Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
3759c1db
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3759c1db
编写于
1月 16, 2019
作者:
T
tensor-tang
提交者:
GitHub
1月 16, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14805 from mozga-intel/mozga-intel/element_wise_operator_ngraph
Enable element_wise_add operator for a ngraph engine
上级
904a3923
eff90eb9
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
358 addition
and
10 deletion
+358
-10
paddle/fluid/framework/ngraph_bridge.cc
paddle/fluid/framework/ngraph_bridge.cc
+3
-0
paddle/fluid/operators/ngraph/ngraph_ops.h
paddle/fluid/operators/ngraph/ngraph_ops.h
+1
-0
paddle/fluid/operators/ngraph/ops/elementwise_add_op.h
paddle/fluid/operators/ngraph/ops/elementwise_add_op.h
+87
-0
paddle/fluid/operators/ngraph/ops/elementwise_binary_prepare_node.h
...id/operators/ngraph/ops/elementwise_binary_prepare_node.h
+76
-0
paddle/fluid/operators/ngraph/ops/elementwise_node.h
paddle/fluid/operators/ngraph/ops/elementwise_node.h
+63
-0
paddle/fluid/platform/ngraph_helper.h
paddle/fluid/platform/ngraph_helper.h
+41
-10
python/paddle/fluid/tests/unittests/ngraph/test_elementwise_add_ngraph_op.py
.../tests/unittests/ngraph/test_elementwise_add_ngraph_op.py
+87
-0
未找到文件。
paddle/fluid/framework/ngraph_bridge.cc
浏览文件 @
3759c1db
...
...
@@ -26,11 +26,14 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
namespace
NG_OPS
=
paddle
::
operators
::
ngraphs
;
std
::
map
<
std
::
string
,
std
::
function
<
void
(
const
std
::
shared_ptr
<
OperatorBase
>&
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
)
>>
NgraphBridge
::
NG_NODE_MAP
=
{
{
"elementwise_add"
,
NG_OPS
::
BuildElementwiseAddNode
},
{
"elementwise_add_grad"
,
NG_OPS
::
BuildElementwiseAddGradNode
},
{
"fill_constant"
,
paddle
::
operators
::
ngraphs
::
BuildFillConstantNode
},
{
"mean"
,
paddle
::
operators
::
ngraphs
::
BuildMeanNode
},
{
"mean_grad"
,
paddle
::
operators
::
ngraphs
::
BuildMeanGradNode
},
...
...
paddle/fluid/operators/ngraph/ngraph_ops.h
浏览文件 @
3759c1db
...
...
@@ -22,6 +22,7 @@ limitations under the License. */
#pragma once
#include "ops/binary_unnary_op.h"
#include "ops/elementwise_add_op.h"
#include "ops/fill_constant_op.h"
#include "ops/mean_op.h"
#include "ops/mul_op.h"
...
...
paddle/fluid/operators/ngraph/ops/elementwise_add_op.h
0 → 100644
浏览文件 @
3759c1db
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/elementwise_node.h"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace
paddle
{
namespace
operators
{
namespace
ngraphs
{
void
BuildElementwiseAddNode
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>&
op
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
BuildElementwiseBinaryNode
<
ngraph
::
op
::
Add
>
(
op
,
ngb_node_map
);
}
void
BuildElementwiseAddGradNode
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>&
op
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
auto
op_attrs
=
paddle
::
framework
::
AttrReader
(
op
->
Attrs
());
int
axis
=
op_attrs
.
Get
<
int
>
(
"axis"
);
auto
dout
=
paddle
::
platform
::
GetInputNode
(
op
,
"Out@GRAD"
,
ngb_node_map
);
auto
y
=
paddle
::
platform
::
GetInputNode
(
op
,
"Y"
,
ngb_node_map
);
auto
dout_shape
=
dout
->
get_shape
();
auto
y_shape
=
y
->
get_shape
();
if
(
dout_shape
==
y_shape
)
{
paddle
::
platform
::
SetOutputNode
(
op
,
"X@GRAD"
,
dout
,
ngb_node_map
);
paddle
::
platform
::
SetOutputNode
(
op
,
"Y@GRAD"
,
dout
,
ngb_node_map
);
}
else
{
axis
=
(
axis
==
-
1
?
