未验证 提交 3833b511 编写于 作者: K Kaipeng Deng 提交者: GitHub

refine en API doc (#20206)

* refine en doc. test=develop. test=document_fix
上级 0652f158
...@@ -147,10 +147,10 @@ paddle.fluid.layers.conv3d (ArgSpec(args=['input', 'num_filters', 'filter_size', ...@@ -147,10 +147,10 @@ paddle.fluid.layers.conv3d (ArgSpec(args=['input', 'num_filters', 'filter_size',
paddle.fluid.layers.sequence_pool (ArgSpec(args=['input', 'pool_type', 'is_test', 'pad_value'], varargs=None, keywords=None, defaults=(False, 0.0)), ('document', '5a709f7ef3fdb8fc819d09dc4fbada9a')) paddle.fluid.layers.sequence_pool (ArgSpec(args=['input', 'pool_type', 'is_test', 'pad_value'], varargs=None, keywords=None, defaults=(False, 0.0)), ('document', '5a709f7ef3fdb8fc819d09dc4fbada9a'))
paddle.fluid.layers.sequence_softmax (ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'eaa9d0bbd3d4e017c8bc4ecdac483711')) paddle.fluid.layers.sequence_softmax (ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'eaa9d0bbd3d4e017c8bc4ecdac483711'))
paddle.fluid.layers.softmax (ArgSpec(args=['input', 'use_cudnn', 'name', 'axis'], varargs=None, keywords=None, defaults=(False, None, -1)), ('document', '7ccaea1b93fe4f7387a6036692986c6b')) paddle.fluid.layers.softmax (ArgSpec(args=['input', 'use_cudnn', 'name', 'axis'], varargs=None, keywords=None, defaults=(False, None, -1)), ('document', '7ccaea1b93fe4f7387a6036692986c6b'))
paddle.fluid.layers.pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive', 'data_format'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True, 'NCHW')), ('document', '630cae697d46b4b575b15d56cf8be25a')) paddle.fluid.layers.pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive', 'data_format'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True, 'NCHW')), ('document', 'daf9ae55b2d54bd5f35acb397fd1e1b5'))
paddle.fluid.layers.pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive', 'data_format'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True, 'NCDHW')), ('document', 'db0035a3132b1dfb12e53c57591fb9f6')) paddle.fluid.layers.pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive', 'data_format'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True, 'NCDHW')), ('document', 'df8edcb8dd020fdddf778c9f613dc650'))
paddle.fluid.layers.adaptive_pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '52343203de40afe29607397e13aaf0d2')) paddle.fluid.layers.adaptive_pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', 'd873fdd73bcd74f9203d347cfb90de75'))
paddle.fluid.layers.adaptive_pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '55db6ae7275fb9678a6814aebab81a9c')) paddle.fluid.layers.adaptive_pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', 'a94ed07bf4828e318aaaedb8b037579a'))
paddle.fluid.layers.batch_norm (ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu', 'use_global_stats'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False, False)), ('document', '1400433bae7876d0407ae205be39b7a1')) paddle.fluid.layers.batch_norm (ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu', 'use_global_stats'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False, False)), ('document', '1400433bae7876d0407ae205be39b7a1'))
paddle.fluid.layers.instance_norm (ArgSpec(args=['input', 'epsilon', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(1e-05, None, None, None)), ('document', '23d6fba8ad8495f67a66d8878be5b0be')) paddle.fluid.layers.instance_norm (ArgSpec(args=['input', 'epsilon', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(1e-05, None, None, None)), ('document', '23d6fba8ad8495f67a66d8878be5b0be'))
paddle.fluid.layers.data_norm (ArgSpec(args=['input', 'act', 'epsilon', 'param_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var'], varargs=None, keywords=None, defaults=(None, 1e-05, None, 'NCHW', False, None, None, None, False)), ('document', '5ba4cdb4ea5c03382da545335ffc05b7')) paddle.fluid.layers.data_norm (ArgSpec(args=['input', 'act', 'epsilon', 'param_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var'], varargs=None, keywords=None, defaults=(None, 1e-05, None, 'NCHW', False, None, None, None, False)), ('document', '5ba4cdb4ea5c03382da545335ffc05b7'))
