. // This is a single assignment graph.
struct VarHandleBase { struct VarHandleBase {
explicit VarHandleBase(ir::Node* node) : node_(node) {} // Owned by `node`. No need to be deleted explicitly.
explicit VarHandleBase(ir::Node* node) : node_(node) {
node_->WrappedBy(this);
}
virtual ~VarHandleBase(); virtual ~VarHandleBase();
...@@ -94,6 +97,8 @@ struct VarHandleBase { ...@@ -94,6 +97,8 @@ struct VarHandleBase {
struct VarHandle : public VarHandleBase { struct VarHandle : public VarHandleBase {
explicit VarHandle(ir::Node* node) : VarHandleBase(node) {} explicit VarHandle(ir::Node* node) : VarHandleBase(node) {}
virtual ~VarHandle();
std::string DebugString() const override; std::string DebugString() const override;
VarHandle(ir::Node* node, size_t version, size_t scope_index, VarHandle(ir::Node* node, size_t version, size_t scope_index,
...@@ -121,6 +126,8 @@ struct VarHandle : public VarHandleBase { ...@@ -121,6 +126,8 @@ struct VarHandle : public VarHandleBase {
struct DummyVarHandle : public VarHandleBase { struct DummyVarHandle : public VarHandleBase {
explicit DummyVarHandle(ir::Node* node) : VarHandleBase(node) {} explicit DummyVarHandle(ir::Node* node) : VarHandleBase(node) {}
virtual ~DummyVarHandle();
std::string DebugString() const override; std::string DebugString() const override;
}; };
......
...@@ -53,6 +53,7 @@ set(GLOB_PASS_LIB ${PASS_LIBRARY} CACHE INTERNAL "Global PASS library") ...@@ -53,6 +53,7 @@ set(GLOB_PASS_LIB ${PASS_LIBRARY} CACHE INTERNAL "Global PASS library")
cc_library(pass_builder SRCS pass_builder.cc DEPS pass) cc_library(pass_builder SRCS pass_builder.cc DEPS pass)
cc_test(node_test SRCS node_test.cc DEPS node)
cc_test(pass_test SRCS pass_test.cc DEPS graph pass graph_helper) cc_test(pass_test SRCS pass_test.cc DEPS graph pass graph_helper)
cc_test(graph_test SRCS graph_test.cc DEPS graph graph_helper op_registry) cc_test(graph_test SRCS graph_test.cc DEPS graph graph_helper op_registry)
cc_test(graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_registry) cc_test(graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_registry)
......
...@@ -102,6 +102,15 @@ class Graph { ...@@ -102,6 +102,15 @@ class Graph {
attr_dels_[attr_name] = []() {}; attr_dels_[attr_name] = []() {};
} }
template <typename AttrType>
void Erase(const std::string &attr_name) {
PADDLE_ENFORCE(attrs_.count(attr_name) != 0, "%s not set in the graph",
attr_name);
attr_dels_[attr_name]();
attrs_.erase(attr_name);
attr_dels_.erase(attr_name);
}
const std::unordered_set<ir::Node *> &Nodes() const { return node_set_; } const std::unordered_set<ir::Node *> &Nodes() const { return node_set_; }
// Create a normal variable with non-null VarDesc. // Create a normal variable with non-null VarDesc.
......
...@@ -37,6 +37,15 @@ std::vector<ir::Node *> TopologySortOperations(const Graph &graph); ...@@ -37,6 +37,15 @@ std::vector<ir::Node *> TopologySortOperations(const Graph &graph);
std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationAdjList( std::map<ir::Node *, std::unordered_set<ir::Node *>> BuildOperationAdjList(
const Graph &graph); const Graph &graph);
template <typename T>
std::vector<T *> FilterByNodeWrapper(const Graph &graph) {
std::vector<T *> ret;
for (ir::Node *n : graph.Nodes()) {
if (n->IsWrappedBy<T>()) ret.push_back(&n->Wrapper<T>());
}
return ret;
}
} // namespace ir } // namespace ir
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -15,7 +15,10 @@ limitations under the License. */ ...@@ -15,7 +15,10 @@ limitations under the License. */
#pragma once #pragma once
#include <string> #include <string>
#include <typeindex>
#include <typeinfo>
#include <vector> #include <vector>
#include "paddle/fluid/framework/op_desc.h" #include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/var_desc.h" #include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/platform/macros.h" #include "paddle/fluid/platform/macros.h"
...@@ -24,9 +27,33 @@ namespace paddle { ...@@ -24,9 +27,33 @@ namespace paddle {
namespace framework { namespace framework {
namespace ir { namespace ir {
// Node should normally created by Graph::CreateXXXNode(). // Node should only created by Graph::CreateXXXNode().