dout_shape
.
size
()
-
y_shape
.
size
()
:
axis
);
paddle
::
platform
::
TrimTrailingSingularDims
(
&
y_shape
);
axis
=
(
y_shape
.
size
()
==
0
?
dout_shape
.
size
()
:
axis
);
int
pre
,
n
,
post
;
paddle
::
platform
::
GetMidDims
(
dout_shape
,
y_shape
,
axis
,
&
pre
,
&
n
,
&
post
);
ngraph
::
Shape
lhs_shape
{};
lhs_shape
.
push_back
(
pre
);
lhs_shape
.
push_back
(
n
);
if
(
post
!=
1
)
{
lhs_shape
.
push_back
(
post
);
}
std
::
vector
<
size_t
>
lhs_order
(
dout_shape
.
size
());
std
::
iota
(
std
::
begin
(
lhs_order
),
std
::
end
(
lhs_order
),
0
);
auto
dout_reshape
=
std
::
make_shared
<
ngraph
::
op
::
Reshape
>
(
dout
,
ngraph
::
AxisVector
(
lhs_order
),
lhs_shape
);
ngraph
::
AxisSet
axis_set
{
0
};
if
(
post
!=
1
)
{
axis_set
.
insert
(
2
);
}
auto
dout_sum
=
std
::
make_shared
<
ngraph
::
op
::
Sum
>
(
dout_reshape
,
axis_set
);
auto
dy
=
std
::
make_shared
<
ngraph
::
op
::
Reshape
>
(
dout_sum
,
ngraph
::
AxisVector
{
0
},
y
->
get_shape
());
paddle
::
platform
::
SetOutputNode
(
op
,
"X@GRAD"
,
dout
,
ngb_node_map
);
paddle
::
platform
::
SetOutputNode
(
op
,
"Y@GRAD"
,
dy
,
ngb_node_map
);
}
}
}
// namespace ngraphs
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/ngraph/ops/elementwise_binary_prepare_node.h
0 → 100644
浏览文件 @
3759c1db
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace
paddle
{
namespace
operators
{
namespace
ngraphs
{
ngraph
::
NodeVector
ElementwiseBinaryNodePrepare
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>&
op
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
auto
op_attrs
=
paddle
::
framework
::
AttrReader
(
op
->
Attrs
());
int
axis
=
op_attrs
.
Get
<
int
>
(
"axis"
);
auto
lhs
=
paddle
::
platform
::
GetInputNode
(
op
,
"X"
,
ngb_node_map
);
auto
rhs
=
paddle
::
platform
::
GetInputNode
(
op
,
"Y"
,
ngb_node_map
);
auto
lhs_shape
=
lhs
->
get_shape
();
auto
rhs_shape
=
rhs
->
get_shape
();
PADDLE_ENFORCE_GE
(
lhs_shape
.
size
(),
rhs_shape
.
size
(),
"Rank of first input must >= rank of second input."
);
if
(
lhs_shape
==
rhs_shape
)
{
return
ngraph
::
NodeVector
{
lhs
,
rhs
};
}
axis
=
(
axis
==
-
1
?
lhs_shape
.
size
()
-
rhs_shape
.
size
()
:
axis
);
PADDLE_ENFORCE
(
axis
>=
0
&&
axis
<
(
int
)(
lhs_shape
.
size
()),
"Axis should be in range [0, lhs_shape)"
);
paddle
::
platform
::
TrimTrailingSingularDims
(
&
rhs_shape
);
axis
=
(
rhs_shape
.
size
()
==
0
)
?
lhs_shape
.
size
()
:
axis
;
int
pre
,
n
,
post
;
paddle
::
platform
::
GetMidDims
(
lhs_shape
,
rhs_shape
,
axis
,
&
pre
,
&
n
,
&
post
);
ngraph
::
Shape
l_shape
{};
l_shape
.
push_back
(
pre
);
l_shape
.
push_back
(
n
);
l_shape
.