...@@ -191,7 +191,7 @@ paddle.fluid.layers.row_conv (ArgSpec(args=['input', 'future_context_size', 'par ...@@ -191,7 +191,7 @@ paddle.fluid.layers.row_conv (ArgSpec(args=['input', 'future_context_size', 'par
paddle.fluid.layers.multiplex (ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None), ('document', '2c4d1ae83da6ed35e3b36ba1b3b51d23')) paddle.fluid.layers.multiplex (ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None), ('document', '2c4d1ae83da6ed35e3b36ba1b3b51d23'))
paddle.fluid.layers.layer_norm (ArgSpec(args=['input', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None, None)), ('document', '79797f827d89ae72c77960e9696883a9')) paddle.fluid.layers.layer_norm (ArgSpec(args=['input', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None, None)), ('document', '79797f827d89ae72c77960e9696883a9'))
paddle.fluid.layers.group_norm (ArgSpec(args=['input', 'groups', 'epsilon', 'param_attr', 'bias_attr', 'act', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(1e-05, None, None, None, 'NCHW', None)), ('document', '87dd4b818f102bc1a780e1804c28bd38')) paddle.fluid.layers.group_norm (ArgSpec(args=['input', 'groups', 'epsilon', 'param_attr', 'bias_attr', 'act', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(1e-05, None, None, None, 'NCHW', None)), ('document', '87dd4b818f102bc1a780e1804c28bd38'))
paddle.fluid.layers.spectral_norm (ArgSpec(args=['weight', 'dim', 'power_iters', 'eps', 'name'], varargs=None, keywords=None, defaults=(0, 1, 1e-12, None)), ('document', '9461e67095a6fc5d568fb2ce8fef66ff')) paddle.fluid.layers.spectral_norm (ArgSpec(args=['weight', 'dim', 'power_iters', 'eps', 'name'], varargs=None, keywords=None, defaults=(0, 1, 1e-12, None)), ('document', '7b3d14d6707d878923847ec617d7d521'))
paddle.fluid.layers.softmax_with_cross_entropy (ArgSpec(args=['logits', 'label', 'soft_label', 'ignore_index', 'numeric_stable_mode', 'return_softmax', 'axis'], varargs=None, keywords=None, defaults=(False, -100, True, False, -1)), ('document', '54e1675aa0364f4a78fa72804ec0f413')) paddle.fluid.layers.softmax_with_cross_entropy (ArgSpec(args=['logits', 'label', 'soft_label', 'ignore_index', 'numeric_stable_mode', 'return_softmax', 'axis'], varargs=None, keywords=None, defaults=(False, -100, True, False, -1)), ('document', '54e1675aa0364f4a78fa72804ec0f413'))
paddle.fluid.layers.smooth_l1 (ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'cbe8940643ac80ef75e1abdfbdb09e88')) paddle.fluid.layers.smooth_l1 (ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'cbe8940643ac80ef75e1abdfbdb09e88'))
paddle.fluid.layers.one_hot (ArgSpec(args=['input', 'depth', 'allow_out_of_range'], varargs=None, keywords=None, defaults=(False,)), ('document', 'cdf5dc2078f1e20dc61dd0bec7e28a29')) paddle.fluid.layers.one_hot (ArgSpec(args=['input', 'depth', 'allow_out_of_range'], varargs=None, keywords=None, defaults=(False,)), ('document', 'cdf5dc2078f1e20dc61dd0bec7e28a29'))
...@@ -284,7 +284,7 @@ paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None, ...@@ -284,7 +284,7 @@ paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None,
paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name', 'act'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None, None)), ('document', 'ecc4b1323028bde0518d666882d03515')) paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name', 'act'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None, None)), ('document', 'ecc4b1323028bde0518d666882d03515'))
paddle.fluid.layers.similarity_focus (ArgSpec(args=['input', 'axis', 'indexes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '18ec2e3afeb90e70c8b73d2b71c40fdb')) paddle.fluid.layers.similarity_focus (ArgSpec(args=['input', 'axis', 'indexes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '18ec2e3afeb90e70c8b73d2b71c40fdb'))
paddle.fluid.layers.hash (ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', 'a0b73c21be618cec0281e7903039e5e3')) paddle.fluid.layers.hash (ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', 'a0b73c21be618cec0281e7903039e5e3'))