// 1. Every Node should be part of a graph. No dangling Node exists.
// 2. Node only contains members necessary for building graph structure.
// It doesn't contain other unrelated members, such as device, etc.
//
// Sometimes, for specific usages, Node needs to have additional members,
// such as device_placement, version in order to be executed. It is suggested
// to use composition pattern.
//
// class RunnableOp {
// RunnableOp(ir::Node* n) : n_(n) { n_.WrappedBy(this); }
//
// int any_thing_;
// }
//
// RunnableOp is owned by the ir::Node that composes it. In other words.
// ir::Node will be responsible for deleting RunnableOp, say, when ir::Node
// is deleted from the graph.
class Node { class Node {
public: public:
virtual ~Node() {
if (!wrapper_.empty()) {
VLOG(4) << "ir::Node deleting a wrapper node " << Name();
wrapper_deleter_();
}
}
enum class Type { kOperation, kVariable }; enum class Type { kOperation, kVariable };
#if !defined(_WIN32) // msvc not support constexpr correctly. #if !defined(_WIN32) // msvc not support constexpr correctly.
static constexpr char kControlDepVarName[] = "__control_var"; static constexpr char kControlDepVarName[] = "__control_var";
...@@ -48,6 +75,29 @@ class Node { ...@@ -48,6 +75,29 @@ class Node {
return op_desc_.get(); return op_desc_.get();
} }
// Set the `wrapper` that wraps the Node. `wrapper` is owned by Node.
template <typename T>
void WrappedBy(T* wrapper) {
if (!wrapper_.empty()) {
wrapper_deleter_();
}
wrapper_ = wrapper;
wrapper_deleter_ = [wrapper]() { delete wrapper; };
wrapper_type_ = std::type_index(typeid(T));
}
// Return a reference to the `wrapper`.
template <typename T>
T& Wrapper() {
return *boost::any_cast<T*>(wrapper_);
}
// Test if the Node is wrapped by type T.
template <typename T>
bool IsWrappedBy() {
return std::type_index(typeid(T)) == wrapper_type_;
}
// Please don't use this API! // Please don't use this API!
int id() const { return id_; } int id() const { return id_; }
...@@ -99,6 +149,11 @@ class Node { ...@@ -99,6 +149,11 @@ class Node {
static int count_; static int count_;
// Please don't use this API or make this public. // Please don't use this API or make this public.
static void ResetId() { count_ = 0; } static void ResetId() { count_ = 0; }
boost::any wrapper_;
std::function<void(void)> wrapper_deleter_;
std::type_index wrapper_type_ = std::type_index(typeid(void));
DISABLE_COPY_AND_ASSIGN(Node); DISABLE_COPY_AND_ASSIGN(Node);
}; };
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace ir {
class RunnableOp {
public:
RunnableOp(Node* node, bool* alive) : node_(node), alive_(alive) {
node_->WrappedBy(this);
}
virtual ~RunnableOp() { *alive_ = false; }
private:
Node* node_;
bool* alive_;
};
class RunnableOp2 {
public:
RunnableOp2(Node* node, bool* alive) : node_(node), alive_(alive) {
node_->WrappedBy(this);
}
virtual ~RunnableOp2() { *alive_ = false; }
private:
Node* node_;
bool* alive_;
};
TEST(NodeTest, Basic) {
bool alive1 = true;
bool alive2 = true;
std::unique_ptr<Node> n1(CreateNodeForTest("n1", Node::Type::kVariable));
std::unique_ptr<Node> n2(CreateNodeForTest("n2", Node::Type::kVariable));
EXPECT_FALSE(n1->IsWrappedBy<RunnableOp>());
EXPECT_FALSE(n1->IsWrappedBy<RunnableOp2>());
EXPECT_FALSE(n2->IsWrappedBy<RunnableOp>());
EXPECT_FALSE(n2->IsWrappedBy<RunnableOp2>());
new RunnableOp(n1.get(), &alive1);
new RunnableOp2(n2.get(), &alive2);
EXPECT_TRUE(n1->IsWrappedBy<RunnableOp>());
EXPECT_FALSE(n1->IsWrappedBy<RunnableOp2>());
EXPECT_FALSE(n2->IsWrappedBy<RunnableOp>());
EXPECT_TRUE(n2->IsWrappedBy<RunnableOp2>());
EXPECT_TRUE(alive1);
EXPECT_TRUE(alive2);
n1.reset(nullptr);