push_back
(
post
);
std
::
vector
<
size_t
>
rhs_order
(
rhs
->
get_shape
().
size
());
std
::
iota
(
std
::
begin
(
rhs_order
),
std
::
end
(
rhs_order
),
0
);
ngraph
::
Shape
r_shape
{};
r_shape
.
push_back
(
n
);
auto
rhs_reshape
=
std
::
make_shared
<
ngraph
::
op
::
Reshape
>
(
rhs
,
ngraph
::
AxisVector
(
rhs_order
),
r_shape
);
auto
rhs_bcast
=
std
::
make_shared
<
ngraph
::
op
::
Broadcast
>
(
rhs_reshape
,
l_shape
,
ngraph
::
AxisSet
{
0
,
2
});
std
::
vector
<
size_t
>
bcast_order
(
rhs_bcast
->
get_shape
().
size
());
std
::
iota
(
std
::
begin
(
bcast_order
),
std
::
end
(
bcast_order
),
0
);
std
::
shared_ptr
<
ngraph
::
Node
>
rhs_bcast_reshape
=
std
::
make_shared
<
ngraph
::
op
::
Reshape
>
(
rhs_bcast
,
ngraph
::
AxisVector
(
bcast_order
),
lhs_shape
);
return
ngraph
::
NodeVector
{
lhs
,
rhs_bcast_reshape
};
}
}
// namespace ngraphs
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/ngraph/ops/elementwise_node.h
0 → 100644
浏览文件 @
3759c1db
/*Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "ngraph/ngraph.hpp"
#include "paddle/fluid/operators/ngraph/ops/elementwise_binary_prepare_node.h"
#include "paddle/fluid/platform/ngraph_helper.h"
namespace
paddle
{
namespace
operators
{
namespace
ngraphs
{
template
<
typename
T
>
void
BuildElementwiseBinaryNode
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>&
op
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
auto
nodes
=
ElementwiseBinaryNodePrepare
(
op
,
ngb_node_map
);
std
::
shared_ptr
<
ngraph
::
Node
>&
x
=
nodes
.
at
(
0
);
std
::
shared_ptr
<
ngraph
::
Node
>&
y
=
nodes
.
at
(
1
);
if
(
x
->
get_element_type
()
!=
y
->
get_element_type
())
{
y
=
std
::
make_shared
<
ngraph
::
op
::
Convert
>
(
y
,
x
->
get_element_type
());
}
auto
out
=
std
::
make_shared
<
T
>
(
x
,
y
);
paddle
::
platform
::
SetOutputNode
(
op
,
"Out"
,
out
,
ngb_node_map
);
}
template
<
typename
T
>
void
BuildElementwiseCompareNode
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>&
op
,
std
::
shared_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
shared_ptr
<
ngraph
::
Node
>>>
ngb_node_map
)
{
auto
nodes
=
ElementwiseBinaryNodePrepare
(
op
,
ngb_node_map
);
std
::
shared_ptr
<
ngraph
::
Node
>&
x
=
nodes
.
at
(
0
);
std
::
shared_ptr
<
ngraph
::
Node
>&
y
=
nodes
.
at
(
1
);
if
(
x
->
get_element_type
()
!=
y
->
get_element_type
())
{
x
=
std
::
make_shared
<
ngraph
::
op
::
Convert
>
(
x
,
ngraph
::
element
::
f64
);
y
=
std
::
make_shared
<
ngraph
::
op
::
Convert
>
(
y
,
ngraph
::
element
::
f64
);
}
auto
out
=
std
::
make_shared
<
T
>
(
x
,
y
);
paddle
::
platform
::
SetOutputNode
(
op
,
"Out"
,
out
,
ngb_node_map
);
}
}
// namespace ngraphs
}
// namespace operators
}
// namespace paddle
paddle/fluid/platform/ngraph_helper.h
浏览文件 @
3759c1db
...
...
