提交 3d2b2d40 编写于 作者: C chengduoZH

refine doc

上级 1d936f1d
...@@ -478,8 +478,7 @@ def conv2d(input, ...@@ -478,8 +478,7 @@ def conv2d(input,
groups=None, groups=None,
param_attr=None, param_attr=None,
bias_attr=None, bias_attr=None,
act=None, act=None):
name=None):
""" """
**Convlution2D Layer** **Convlution2D Layer**
...@@ -498,46 +497,51 @@ def conv2d(input, ...@@ -498,46 +497,51 @@ def conv2d(input,
Out = \sigma (W \\ast X + b) Out = \sigma (W \\ast X + b)
In the above equation: In the above equation:
* :math:`X`: Input value, a tensor with NCHW format. * :math:`X`: Input value, a tensor with NCHW format.
* :math:`W`: Filter value, a tensor with MCHW format. * :math:`W`: Filter value, a tensor with MCHW format.
* :math: \\ast : Convolution operation. * :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1]. * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math: \\sigma : Activation function. * :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different. * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example: Example:
- Input: Input:
Input shape: $(N, C_{in}, H_{in}, W_{in})$ Input shape: $(N, C_{in}, H_{in}, W_{in})$
Filter shape: $(C_{out}, C_{in}, H_f, W_f)$ Filter shape: $(C_{out}, C_{in}, H_f, W_f)$
- Output: Output:
Output shape: $(N, C_{out}, H_{out}, W_{out})$ Output shape: $(N, C_{out}, H_{out}, W_{out})$
Where Where
.. math:: .. math::
H_{out}= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]}+ 1
W_{out}= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]}+ 1
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
All the input variables are passed in as local variables to the LayerHelper W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
constructor.
Args: Args:
input(Variable): Input tensors. The format of input tensor is NCHW. input(Variable): The input image with [N, C, H, W] format.
num_filters(int): Number of filters num_filters(int): The number of filter. It is as same as the output
filter_size(list/int): Filter size of Conv2d Layer image channel.
stride(list/int, optional): Strides(h_s, w_s) of Conv2d Layer. Default: 1 filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
padding(list/int, optional): Paddings(h_pad, w_pad) of Conv2d Layer. Default: 0 it must contain two integers, (filter_size_H, filter_size_W).
groups(int, optional): The groups number of the Conv2d Layer. Default: 1 Otherwise, the filter will be a square.
param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None stride(int|tuple): The stride size. If stride is a tuple, it must
bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None contain two integers, (stride_H, stride_W). Otherwise, the
act(str): Activation type. Default: None stride_H = stride_W = stride. Default: stride = 1.
name(str): Name/alias of the function padding(int|tuple): The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding. Default: padding = 0.
groups(int): The groups number of the Conv2d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1
param_attr(ParamAttr): The parameters to the Conv2d Layer. Default: None
bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None
act(str): Activation type. Default: None
Returns: Returns:
Variable: The tensor variable storing the convolution and \ Variable: The tensor variable storing the convolution and \
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册