n2.reset(nullptr);
EXPECT_FALSE(alive1);
EXPECT_FALSE(alive2);
}
} // namespace ir
} // namespace framework
} // namespace paddle
...@@ -38,8 +38,8 @@ if(WITH_TESTING) ...@@ -38,8 +38,8 @@ if(WITH_TESTING)
ARGS --word2vec_dirname=${WORD2VEC_MODEL_DIR} --book_dirname=${PYTHON_TESTS_DIR}/book) ARGS --word2vec_dirname=${WORD2VEC_MODEL_DIR} --book_dirname=${PYTHON_TESTS_DIR}/book)
set_tests_properties(test_api_impl PROPERTIES DEPENDS test_image_classification) set_tests_properties(test_api_impl PROPERTIES DEPENDS test_image_classification)
endif() endif()
cc_test(test_analysis_predictor SRCS analysis_predictor_tester.cc DEPS analysis_predictor ${inference_deps} paddle_inference_api cc_test(test_analysis_predictor SRCS analysis_predictor_tester.cc DEPS analysis_predictor ${inference_deps}
ARGS --dirname=${PYTHON_TESTS_DIR}/book) ARGS --dirname=${WORD2VEC_MODEL_DIR})
if(WITH_GPU AND TENSORRT_FOUND) if(WITH_GPU AND TENSORRT_FOUND)
cc_library(paddle_inference_tensorrt_subgraph_engine cc_library(paddle_inference_tensorrt_subgraph_engine
......
...@@ -24,7 +24,7 @@ using contrib::AnalysisConfig; ...@@ -24,7 +24,7 @@ using contrib::AnalysisConfig;
TEST(AnalysisPredictor, ZeroCopy) { TEST(AnalysisPredictor, ZeroCopy) {
AnalysisConfig config; AnalysisConfig config;
config.model_dir = FLAGS_dirname + "/word2vec.inference.model"; config.model_dir = FLAGS_dirname;
config.use_feed_fetch_ops = false; config.use_feed_fetch_ops = false;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(config); auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/space_to_depth_op.h"
#include <string>
#include <vector>
namespace paddle {
namespace operators {
class SpaceToDepthOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of SpaceToDepthOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of SpaceToDepthOp should not be null.");
auto x_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE_EQ(x_dims.size(), 4, "input should be a 4D tensor");
auto blocksize = ctx->Attrs().Get<int64_t>("blocksize");
PADDLE_ENFORCE_GT(blocksize, 1, "The blocksize should be Greater than 1");
PADDLE_ENFORCE_GT(x_dims[1], 0, "input channel should be Greater than 0");
PADDLE_ENFORCE_GT(x_dims[2], 0, "input Height should be Greater than 0");
PADDLE_ENFORCE_GT(x_dims[3], 0, "input Width should be Greater than 0");
PADDLE_ENFORCE_EQ(x_dims[1] % (blocksize * blocksize), 0,
"input channel should be divisible of the square of "
"SpaceToDepthOp blocksize");
PADDLE_ENFORCE_EQ(x_dims[2] % (blocksize), 0,
"input Height should be divisible of the square of "
"SpaceToDepthOp blocksize");
PADDLE_ENFORCE_EQ(x_dims[3] % (blocksize), 0,
"input Width should be divisible of the square of "
"SpaceToDepthOp blocksize");
VLOG(3) << "SpaceToDepthOp operator x.shape=" << x_dims
<< "Attribute blocksize" << blocksize << std::endl;
std::vector<int64_t> output_shape(4, 0); // [B,C,H,W]
output_shape[0] = x_dims[0];
output_shape[1] = x_dims[1] * blocksize * blocksize;
output_shape[2] = x_dims[2] / blocksize;
output_shape[3] = x_dims[3] / blocksize;
auto out_dims = framework::make_ddim(output_shape);
ctx->SetOutputDim("Out", out_dims);
if (x_dims[0] == out_dims[0]) {
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
ctx->ShareLoD("X", /*->*/ "Out");
}
}
};
class SpaceToDepthOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X",
"(Tensor). The input should be a 4D tensor B * C * W * H of "
"SpaceToDepthOp "
"operator.");
AddOutput("Out",
"(Tensor), The output should be a 4D tensor B * C2 * W2 * H2 of "
"SpaceToDepthOp operator.");
AddAttr<int64_t>(
"blocksize",
"(int64_t, default 2) blocksize used to do change Space To Depth.")