@@ -23,7 +23,7 @@ limitations under the License. */
namespace
paddle
{
namespace
platform
{
static
ngraph
::
Shape
FlattenTo2d
(
ngraph
::
Shape
sh
,
int
num
)
{
ngraph
::
Shape
FlattenTo2d
(
ngraph
::
Shape
sh
,
int
num
)
{
auto
x1
=
std
::
accumulate
(
std
::
begin
(
sh
),
std
::
begin
(
sh
)
+
num
,
1
,
std
::
multiplies
<
size_t
>
());
auto
x2
=
std
::
accumulate
(
std
::
begin
(
sh
)
+
num
,
std
::
end
(
sh
),
1
,
...
...
@@ -33,15 +33,15 @@ static ngraph::Shape FlattenTo2d(ngraph::Shape sh, int num) {
return
ngraph
::
Shape
{
x1_l
,
x2_l
};
}
st
atic
std
::
shared_ptr
<
ngraph
::
Node
>
NgReshaper
(
std
::
shared_ptr
<
ngraph
::
Node
>
input
,
ngraph
::
Shape
shape
)
{
st
d
::
shared_ptr
<
ngraph
::
Node
>
NgReshaper
(
std
::
shared_ptr
<
ngraph
::
Node
>
input
,
ngraph
::
Shape
shape
)
{
std
::
vector
<
size_t
>
input_order
(
input
->
get_shape
().
size
());
std
::
iota
(
std
::
begin
(
input_order
),
std
::
end
(
input_order
),
0
);
return
std
::
make_shared
<
ngraph
::
op
::
Reshape
>
(
input
,
ngraph
::
AxisVector
(
input_order
),
shape
);
}
st
atic
st
d
::
shared_ptr
<
ngraph
::
Node
>
GetNode
(
std
::
shared_ptr
<
ngraph
::
Node
>
GetNode
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>&
op
,
const
std
::
string
prm
,
const
paddle
::
framework
::
VariableNameMap
&
var_map
,
std
::
shared_ptr
<
...
...
@@ -57,7 +57,7 @@ static std::shared_ptr<ngraph::Node> GetNode(
}
}
st
atic
st
d
::
shared_ptr
<
ngraph
::
Node
>
GetInputNode
(
std
::
shared_ptr
<
ngraph
::
Node
>
GetInputNode
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>&
op
,
const
std
::
string
prm
,
std
::
shared_ptr
<
...
...
@@ -66,7 +66,7 @@ static std::shared_ptr<ngraph::Node> GetInputNode(
return
GetNode
(
op
,
prm
,
op
->
Inputs
(),
ngb_node_map
);
}
st
atic
st
d
::
shared_ptr
<
ngraph
::
Node
>
GetOutputNode
(
std
::
shared_ptr
<
ngraph
::
Node
>
GetOutputNode
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>&
op
,
const
std
::
string
prm
,
std
::
shared_ptr
<
...
...
@@ -75,7 +75,7 @@ static std::shared_ptr<ngraph::Node> GetOutputNode(
return
GetNode
(
op
,
prm
,
op
->
Outputs
(),
ngb_node_map
);
}
static
void
SetOutputNode
(
void
SetOutputNode
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>&
op
,
const
std
::
string
prm
,
std
::
shared_ptr
<
ngraph
::
Node
>
node
,
std
::
shared_ptr
<
...
...
@@ -91,14 +91,45 @@ static void SetOutputNode(
}
}
static
bool
HasOutput
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>&
op
,
const
std
::
string
prm
)
{
bool
HasOutput
(
const
std
::
shared_ptr
<
paddle
::
framework
::
OperatorBase
>&
op
,
const
std
::
string
prm
)
{
auto
&
outputs
=
op
->
Outputs
();
if
(
outputs
.
find
(
prm
)
==
outputs
.
end
())
return
false
;
return
outputs
.
at
(
prm
).
size
()
>
0
;
}
inline
void
GetMidDims
(
const
ngraph
::
Shape
&
x_shape
,
const
ngraph
::
Shape
&
y_shape
,
int
axis
,
int
*
pre
,
int
*
n
,
int
*
post
)
{
*
pre
=
1
;
*
n
=
1
;
*
post
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
(
*
pre
)
*=
x_shape
[
i
];
}
for
(
size_t
i
=
0
;
i
<
y_shape
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
x_shape
[
i
+
axis
],
y_shape
[
i
],
"Broadcast dimension mismatch."