paddle.fluid.layers.grid_sampler (ArgSpec(args=['x', 'grid', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '5d16663e096d7f04954c70ce1cc5e195')) paddle.fluid.layers.grid_sampler (ArgSpec(args=['x', 'grid', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '90c74742f48c70b103f1fbb9eb129066'))
paddle.fluid.layers.log_loss (ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(0.0001, None)), ('document', 'e3993a477c94729526040ff65d95728e')) paddle.fluid.layers.log_loss (ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(0.0001, None)), ('document', 'e3993a477c94729526040ff65d95728e'))
paddle.fluid.layers.add_position_encoding (ArgSpec(args=['input', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e399f9436fed5f7ff480d8532e42c937')) paddle.fluid.layers.add_position_encoding (ArgSpec(args=['input', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e399f9436fed5f7ff480d8532e42c937'))
paddle.fluid.layers.bilinear_tensor_product (ArgSpec(args=['x', 'y', 'size', 'act', 'name', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '45fc3652a8e1aeffbe4eba371c54f756')) paddle.fluid.layers.bilinear_tensor_product (ArgSpec(args=['x', 'y', 'size', 'act', 'name', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '45fc3652a8e1aeffbe4eba371c54f756'))
...@@ -292,13 +292,13 @@ paddle.fluid.layers.merge_selected_rows (ArgSpec(args=['x', 'name'], varargs=Non ...@@ -292,13 +292,13 @@ paddle.fluid.layers.merge_selected_rows (ArgSpec(args=['x', 'name'], varargs=Non
paddle.fluid.layers.get_tensor_from_selected_rows (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2c568321feb4d16c41a83df43f95089d')) paddle.fluid.layers.get_tensor_from_selected_rows (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2c568321feb4d16c41a83df43f95089d'))
paddle.fluid.layers.lstm (ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1)), ('document', 'baa7327ed89df6b7bdd32f9ffdb62f63')) paddle.fluid.layers.lstm (ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1)), ('document', 'baa7327ed89df6b7bdd32f9ffdb62f63'))
paddle.fluid.layers.shuffle_channel (ArgSpec(args=['x', 'group', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '276a1213dd431228cefa33c3146df34a')) paddle.fluid.layers.shuffle_channel (ArgSpec(args=['x', 'group', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '276a1213dd431228cefa33c3146df34a'))
paddle.fluid.layers.temporal_shift (ArgSpec(args=['x', 'seg_num', 'shift_ratio', 'name'], varargs=None, keywords=None, defaults=(0.25, None)), ('document', '13b1cdcb01f5ffdc26591ff9a2ec4669')) paddle.fluid.layers.temporal_shift (ArgSpec(args=['x', 'seg_num', 'shift_ratio', 'name'], varargs=None, keywords=None, defaults=(0.25, None)), ('document', 'd5945431cdcae3cda21914db5bbf383e'))
paddle.fluid.layers.py_func (ArgSpec(args=['func', 'x', 'out', 'backward_func', 'skip_vars_in_backward_input'], varargs=None, keywords=None, defaults=(None, None)), ('document', '8404e472ac12b4a30a505d3d3a3e5fdb')) paddle.fluid.layers.py_func (ArgSpec(args=['func', 'x', 'out', 'backward_func', 'skip_vars_in_backward_input'], varargs=None, keywords=None, defaults=(None, None)), ('document', '8404e472ac12b4a30a505d3d3a3e5fdb'))
paddle.fluid.layers.psroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '42d5155374f69786300d90d751956998')) paddle.fluid.layers.psroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '42d5155374f69786300d90d751956998'))
paddle.fluid.layers.prroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(1.0, 1, 1, None)), ('document', '454c7ea8c73313dd41513929d7526303')) paddle.fluid.layers.prroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(1.0, 1, 1, None)), ('document', '454c7ea8c73313dd41513929d7526303'))
paddle.fluid.layers.teacher_student_sigmoid_loss (ArgSpec(args=['input', 'label', 'soft_max_up_bound', 'soft_max_lower_bound'], varargs=None, keywords=None, defaults=(15.0, -15.0)), ('document', 'b0e07aa41caae04b07a8e8217cc96020')) paddle.fluid.layers.teacher_student_sigmoid_loss (ArgSpec(args=['input', 'label', 'soft_max_up_bound', 'soft_max_lower_bound'], varargs=None, keywords=None, defaults=(15.0, -15.0)), ('document', 'b0e07aa41caae04b07a8e8217cc96020'))