.SetDefault(2)
.GreaterThan(1);
AddComment(R"DOC(
reorg operator used in Yolo v2.
The equation is: C2 = C1/blocksize * blocksize, W2 = W1 ∗ blocksize + offset % blocksize, H2 = H1 ∗ blocksize + offset / blocksize,
Reshape Input(X) into the shape according to Attr(blocksize). The
data in Input(X) are unchanged.
Examples:
1. Given a 4-D tensor Input(X) with a shape [128, 2048, 26, 26], and the blocksize is 2, the reorg operator will transform Input(X)
into a 4-D tensor with shape [128, 2048, 13, 13] and leaving Input(X)'s data unchanged.
)DOC");
}
};
class SpaceToDepthGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) shouldn't be null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) shouldn't be null.");
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(space_to_depth, ops::SpaceToDepthOp, ops::SpaceToDepthOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(space_to_depth_grad, ops::SpaceToDepthGradOp);
REGISTER_OP_CPU_KERNEL(
space_to_depth,
ops::SpaceToDepthKernel<paddle::platform::CPUDeviceContext, float>,
ops::SpaceToDepthKernel<paddle::platform::CPUDeviceContext, double>,
ops::SpaceToDepthKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
space_to_depth_grad,
ops::SpaceToDepthGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::SpaceToDepthGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::SpaceToDepthGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/space_to_depth_op.h"
namespace plat = paddle::platform;
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
space_to_depth,
ops::SpaceToDepthKernel<paddle::platform::CUDADeviceContext, float>,
ops::SpaceToDepthKernel<paddle::platform::CUDADeviceContext, double>,
ops::SpaceToDepthKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
space_to_depth_grad,
ops::SpaceToDepthGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::SpaceToDepthGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::SpaceToDepthGradKernel<paddle::platform::CUDADeviceContext, int64_t>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef PADDLE_FLUID_OPERATORS_SPACE_TO_DEPTH_OP_H_
#define PADDLE_FLUID_OPERATORS_SPACE_TO_DEPTH_OP_H_
#endif // PADDLE_FLUID_OPERATORS_SPACE_TO_DEPTH_OP_H_
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"
namespace paddle {
namespace operators {
template <typename T>
class space_to_depth_compute {
public:
HOSTDEVICE space_to_depth_compute(const T *x, int64_t w, int64_t h, int64_t c,
int64_t batch, int64_t blocksize,
int64_t forward, T *out)
: x_(x),
w_(w),
h_(h),
c_(c),
batch_(batch),
blocksize_(blocksize),
forward_(forward),
out_(out) {}
HOSTDEVICE void operator()(int64_t in_index) {
int64_t out_c = c_ / (blocksize_ * blocksize_);
// calculate each dim position with index of tensor
int64_t b = in_index / (c_ * h_ * w_);
int64_t k = (in_index % (c_ * h_ * w_)) / (h_ * w_);
int64_t j = ((in_index % (c_ * h_ * w_)) % (h_ * w_)) / w_;
int64_t i = ((in_index % (c_ * h_ * w_)) % (h_ * w_)) % w_;
int64_t c2 = k % out_c;
int64_t offset = k / out_c;
int64_t w2 = i * blocksize_ + offset % blocksize_;
int64_t h2 = j * blocksize_ + offset / blocksize_;
int64_t out_index =
w2 + w_ * blocksize_ * (h2 + h_ * blocksize_ * (c2 + out_c * b));
if (forward_)
out_[out_index] = x_[in_index];
else
out_[in_index] = x_[out_index];
}
private:
const T *x_;
int64_t w_, h_, c_, batch_, blocksize_, forward_;
T *out_;
};
template <typename DeviceContext, typename T>
class SpaceToDepthKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto *out = context.Output<framework::LoDTensor>("Out");
auto *x = context.Input<framework::LoDTensor>("X");
auto blocksize = context.Attr<int64_t>("blocksize");
auto in_dims = x->dims();
out->mutable_data(context.GetPlace(), x->type());
auto out_dims = out->dims();
auto B = in_dims[0];
auto C = in_dims[1];
auto H = in_dims[2];
auto W = in_dims[3];
platform::ForRange<DeviceContext> for_range(
