提交 376c948e 编写于 作者: W whs 提交者: qingqing01

Polygon box transform op for OCR East detection. (#10802)

* Add quad transform.

* Fix some syntax error.

* Fix CUDA kernel launch configure.

* Generalize geometry channels.

* Rename QuadTransform to PolygonRestore.

* Rename op.

* Rename op and fix computation.

* Modify CMakeLists.txt for box_restore op.

* Refine code:
1. rename op
2. uncomment unitest on GPU
上级 a62bbd1d
...@@ -24,6 +24,8 @@ detection_library(multiclass_nms_op SRCS multiclass_nms_op.cc) ...@@ -24,6 +24,8 @@ detection_library(multiclass_nms_op SRCS multiclass_nms_op.cc)
detection_library(prior_box_op SRCS prior_box_op.cc prior_box_op.cu) detection_library(prior_box_op SRCS prior_box_op.cc prior_box_op.cu)
detection_library(target_assign_op SRCS target_assign_op.cc detection_library(target_assign_op SRCS target_assign_op.cc
target_assign_op.cu) target_assign_op.cu)
detection_library(polygon_box_transform_op SRCS polygon_box_transform_op.cc
polygon_box_transform_op.cu)
# Export local libraries to parent # Export local libraries to parent
set(DETECTION_LIBRARY ${LOCAL_DETECTION_LIBS} PARENT_SCOPE) set(DETECTION_LIBRARY ${LOCAL_DETECTION_LIBS} PARENT_SCOPE)
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
class PolygonBoxTransformCPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"It must use CUDAPlace.");
auto* in = ctx.Input<Tensor>("Input");
auto in_dims = in->dims();
const T* in_data = in->data<T>();
auto* out = ctx.Output<Tensor>("Output");
T* out_data = out->mutable_data<T>(ctx.GetPlace());
int batch_size = in_dims[0];
int geo_channel = in_dims[1];
int height = in_dims[2];
int width = in_dims[3];
int id = 0;
for (int id_n = 0; id_n < batch_size * geo_channel; ++id_n) {
for (int id_h = 0; id_h < height; ++id_h) {
for (int id_w = 0; id_w < width; ++id_w) {
id = id_n * height * width + width * id_h + id_w;
if (id_n % 2 == 0) {
out_data[id] = id_w - in_data[id];
} else {
out_data[id] = id_h - in_data[id];
}
}
}
}
}
};
class PolygonBoxTransformOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(
ctx->HasInput("Input"),
"Input (Input) of polygon_box transform op should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("Output"),
"Output (Output) of polygon_box transform op should not be null.");
auto in_dim = ctx->GetInputDim("Input");
PADDLE_ENFORCE_EQ(in_dim.size(), 4, "input's rank must be 4.");
PADDLE_ENFORCE_EQ(in_dim[1] % 2, 0,
"input's second dimension must be even.");
ctx->SetOutputDim("Output", in_dim);
}
};
class PolygonBoxTransformOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(
"Input",
"The input with shape [batch_size, geometry_channels, height, width]");
AddOutput("Output", "The output with the same shape as input");
AddComment(R"DOC(
PolygonBoxTransform Operator.
The input is the final geometry output in detection network.
We use 2*n numbers to denote the coordinate shift from n corner vertices of
the polygon_box to the pixel location. As each distance offset contains two numbers (xi, yi),
the geometry output contains 2*n channels.
PolygonBoxTransform Operator is used to transform the coordinate shift to the real coordinate.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(polygon_box_transform, ops::PolygonBoxTransformOp,
ops::PolygonBoxTransformOpMaker,
paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(
polygon_box_transform,
ops::PolygonBoxTransformCPUKernel<paddle::platform::CPUPlace, float>,
ops::PolygonBoxTransformCPUKernel<paddle::platform::CPUPlace, double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cuda_primitives.h"
#include "paddle/fluid/platform/gpu_info.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using platform::PADDLE_CUDA_NUM_THREADS;
#define CUDA_BLOCK_SIZE 16
template <typename T>
__global__ void PolygonBoxTransformKernel(const int n, const int h, const int w,
const T* input, T* output) {
int id_n = threadIdx.x + blockDim.x * blockIdx.x;
int id_h = threadIdx.y + blockDim.y * blockIdx.y;
int id_w = threadIdx.z + blockDim.z * blockIdx.z;