paddle.fluid.layers.huber_loss (ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None), ('document', '9d93ee81f7a3e526d68bb280bc695d6c')) paddle.fluid.layers.huber_loss (ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None), ('document', '9d93ee81f7a3e526d68bb280bc695d6c'))
paddle.fluid.layers.kldiv_loss (ArgSpec(args=['x', 'target', 'reduction', 'name'], varargs=None, keywords=None, defaults=('mean', None)), ('document', '18bc95c62d3300456c3c7da5278b47bb')) paddle.fluid.layers.kldiv_loss (ArgSpec(args=['x', 'target', 'reduction', 'name'], varargs=None, keywords=None, defaults=('mean', None)), ('document', '45f3ebbcb766fca84cb2fe6307086573'))
paddle.fluid.layers.npair_loss (ArgSpec(args=['anchor', 'positive', 'labels', 'l2_reg'], varargs=None, keywords=None, defaults=(0.002,)), ('document', '3828c4bd81c25af0ab955f52d453c587')) paddle.fluid.layers.npair_loss (ArgSpec(args=['anchor', 'positive', 'labels', 'l2_reg'], varargs=None, keywords=None, defaults=(0.002,)), ('document', '3828c4bd81c25af0ab955f52d453c587'))
paddle.fluid.layers.pixel_shuffle (ArgSpec(args=['x', 'upscale_factor'], varargs=None, keywords=None, defaults=None), ('document', '7e5cac851fd9bad344230e1044b6a565')) paddle.fluid.layers.pixel_shuffle (ArgSpec(args=['x', 'upscale_factor'], varargs=None, keywords=None, defaults=None), ('document', '7e5cac851fd9bad344230e1044b6a565'))
paddle.fluid.layers.fsp_matrix (ArgSpec(args=['x', 'y'], varargs=None, keywords=None, defaults=None), ('document', '3a4eb7cce366f5fd8bc38b42b6af5ba1')) paddle.fluid.layers.fsp_matrix (ArgSpec(args=['x', 'y'], varargs=None, keywords=None, defaults=None), ('document', '3a4eb7cce366f5fd8bc38b42b6af5ba1'))
...@@ -440,9 +440,9 @@ paddle.fluid.layers.box_decoder_and_assign (ArgSpec(args=['prior_box', 'prior_bo ...@@ -440,9 +440,9 @@ paddle.fluid.layers.box_decoder_and_assign (ArgSpec(args=['prior_box', 'prior_bo
paddle.fluid.layers.collect_fpn_proposals (ArgSpec(args=['multi_rois', 'multi_scores', 'min_level', 'max_level', 'post_nms_top_n', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ff4a651d65a9a9f9da71349ba6a2dc1f')) paddle.fluid.layers.collect_fpn_proposals (ArgSpec(args=['multi_rois', 'multi_scores', 'min_level', 'max_level', 'post_nms_top_n', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ff4a651d65a9a9f9da71349ba6a2dc1f'))
paddle.fluid.layers.accuracy (ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)), ('document', 'b691b7be425e281bd36897b514b2b064')) paddle.fluid.layers.accuracy (ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)), ('document', 'b691b7be425e281bd36897b514b2b064'))
paddle.fluid.layers.auc (ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)), ('document', 'c36ac7125da977c2bd1b192bee301f75')) paddle.fluid.layers.auc (ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)), ('document', 'c36ac7125da977c2bd1b192bee301f75'))
paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', 'eaf430c5a0380fb11bfe9a8922cd6295')) paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '48c7b2563a6fc11f23030cde8d7a5c80'))
paddle.fluid.layers.natural_exp_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', 'aa3146f64d5d508e4e50687603aa7b15')) paddle.fluid.layers.natural_exp_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '63edb712ab4ca837049f24a9421dfe30'))
paddle.fluid.layers.inverse_time_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', 'ea37a3a8a0b3ce2254e7bc49a0951dbe')) paddle.fluid.layers.inverse_time_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', 'ff553aa6546eeb1bc692fadb3df78370'))
paddle.fluid.layers.polynomial_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'end_learning_rate', 'power', 'cycle'], varargs=None, keywords=None, defaults=(0.0001, 1.0, False)), ('document', 'a343254c36c2e89512cd8cd8a1960ead')) paddle.fluid.layers.polynomial_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'end_learning_rate', 'power', 'cycle'], varargs=None, keywords=None, defaults=(0.0001, 1.0, False)), ('document', 'a343254c36c2e89512cd8cd8a1960ead'))