context.template device_context<DeviceContext>(),
static_cast<size_t>(x->numel()));
auto *x_data = x->data<T>();
auto *out_data = out->data<T>();
paddle::operators::space_to_depth_compute<T> computer(
x_data, W, H, C, B, blocksize, 1, out_data);
for_range(computer);
out->Resize(out_dims);
}
};
template <typename DeviceContext, typename T>
class SpaceToDepthGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto *d_out =
context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
auto *d_x =
context.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto blocksize = context.Attr<int64_t>("blocksize");
auto in_dims = d_x->dims();
d_x->mutable_data(context.GetPlace(), d_out->type());
auto B = in_dims[0];
auto C = in_dims[1];
auto H = in_dims[2];
auto W = in_dims[3];
platform::ForRange<DeviceContext> for_range(
context.template device_context<DeviceContext>(),
static_cast<size_t>(d_x->numel()));
auto *dx_data = d_x->data<T>();
auto *dout_data = d_out->data<T>();
paddle::operators::space_to_depth_compute<T> computer(
dout_data, W, H, C, B, blocksize, 0, dx_data);
for_range(computer);
d_x->Resize(in_dims);
}
};
} // namespace operators
} // namespace paddle
...@@ -154,6 +154,7 @@ __all__ = [ ...@@ -154,6 +154,7 @@ __all__ = [
'mul', 'mul',
'sigmoid_cross_entropy_with_logits', 'sigmoid_cross_entropy_with_logits',
'maxout', 'maxout',
'space_to_depth',
'affine_grid', 'affine_grid',
'sequence_reverse', 'sequence_reverse',
'affine_channel', 'affine_channel',
...@@ -7674,6 +7675,66 @@ def maxout(x, groups, name=None): ...@@ -7674,6 +7675,66 @@ def maxout(x, groups, name=None):
return out return out
def space_to_depth(x, blocksize, name=None):
"""
Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
The attr blocksize indicates the input block size.
space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
space_to_depth is used to This operation is useful for resizing the activations between convolutions
(but keeping all data)
- Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
- The depth of the output tensor is block_size * block_size * input channel
- The Y, X coordinates within each block of the input become the high order component of the output channel index
- channel should be divisible by square of blocksize
- height, width should be divsible by blocksize
Args:
x(variable): The input LoDtensor.
blocksize(variable): The blocksize to select the element on each feature map should be > 2
Returns:
Variable: The output LoDtensor.
Raises:
TypeError: blocksize type must be a long.
Examples:
.. code-block:: python
data = fluid.layers.data(
name='data', shape=[1, 4, 2, 2], dtype='float32')
space_to_depthed = fluid.layers.space_to_depth(
x=data, blocksize=2)
"""
helper = LayerHelper("space_to_depth", **locals())
if not (isinstance(blocksize, int)):
raise ValueError("blocksize must be a python Int")
if name is None:
out = helper.create_variable_for_type_inference(
dtype=x.dtype) #fix create
else:
out = helper.create_variable(
name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="space_to_depth",
inputs={"X": x},
attrs={"blocksize": blocksize},
outputs={"Out": out})
return out
@templatedoc() @templatedoc()
def sequence_reverse(x, name=None): def sequence_reverse(x, name=None):
""" """
......
...@@ -108,6 +108,8 @@ class OpDescCreationMethod(object): ...@@ -108,6 +108,8 @@ class OpDescCreationMethod(object):
new_attr.i = user_defined_attr new_attr.i = user_defined_attr
elif attr.type == framework_pb2.FLOAT: elif attr.type == framework_pb2.FLOAT:
new_attr.f = user_defined_attr new_attr.f = user_defined_attr
elif attr.type == framework_pb2.LONG:
new_attr.l = user_defined_attr
elif attr.type == framework_pb2.STRING: elif attr.type == framework_pb2.STRING:
new_attr.s = user_defined_attr new_attr.s = user_defined_attr
elif attr.type == framework_pb2.BOOLEAN: elif attr.type == framework_pb2.BOOLEAN:
......