if (id_n < n && id_h < h && id_w < w) {
int id = id_n * h * w + w * id_h + id_w;
if (id_n % 2 == 0) {
output[id] = id_w - input[id];
} else {
output[id] = id_h - input[id];
}
}
}
template <typename T>
class PolygonBoxTransformOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use CUDAPlace.");
auto* in = ctx.Input<Tensor>("Input");
auto in_dims = in->dims();
const T* in_data = in->data<T>();
auto* out = ctx.Output<Tensor>("Output");
T* out_data = out->mutable_data<T>(ctx.GetPlace());
int batch_size = in_dims[0];
int geo_channels = in_dims[1];
int height = in_dims[2];
int width = in_dims[3];
dim3 threadsPerBlock(
PADDLE_CUDA_NUM_THREADS / (CUDA_BLOCK_SIZE * CUDA_BLOCK_SIZE),
CUDA_BLOCK_SIZE, CUDA_BLOCK_SIZE);
dim3 numBlocks((batch_size * geo_channels) / threadsPerBlock.x,
(height + threadsPerBlock.y - 1) / threadsPerBlock.y,
(width + threadsPerBlock.z - 1) / threadsPerBlock.z);
auto stream = ctx.cuda_device_context().stream();
PolygonBoxTransformKernel<T><<<numBlocks, threadsPerBlock, 0, stream>>>(
batch_size * geo_channels, height, width, in_data, out_data);
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_CUDA_KERNEL(
polygon_box_transform,
paddle::operators::PolygonBoxTransformOpCUDAKernel<float>,
paddle::operators::PolygonBoxTransformOpCUDAKernel<double>);
...@@ -479,9 +479,9 @@ class OpTest(unittest.TestCase): ...@@ -479,9 +479,9 @@ class OpTest(unittest.TestCase):
def np_dtype_to_fluid_dtype(input): def np_dtype_to_fluid_dtype(input):
"""Change the dtype of float16 numpy array """Change the dtype of float16 numpy array
numpy float16 is binded to paddle::platform::float16 numpy float16 is binded to paddle::platform::float16
in tensor_py.h via the help of uint16 data type since in tensor_py.h via the help of uint16 data type since
the internal memory representation of float16 is the internal memory representation of float16 is
uint16_t in paddle and np.uint16 in numpy, which are uint16_t in paddle and np.uint16 in numpy, which are
themselves binded together by pybind. themselves binded together by pybind.
...@@ -489,9 +489,9 @@ class OpTest(unittest.TestCase): ...@@ -489,9 +489,9 @@ class OpTest(unittest.TestCase):
input: input numpy array input: input numpy array
Returns: Returns:
input: The dtype of input will be changed to np.uint16 if input: The dtype of input will be changed to np.uint16 if
it is originally np.float16, such that the internal memory it is originally np.float16, such that the internal memory
of input will be reinterpreted as of dtype np.uint16. of input will be reinterpreted as of dtype np.uint16.
""" """
if input.dtype == np.float16: if input.dtype == np.float16:
input.dtype = np.uint16 input.dtype = np.uint16
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
def PolygonBoxRestore(input):
shape = input.shape
batch_size = shape[0]
geo_channels = shape[1]
h = shape[2]
w = shape[3]
h_indexes = np.array(range(h) * w).reshape(
[w, h]).transpose()[np.newaxis, :] # [1, h, w]
w_indexes = np.array(range(w) * h).reshape(
[h, w])[np.newaxis, :] # [1, h, w]
indexes = np.concatenate(
(w_indexes, h_indexes))[np.newaxis, :] # [1, 2, h, w]
indexes = indexes.repeat(
[geo_channels / 2],
axis=0)[np.newaxis, :] # [1, geo_channels/2, 2, h, w]
indexes = indexes.repeat(
[batch_size], axis=0) # [batch_size, geo_channels/2, 2, h, w]
return indexes.reshape(
input.shape) - input # [batch_size, geo_channels, h, w]
class TestPolygonBoxRestoreOp(OpTest):
def config(self):
self.input_shape = (1, 8, 2, 2)
def setUp(self):
self.config()
self.op_type = "polygon_box_transform"
input = np.random.random(self.input_shape).astype("float32")
self.inputs = {'Input': input}
output = PolygonBoxRestore(input)
self.outputs = {'Output': output}
def test_check_output(self):
self.check_output()
class TestCase1(TestPolygonBoxRestoreOp):
def config(self):
self.input_shape = (2, 10, 3, 2)
class TestCase2(TestPolygonBoxRestoreOp):
def config(self):
self.input_shape = (3, 12, 4, 5)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册