);
(
*
n
)
*=
y_shape
[
i
];
}
for
(
size_t
i
=
axis
+
y_shape
.
size
();
i
<
x_shape
.
size
();
++
i
)
{
(
*
post
)
*=
x_shape
[
i
];
}
}
inline
void
TrimTrailingSingularDims
(
ngraph
::
Shape
*
shape
)
{
// Remove trailing dimensions of size 1 for y
auto
actual_shape_size
=
shape
->
size
();
for
(;
actual_shape_size
!=
0
;
--
actual_shape_size
)
{
if
((
*
shape
)[
actual_shape_size
-
1
]
!=
1
)
{
break
;
}
else
{
shape
->
pop_back
();
}
}
}
}
// namespace platform
}
// namespace paddle
...
...
python/paddle/fluid/tests/unittests/ngraph/test_elementwise_add_ngraph_op.py
0 → 100644
浏览文件 @
3759c1db
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
from
paddle.fluid.tests.unittests.test_elementwise_add_op
import
*
class
TestNGRAPHElementwiseAddOp
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
super
(
TestNGRAPHElementwiseAddOp
,
self
).
init_input_output
()
class
TestNGRAPHElementwiseAddOp_scalar
(
TestElementwiseAddOp_scalar
):
def
init_input_output
(
self
):
super
(
TestNGRAPHElementwiseAddOp_scalar
,
self
).
init_input_output
()
class
TestNGRAPHElementwiseAddOp_scalar2
(
TestElementwiseAddOp_scalar2
):
def
init_input_output
(
self
):
super
(
TestNGRAPHElementwiseAddOp_scalar2
,
self
).
init_input_output
()
class
TestNGRAPHElementwiseAddOp_Vector
(
TestElementwiseAddOp_Vector
):
def
init_input_output
(
self
):
super
(
TestNGRAPHElementwiseAddOp_Vector
,
self
).
init_input_output
()
class
TesNGRAPHtElementwiseAddOp_broadcast_0
(
TestElementwiseAddOp_broadcast_0
):
def
init_input_output
(
self
):
super
(
TesNGRAPHtElementwiseAddOp_broadcast_0
,
self
).
init_input_output
()
class
TestNGRAPHElementwiseAddOp_broadcast_1
(
TestElementwiseAddOp_broadcast_1
):
def
init_input_output
(
self
):
super
(
TestNGRAPHElementwiseAddOp_broadcast_1
,
self
).
init_input_output
()
class
TestNGRAPHElementwiseAddOp_broadcast_2
(
TestElementwiseAddOp_broadcast_2
):
def
init_input_output
(
self
):
super
(
TestNGRAPHElementwiseAddOp_broadcast_2
,
self
).
init_input_output
()
class
TestNGRAPHElementwiseAddOp_broadcast_3
(
TestElementwiseAddOp_broadcast_3
):
def
init_input_output
(
self
):
super
(
TestNGRAPHElementwiseAddOp_broadcast_3
,
self
).
init_input_output
()
class
TestNGRAPHElementwiseAddOp_broadcast_4
(
TestElementwiseAddOp_broadcast_4
):
def
init_input_output
(
self
):
super
(
TestNGRAPHElementwiseAddOp_broadcast_4
,
self
).
init_input_output
()
class
TestNGRAPHElementwiseAddOp_rowwise_add_0
(
TestElementwiseAddOp_rowwise_add_0
):
def
init_input_output
(
self
):
super
(
TestNGRAPHElementwiseAddOp_rowwise_add_0
,
self
).
init_input_output
()
class
TestNGRAPHElementwiseAddOp_rowwise_add_1
(
TestElementwiseAddOp_rowwise_add_1
):
def
init_input_output
(
self
):
super
(
TestNGRAPHElementwiseAddOp_rowwise_add_1
,
self
).
init_input_output
()
class
TestNGRAPHElementwiseAddOp_channelwise_add
(
TestElementwiseAddOp_channelwise_add
):
def
init_input_output
(
self
):
super
(
TestNGRAPHElementwiseAddOp_channelwise_add
,
self
).
init_input_output
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录