paddle.fluid.layers.piecewise_decay (ArgSpec(args=['boundaries', 'values'], varargs=None, keywords=None, defaults=None), ('document', 'd9f654117542c6b702963dda107a247f')) paddle.fluid.layers.piecewise_decay (ArgSpec(args=['boundaries', 'values'], varargs=None, keywords=None, defaults=None), ('document', 'd9f654117542c6b702963dda107a247f'))
paddle.fluid.layers.noam_decay (ArgSpec(args=['d_model', 'warmup_steps'], varargs=None, keywords=None, defaults=None), ('document', 'fd57228fb76195e66bbcc8d8e42c494d')) paddle.fluid.layers.noam_decay (ArgSpec(args=['d_model', 'warmup_steps'], varargs=None, keywords=None, defaults=None), ('document', 'fd57228fb76195e66bbcc8d8e42c494d'))
......
...@@ -69,10 +69,12 @@ class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -69,10 +69,12 @@ class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("X", AddInput("X",
"The input tensor of KL divergence loss operator. " "The input tensor of KL divergence loss operator. "
"This is a tensor with shape of [N, *], where N is the " "This is a tensor with shape of [N, *], where N is the "
"batch size, * means any number of additional dimensions."); "batch size, * means any number of additional dimensions. "
"The data type is float32 or flaot64");
AddInput("Target", AddInput("Target",
"The tensor of KL divergence loss operator. " "The tensor of KL divergence loss operator. "
"This is a tensor with shape of Input(X)."); "This is a tensor with shape of Input(X). "
"The data type is same as Input(X)");
AddOutput( AddOutput(
"Loss", "Loss",
"The output KL divergence loss tensor. if Attr(reduction) is " "The output KL divergence loss tensor. if Attr(reduction) is "
...@@ -90,7 +92,8 @@ class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -90,7 +92,8 @@ class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC( AddComment(R"DOC(
This operator calculates the Kullback-Leibler divergence loss This operator calculates the Kullback-Leibler divergence loss
between Input(X) and Input(Target). between Input(X) and Input(Target). Notes that Input(X) is the
log-probability and Input(Target) is the probability.
KL divergence loss is calculated as follows: KL divergence loss is calculated as follows:
......
...@@ -200,8 +200,9 @@ void Pool2dOpMaker::Make() { ...@@ -200,8 +200,9 @@ void Pool2dOpMaker::Make() {
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>( AddAttr<bool>(
"global_pooling", "global_pooling",
"(bool, default false) Whether to use the global pooling. " "(bool) Whether to use the global pooling. "
"If global_pooling = true, kernel size and paddings will be ignored.") "If global_pooling = true, kernel size and paddings will be ignored. "
"Default False.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>("strides", AddAttr<std::vector<int>>("strides",
"(vector<int>, default {1, 1}), strides(height, " "(vector<int>, default {1, 1}), strides(height, "
...@@ -217,36 +218,38 @@ void Pool2dOpMaker::Make() { ...@@ -217,36 +218,38 @@ void Pool2dOpMaker::Make() {
.SetDefault({0, 0}); .SetDefault({0, 0});
AddAttr<bool>( AddAttr<bool>(
"exclusive", "exclusive",
"(bool, default True) When true, will exclude the zero-padding in the " "(bool) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it " "averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The default is True.") "is only used when pooling_type is avg. The default is True. "
"Default True.")
.SetDefault(true); .SetDefault(true);
AddAttr<bool>( AddAttr<bool>(
"adaptive", "adaptive",
"(bool, default False) When true, will perform adaptive pooling instead, " "(bool) When true, will perform adaptive pooling instead, "
"output shape in H and W dimensions will be same as ksize, input data " "output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform " "will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value.") "pooling in each grid area to get output pooling value. "
"Default False.")
