未验证 提交 382fc31f 编写于 作者: O oyjxer 提交者: GitHub

【NPU】Support npu op gelu and gelu_grad (#31530)

* Support npu op gelu and gelu_grad

* Support npu op gelu and gelu_grad
上级 5d29a27c
......@@ -179,3 +179,7 @@ if(WITH_UNITY_BUILD)
# The specified link dependency needs to be displayed here.
target_link_libraries(paddle_operators_unity ${OP_HEADER_DEPS} ${COMMON_OP_DEPS})
endif()
if(WITH_ASCEND_CL)
cc_test(gelu_op_npu_test SRCS gelu_op_npu_test.cc DEPS op_registry gelu_op scope device_context enforce executor)
endif()
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/operators/gelu_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class GeluNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");
auto place = ctx.GetPlace();
out->mutable_data<T>(place);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
auto runner = NpuOpRunner("Gelu", {*x}, {*out}, {});
runner.Run(stream);
}
};
template <typename DeviceContext, typename T>
class GeluGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto place = ctx.GetPlace();
dx->mutable_data<T>(place);
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
Tensor out(x->type());
out.mutable_data<T>(x->dims(), place);
auto out_runner = NpuOpRunner("Gelu", {*x}, {out}, {});
out_runner.Run(stream);
auto dx_runner = NpuOpRunner("GeluGrad", {*dout, *x, out}, {*dx}, {});
dx_runner.Run(stream);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
gelu,
ops::GeluNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::GeluNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
gelu_grad,
ops::GeluGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::GeluGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef _WIN32
#include <unistd.h>
#endif
#include <string>
#include <thread> // NOLINT
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/string/printf.h"
namespace f = paddle::framework;
namespace p = paddle::platform;
namespace m = paddle::operators::math;
USE_OP(gelu);
USE_OP_DEVICE_KERNEL(gelu, NPU);
template <typename T>
void Compare(f::Scope* scope, const p::DeviceContext& ctx) {
// init
auto x = scope->Var("X");
auto tensor_x = x->GetMutable<f::LoDTensor>();
std::vector<T> init_x;
for (int64_t i = 0; i < 10 * 10; ++i) {
init_x.push_back(static_cast<T>(1.0));
}
TensorFromVector(init_x, ctx, tensor_x);
tensor_x->Resize({10, 10});
auto out = scope->Var("Out");
auto tensor_out = out->GetMutable<f::LoDTensor>();
f::AttributeMap attrs;
ctx.Wait();
// run
auto place = ctx.GetPlace();
auto op = f::OpRegistry::CreateOp("gelu", {{"X", {"X"}}},
{{"Out", {"Out"}}}, attrs);
op->Run(*scope, place);
ctx.Wait();
// eval time
struct timeval start, end;
gettimeofday(&start, NULL);
for (int i = 0; i < 100; i++) {
op->Run(*scope, place);
}
ctx.Wait();
gettimeofday(&end, NULL);
int micros = (((end.tv_sec - start.tv_sec) * 1000000) +
end.tv_usec) - (start.tv_usec);
printf("used time: %d\n", micros / 100);
// eval value
std::vector<T> out_vec;
TensorToVector(*tensor_out, ctx, &out_vec);
float expected = 0.841192;
for (uint32_t i = 0; i < out_vec.size(); i++) {
EXPECT_FLOAT_EQ(out_vec[i], static_cast<T>(expected));
}
}
template <typename T>
void CompareGrad(f::Scope* scope, const p::DeviceContext& ctx) {
auto dout = scope->Var("DOut");
auto tensor_dout = dout->GetMutable<f::LoDTensor>();
auto x = scope->Var("X");
auto tensor_x = x->GetMutable<f::LoDTensor>();
std::vector<T> init_dout;
for (int64_t i = 0; i < 10 * 10; ++i) {
init_dout.push_back(static_cast<T>(1.0));
}
std::vector<T> init_x;
for (int64_t i = 0; i < 10 * 10; ++i) {
init_x.push_back(static_cast<T>(1.0));
}
TensorFromVector(init_dout, ctx, tensor_dout);
tensor_dout->Resize({10, 10});
TensorFromVector(init_x, ctx, tensor_x);
tensor_x->Resize({10, 10});
auto dx = scope->Var("DX");
auto tensor_dx = dx->GetMutable<f::LoDTensor>();
f::AttributeMap attrs;
ctx.Wait();
// run
auto place = ctx.GetPlace();
auto op = f::OpRegistry::CreateOp("gelu_grad",
{{"Out@GRAD", {"DOut"}}, {"X", {"X"}}},
{{"X@GRAD", {"DX"}}}, attrs);
op->Run(*scope, place);
ctx.Wait();
// eval time
struct timeval start, end;
gettimeofday(&start, NULL);
for (int i = 0; i < 100; i++) {
op->Run(*scope, place);
}
ctx.Wait();
gettimeofday(&end, NULL);
int micros = (((end.tv_sec - start.tv_sec) * 1000000) +
end.tv_usec) - (start.tv_usec);
printf("used time: %d\n", micros / 100);
// eval value
std::vector<T> dx_vec;
TensorToVector(*tensor_dx, ctx, &dx_vec);
float expected = 1.082964;
for (uint32_t i = 0; i < dx_vec.size(); i++) {
EXPECT_FLOAT_EQ(dx_vec[i], static_cast<T>(expected));
}
}
TEST(gelu, NPU_fp32) {
f::Scope scope;
p::NPUDeviceContext ctx(p::NPUPlace(0));
Compare<float>(&scope, ctx);
}
TEST(gelu_grad, NPU) {
f::Scope scope;
p::NPUDeviceContext ctx(p::NPUPlace(0));
CompareGrad<float>(&scope, ctx);
}
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
from scipy import special
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
paddle.enable_static()
SEED = 2021
def np_gelu(x):
y = 0.5 * x * (1 + special.erf(x / np.sqrt(2)))
return y
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestGelu(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "gelu"
self.place = paddle.NPUPlace(0)
self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np_gelu(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {}
self.outputs = {'Out': out}
def set_npu(self):
self.__class__.use_npu = True
def init_dtype(self):
self.dtype = np.float32
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False, atol=1e-3)
# TODO(ascendrc): Add grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestGeluFp16(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "gelu"
self.place = paddle.NPUPlace(0)
self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [3, 4]).astype(self.dtype)
out = np_gelu(x)
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {}
self.outputs = {'Out': out}
def set_npu(self):
self.__class__.use_npu = True
self.__class__.no_need_check_grad = True
def init_dtype(self):
self.dtype = np.float16
def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False, atol=1e-3)
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestGeluNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)
a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')
c = paddle.multiply(a, b)
d = fluid.layers.gelu(c)
fc_1 = fluid.layers.fc(input=d, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)
if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)
print("Start run on {}".format(place))
for epoch in range(100):
pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))
return pred_res, loss_res
def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)
self.assertTrue(np.allclose(npu_pred, cpu_pred, atol=1e-3))
self.assertTrue(np.allclose(npu_loss, cpu_loss, atol=1e-3))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册