...@@ -248,6 +248,17 @@ class TestBook(unittest.TestCase): ...@@ -248,6 +248,17 @@ class TestBook(unittest.TestCase):
self.assertIsNotNone(layers.softmax(hid)) self.assertIsNotNone(layers.softmax(hid))
print(str(program)) print(str(program))
def test_space_to_depth(self):
program = Program()
with program_guard(program):
data = layers.data(
name='data',
shape=[32, 9, 6, 6],
append_batch_size=False,
dtype='float32')
self.assertIsNotNone(layers.space_to_depth(data, 3))
print(str(program))
def test_sequence_unsqueeze(self): def test_sequence_unsqueeze(self):
program = Program() program = Program()
with program_guard(program): with program_guard(program):
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle.fluid as fluid
from op_test import OpTest
class TestSpaceToDepthOp(OpTest):
@staticmethod
def helper(in_, width, height, channel, batch, blocksize, forward, out_):
channel_out = channel // (blocksize * blocksize)
for b in range(batch):
for k in range(channel):
for j in range(height):
for i in range(width):
in_index = i + width * (j + height * (k + channel * b))
channel2 = k % channel_out
offset = k // channel_out
width2 = i * blocksize + offset % blocksize
height2 = j * blocksize + offset // blocksize
out_index = width2 + width * blocksize * (
height2 + height * blocksize *
(channel2 + channel_out * b))
if forward:
out_[out_index] = in_[in_index]
else:
out_[in_index] = in_[out_index]
def setUp(self):
self.init_data()
self.op_type = "space_to_depth"
self.inputs = {"X": self.x}
self.helper(self.x_1d, self.x.shape[3], self.x.shape[2],
self.x.shape[1], self.x.shape[0], self.blocksize,
self.forward, self.out_1d)
self.out = np.reshape(self.out_1d, self.infered_shape)
self.attrs = {"blocksize": self.blocksize}
self.outputs = {"Out": self.out}
def init_data(self):
self.ori_shape = (32, 12, 6, 6)
self.infered_shape = (32, 48, 3, 3)
self.one_d_len = 32 * 48 * 3 * 3
self.blocksize = 2
self.x = np.random.random(self.ori_shape).astype('float32')
self.x_1d = np.reshape(self.x, self.one_d_len)
self.out = np.zeros(self.infered_shape).astype('float32')
self.out_1d = np.reshape(self.out, self.one_d_len)
self.forward = 1
def test_check_output(self):
place = fluid.core.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.core.CPUPlace()
self.check_output_with_place(place, 1e-5, None, False)
def test_check_grad(self):
place = fluid.core.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
) else fluid.core.CPUPlace()
self.check_grad_with_place(place, ['X'], 'Out')
class TestSpaceToDepthOpBasic(TestSpaceToDepthOp):
def init_data(self):
self.ori_shape = (32, 8, 6, 6)
self.infered_shape = (32, 32, 3, 3)
self.one_d_len = 32 * 32 * 3 * 3
self.blocksize = 2
self.x = np.random.random(self.ori_shape).astype('float32')
self.x_1d = np.reshape(self.x, self.one_d_len)
self.out = np.zeros(self.infered_shape).astype('float32')
self.out_1d = np.reshape(self.out, self.one_d_len)
self.forward = 1
class TestSpaceToDepthOpDoubleBasic(TestSpaceToDepthOp):
def init_data(self):
self.ori_shape = (32, 8, 6, 6)
self.infered_shape = (32, 32, 3, 3)
self.one_d_len = 32 * 32 * 3 * 3
self.blocksize = 2
self.x = np.random.random(self.ori_shape).astype('float64')
self.x_1d = np.reshape(self.x, self.one_d_len)
self.out = np.zeros(self.infered_shape).astype('float64')
self.out_1d = np.reshape(self.out, self.one_d_len)
self.forward = 1
class TestSpaceToDepthOpWithStride3(TestSpaceToDepthOp):
def init_data(self):
self.ori_shape = (32, 9, 6, 6)
self.infered_shape = (32, 81, 2, 2)
self.one_d_len = 32 * 81 * 2 * 2
self.blocksize = 3
self.x = np.random.random(self.ori_shape).astype('float32')
self.x_1d = np.reshape(self.x, self.one_d_len)
self.out = np.zeros(self.infered_shape).astype('float32')
self.out_1d = np.reshape(self.out, self.one_d_len)
self.forward = 1
class TestSpaceToDepthOpWithNotSquare(TestSpaceToDepthOp):
def init_data(self):
self.ori_shape = (32, 9, 9, 6)
self.infered_shape = (32, 81, 3, 2)
self.one_d_len = 32 * 81 * 3 * 2
self.blocksize = 3
self.x = np.random.random(self.ori_shape).astype('float32')
self.x_1d = np.reshape(self.x, self.one_d_len)
self.out = np.zeros(self.infered_shape).astype('float32')
self.out_1d = np.reshape(self.out, self.one_d_len)
self.forward = 1
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册