.SetDefault(false); .SetDefault(false);
AddAttr<bool>( AddAttr<bool>(
"use_cudnn", "use_cudnn",
"(bool, default false) Only used in cudnn kernel, need install cudnn.") "(bool) Only used in cudnn kernel, need install cudnn. Default False")
.SetDefault(false); .SetDefault(false);
AddAttr<bool>( AddAttr<bool>(
"ceil_mode", "ceil_mode",
"(bool, default false) Whether to use the ceil function to calculate " "(bool) Whether to use the ceil function to calculate "
"output height and width. False is the default. If it is set to False, " "output height and width. False is the default. If it is set to False, "
"the floor function will be used.") "the floor function will be used. Default False")
.SetDefault(false); .SetDefault(false);
AddAttr<bool>("use_mkldnn", AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel.") "(bool) Only used in mkldnn kernel. Default False")
.SetDefault(false); .SetDefault(false);
AddAttr<bool>("use_quantizer", AddAttr<bool>("use_quantizer",
"(bool, default false) " "(bool) "
"Set to true for operators that should be quantized and use " "Set to true for operators that should be quantized and use "
"int8 kernel. " "int8 kernel. "
"Only used on CPU.") "Only used on CPU. Default False")
.SetDefault(false); .SetDefault(false);
AddAttr<std::string>( AddAttr<std::string>(
"data_format", "data_format",
...@@ -269,11 +272,11 @@ void Pool2dOpMaker::Make() { ...@@ -269,11 +272,11 @@ void Pool2dOpMaker::Make() {
// TODO(dzhwinter): need to registered layout transform function // TODO(dzhwinter): need to registered layout transform function
AddComment(R"DOC( AddComment(R"DOC(
The pooling2d operation calculates the output based on This operation calculates the pooling output based on
the input, pooling_type and ksize, strides, paddings parameters. the input, pooling_type and pool_size, pool_stride, pool_padding parameters.
Input(X) and output(Out) are in NCHW or NHWC format, where N is batch size, C is the Input(X) and Output(Out) are in NCHW or NHWC format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature. number of channels, H is the height of the feature, and W is the width of the feature.
Parameters(ksize, strides, paddings) are two elements. Parameters(pool_size, pool_stride, pool_padding) hold two integer elements.
These two elements represent height and width, respectively. These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different. The input(X) size and output(Out) size may be different.
...@@ -393,8 +396,9 @@ void Pool3dOpMaker::Make() { ...@@ -393,8 +396,9 @@ void Pool3dOpMaker::Make() {
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>( AddAttr<bool>(
"global_pooling", "global_pooling",
"(bool, default false) Whether to use the global pooling. " "(bool) Whether to use the global pooling. "
"If global_pooling = true, kernel size and paddings will be ignored.") "If global_pooling = true, kernel size and paddings will be ignored. "
"Default False")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"strides", "strides",
...@@ -413,30 +417,32 @@ void Pool3dOpMaker::Make() { ...@@ -413,30 +417,32 @@ void Pool3dOpMaker::Make() {
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<bool>( AddAttr<bool>(
"exclusive", "exclusive",
"(bool, default True) When true, will exclude the zero-padding in the " "(bool) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it " "averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The default is True.") "is only used when pooling_type is avg. The default is True. "
"Default True")
.SetDefault(true); .SetDefault(true);
AddAttr<bool>( AddAttr<bool>(
"adaptive", "adaptive",
"(bool, default False) When true, will perform adaptive pooling instead, " "(bool) When true, will perform adaptive pooling instead, "
"output shape in H and W dimensions will be same as ksize, input data " "output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform " "will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value.") "pooling in each grid area to get output pooling value. "
"Default False")
.SetDefault(false); .SetDefault(false);
AddAttr<bool>( AddAttr<bool>(
"use_cudnn", "use_cudnn",
"(bool, default false) Only used in cudnn kernel, need install cudnn.") "(bool) Only used in cudnn kernel, need install cudnn. Default False")
.SetDefault(false); .SetDefault(false);
AddAttr<bool>( AddAttr<bool>(
"ceil_mode", "ceil_mode",
"(bool, default false) Whether to use the ceil function to calculate " "(bool) Whether to use the ceil function to calculate "
"output height and width. False is the default. If it is set to False, " "output height and width. False is the default. If it is set to False, "
"the floor function will be used.") "the floor function will be used. Default False")
.SetDefault(false); .SetDefault(false);
AddAttr<bool>("use_mkldnn", AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel") "(bool) Only used in mkldnn kernel. Default False")
.SetDefault(false); .SetDefault(false);
AddAttr<std::string>( AddAttr<std::string>(
"data_format", "data_format",
...@@ -454,14 +460,12 @@ void Pool3dOpMaker::Make() { ...@@ -454,14 +460,12 @@ void Pool3dOpMaker::Make() {
// TODO(dzhwinter): need to registered layout transform function // TODO(dzhwinter): need to registered layout transform function
AddComment(R"DOC( AddComment(R"DOC(
Pool3d Operator. This operation calculates the output based on
the input, pooling_type, pool_size, pool_stride, and pool_padding parameters.
