提交 39f69727 编写于 作者: H hedaoyuan 提交者: GitHub

Merge pull request #1202 from hedaoyuan/cmrnorm

Add some comment of CrossMapNormalFunc
......@@ -112,11 +112,51 @@ void CrossMapNormalGrad<DEVICE_TYPE_CPU>(real* inputsGrad,
}
/**
* \brief {o_0, o_1} = calc(i_0)
* \brief Normalization with across maps.
*
* \param inputs[0] input value.
* \param outputs[0] output value.
* \param outputs[1] denoms.
* This Function comes from the paper
* "ImageNet Classification with Deep Convolutional Neural Networks".
*
* The original formula is:
*
* Input(i, x, y)
* Output(i, x, y) = ----------------------------------------------
* -- upper
* (k + alpha * > (Input(j, x, y))^2) ^ (beta)
* -- j = lower
*
* upper is `min(C, c + N/2)`
* lower if `max(0, c - N/2)`
*
* Function implementation:
*
* inputs and outpus is NCHW format, while input.shape.ndims() is equal 4.
* And the meaning of each dimension(0-3) is respectively batch size,
* feature maps, rows and columns.
*
* Input and Output in the above formula is for each map(i) of one image, and
* Input(i, x, y), Output(i, x, y) represents an element in an image.
*
* C is the number of feature maps of one image, and N is a hyper-parameters
* is configured when Function is initialized. The sum in the denominator
* is the sum of the same position in the neighboring maps.
*
* In the implementation of Function, k is equal to 1,
* so Function has no argument for k.
*
* Function Arguments:
*
* \param size_ represent N
* \param scale_ represent alpha
* \param pow_ represent beta
* \param inputs[0] represent Input
* \param outputs[0] represent Output
* \param outputs[1] represent The denominator in the formula(except beta)
*
* Note:
* Save output[1] is to simplify the backward calculation.
* TODO, if only consider the forward calculation, we can optimize to
* remove the output[1].
*/
template <DeviceType Device>
class CrossMapNormalFunc : public FunctionBase {
......@@ -161,13 +201,36 @@ private:
};
/**
* \brief {o_0} = calc(i_0, i_1, i_2, i_3)
* \brief Backward calculation for normalization with across maps.
*
* Function implementation:
*
* The implementation of this Function is derived from the
* CrossMapNormalFunc implementation.
*
* InputGrad = OutputGrad * denoms ^ (-beta)
* -- upper
* + > (OutputGrad * OutputValue * (-2 * alpha * beta) / denoms) * InputValue
* -- lower
*
* The data of inputs/outputs format is the same as the forward interface
* and is NCHW.
*
* The upper and lower is the same as forward. The logic of the sum
* is also the same as forward.
*
* Function Arguments:
*
* \param inputs[0] input value.
* \param inputs[1] output value.
* \param inputs[2] output grad.
* \param inputs[3] denoms.
* \param outputs[0] input grad.
* \param size_ represent N
* \param scale_ represent alpha
* \param pow_ represent beta
* \param inputs[0] represent InputValue, inputs[0] of CrossMapNormalFunc
* \param inputs[1] represent OutputValue, outputs[0] of CrossMapNormalFunc
* \param inputs[2] represent OutputGrad
* \param inputs[3] represent denoms, outputs[1] of CrossMapNormalFunc
* This is the intermediate result that is
* preserved in the forward calculation.
* \param outputs[0] represent InputGrad
*/
template <DeviceType Device>
class CrossMapNormalGradFunc : public FunctionBase {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册