The pooling3d operation calculates the output based on
the input, pooling_type, ksize, strides, and paddings parameters.
Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(ksize, strides, paddings) width of the feature, respectively. Parameters(pool_size, pool_stride, pool_padding)
are three elements. These three elements represent depth, height and hold three integer elements. These three elements represent depth, height and
width, respectively. The input(X) size and output(Out) size may be different. width, respectively. The input(X) size and output(Out) size may be different.
Example: Example:
......
...@@ -88,7 +88,8 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -88,7 +88,8 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("Weight", AddInput("Weight",
"The input weight tensor of spectral_norm operator, " "The input weight tensor of spectral_norm operator, "
"This can be a 2-D, 3-D, 4-D, 5-D tensor which is the " "This can be a 2-D, 3-D, 4-D, 5-D tensor which is the "
"weights of fc, conv1d, conv2d, conv3d layer."); "weights of fc, conv1d, conv2d, conv3d layer. "
"The data type is float32 or float64.");
AddInput("U", AddInput("U",
"The weight_u tensor of spectral_norm operator, " "The weight_u tensor of spectral_norm operator, "
"This can be a 1-D tensor in shape [H, 1]," "This can be a 1-D tensor in shape [H, 1],"
...@@ -123,7 +124,9 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -123,7 +124,9 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
.SetDefault(1); .SetDefault(1);
AddAttr<float>("eps", AddAttr<float>("eps",
"epsilon for numerical stability in " "epsilon for numerical stability in "
"calculating norms") "calculating norms, it will be added to "
"the denominator to aviod divide zero. "
"Default 1e-12.")
.SetDefault(1e-12); .SetDefault(1e-12);
AddComment(R"DOC( AddComment(R"DOC(
......
...@@ -69,7 +69,8 @@ class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -69,7 +69,8 @@ class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker {
"This is a 4-D tensor with shape of [N*T, C, H, W]. " "This is a 4-D tensor with shape of [N*T, C, H, W]. "
"While N is the batch size, T is the temporal segment " "While N is the batch size, T is the temporal segment "
"number, C is the channel number, H is the height of " "number, C is the channel number, H is the height of "
"features and W is the width of features."); "features and W is the width of features. "
"The data type is float32 and float64");
AddOutput("Out", AddOutput("Out",
"The output tensor of temporal shift operator. " "The output tensor of temporal shift operator. "
"This is a 4-D tensor in the same shape with Input(X)."); "This is a 4-D tensor in the same shape with Input(X).");
...@@ -82,7 +83,8 @@ class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -82,7 +83,8 @@ class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker {
"The shift ratio of the channels, the first :attr:`shift_ratio` part " "The shift ratio of the channels, the first :attr:`shift_ratio` part "
"of channels will be shifted by -1 along the temporal dimension, " "of channels will be shifted by -1 along the temporal dimension, "
"and the second :attr:`shift_ratio` part of channels will be shifted " "and the second :attr:`shift_ratio` part of channels will be shifted "
"by 1 along the temporal dimension. Default 0.25.") "by 1 along the temporal dimension. :attr:`shift_ratio` should be in "
"range [0, 0.5]. Default 0.25.")
.SetDefault(0.25); .SetDefault(0.25);
AddComment(R"DOC( AddComment(R"DOC(
......
...@@ -109,20 +109,25 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False): ...@@ -109,20 +109,25 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
training progresses. By using this function, the learning rate will be decayed by training progresses. By using this function, the learning rate will be decayed by
'decay_rate' every 'decay_steps' steps. 'decay_rate' every 'decay_steps' steps.
Decayed learning rate calcualtes as follows:
>>> if staircase == True: >>> if staircase == True:
>>> decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps) >>> decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
>>> else: >>> else:
>>> decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) >>> decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Args: Args:
learning_rate(Variable|float): The initial learning rate. learning_rate(Variable|float): The initial learning rate. It should be a Variable
decay_steps(int): See the decay computation above. or a float
decay_rate(float): The decay rate. See the decay computation above. decay_steps(int): The learning rate decay steps. See the decay computation above.
staircase(Boolean): If True, decay the learning rate at discrete intervals. decay_rate(float): The learning rate decay rate. See the decay computation above.
Default: False staircase(bool): If True, decay the learning rate at discrete intervals, which
means the learning rate will be decayed by `decay_rate` every
`decay_steps`. If False, learning rate will be decayed continuously
and following the formula above. Default: False
Returns: Returns:
Variable: The decayed learning rate Variable: The decayed learning rate. The data type is float32.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -156,20 +161,29 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False): ...@@ -156,20 +161,29 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False): def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
"""Applies natural exponential decay to the initial learning rate. """Applies natural exponential decay to the initial learning rate.
When training a model, it is often recommended to lower the learning rate as the
training progresses. By using this function, the learning rate will be decayed by
natural exponential power 'decay_rate' every 'decay_steps' steps.
Decayed learning rate calcualtes as follows:
>>> if not staircase: >>> if not staircase:
>>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps)) >>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
>>> else: >>> else:
>>> decayed_learning_rate = learning_rate * exp(- decay_rate * floor(global_step / decay_steps)) >>> decayed_learning_rate = learning_rate * exp(- decay_rate * floor(global_step / decay_steps))
Args: Args:
learning_rate: A scalar float32 value or a Variable. This learning_rate(Variable|float): The initial learning rate. It should be a Variable
will be the initial learning rate during training or a float
decay_steps: A Python `int32` number. decay_steps(int): The learning rate decay steps. See the decay computation above.
decay_rate: A Python `float` number. decay_rate(float): The learning rate decay rate. See the decay computation above.
staircase: Boolean. If set true, decay the learning rate every decay_steps. staircase(bool): If True, decay the learning rate at discrete intervals, which
means the learning rate will be decayed by natual exponential power
`decay_rate` every `decay_steps`. If False, learning rate will be
decayed continuously and following the formula above. Default: False
Returns: Returns:
The decayed learning rate The decayed learning rate. The data type is float32.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -208,20 +222,25 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False): ...@@ -208,20 +222,25 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
training progresses. By using this function, an inverse decay function will be training progresses. By using this function, an inverse decay function will be
applied to the initial learning rate. applied to the initial learning rate.
Decayed learning rate calcualtes as follows:
>>> if staircase == True: >>> if staircase == True:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step)) >>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
>>> else: >>> else:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step) >>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)
Args: Args:
learning_rate(Variable|float): The initial learning rate. learning_rate(Variable|float): The initial learning rate. It should be a Variable
decay_steps(int): See the decay computation above. or a float
decay_rate(float): The decay rate. See the decay computation above. decay_steps(int): The learning rate decay steps. See the decay computation above.
staircase(Boolean): If True, decay the learning rate at discrete intervals. decay_rate(float): The learning rate decay rate. See the decay computation above.
Default: False staircase(bool): If True, decay the learning rate at discrete intervals, which
means the learning rate will be decayed by `decay_rate` times
every `decay_steps`. If False, learning rate will be decayed
continuously and following the formula above. Default: False
Returns: Returns:
Variable: The decayed learning rate Variable: The decayed learning rate. The data type is float32.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -229,7 +248,7 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False): ...@@ -229,7 +248,7 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
import paddle.fluid as fluid import paddle.fluid as fluid
base_lr = 0.1 base_lr = 0.1
sgd_optimizer = fluid.optimizer.SGD( sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.natural_exp_decay( learning_rate=fluid.layers.inverse_time_decay(
learning_rate=base_lr, learning_rate=base_lr,
decay_steps=10000, decay_steps=10000,
decay_rate=0.5, decay_rate=0.5,
......
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册