未验证 提交 33fbb66e 编写于 作者: Z zhenlin 提交者: GitHub

update 3 tests (#37922)

* update 3 tests

* fix typo error
上级 e7f5d325
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
// //
// Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License. // you may not use this file except in compliance with the License.
...@@ -130,7 +130,7 @@ ConvAffineChannelFusePass::ConvAffineChannelFusePass() { ...@@ -130,7 +130,7 @@ ConvAffineChannelFusePass::ConvAffineChannelFusePass() {
.IsType<std::vector<int>>() .IsType<std::vector<int>>()
.End() .End()
.AddAttr("data_format") .AddAttr("data_format")
.IsStringIn({"NCHW", "NHWC", "AnyLayout"}) .IsStringIn({"NCHW" /*, "NHWC", "AnyLayout"*/})
.End(); .End();
AddOpCompat(OpCompat("affine_channel")) AddOpCompat(OpCompat("affine_channel"))
...@@ -148,7 +148,7 @@ ConvAffineChannelFusePass::ConvAffineChannelFusePass() { ...@@ -148,7 +148,7 @@ ConvAffineChannelFusePass::ConvAffineChannelFusePass() {
.IsTensor() .IsTensor()
.End() .End()
.AddAttr("data_layout") .AddAttr("data_layout")
.IsStringIn({"NCHW", "NHWC", "AnyLayout"}) .IsStringIn({"NCHW" /*, "NHWC", "AnyLayout"*/})
.End(); .End();
AddOpCompat(OpCompat("elementwise_add")) AddOpCompat(OpCompat("elementwise_add"))
...@@ -197,19 +197,23 @@ void ConvAffineChannelFusePass::ApplyImpl(ir::Graph* graph) const { ...@@ -197,19 +197,23 @@ void ConvAffineChannelFusePass::ApplyImpl(ir::Graph* graph) const {
GET_CONV_BN_NODES(conv_ac_pattern); GET_CONV_BN_NODES(conv_ac_pattern);
// Get affine_channel bias for resizing eltwise_y!
auto* ac_bias_tensor =
scope->FindVar(ac_bias->Name())->GetMutable<LoDTensor>();
// Create eltwise_y (conv bias) variable // Create eltwise_y (conv bias) variable
VarDesc eltwise_y_in_desc( VarDesc eltwise_y_in_desc(
patterns::PDNodeName(name_scope_, "eltwise_y_in")); patterns::PDNodeName(name_scope_, "eltwise_y_in"));
// Set shape && datatype manually
eltwise_y_in_desc.SetShape(framework::vectorize(ac_bias_tensor->dims()));
eltwise_y_in_desc.SetDataType(ac_bias_tensor->type());
eltwise_y_in_desc.SetLoDLevel(ac_bias->Var()->GetLoDLevel());
eltwise_y_in_desc.SetPersistable(true); eltwise_y_in_desc.SetPersistable(true);
// Initialize eltwise_y
auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc); auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
auto* eltwise_y_in_tensor = auto* eltwise_y_in_tensor =
scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>(); scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();
// Get affine_channel bias
auto* ac_bias_tensor =
scope->FindVar(ac_bias->Name())->GetMutable<LoDTensor>();
// Initialize eltwise_y
eltwise_y_in_tensor->Resize(ac_bias_tensor->dims()); eltwise_y_in_tensor->Resize(ac_bias_tensor->dims());
std::fill_n(eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()), std::fill_n(eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
eltwise_y_in_tensor->numel(), 0.0f); eltwise_y_in_tensor->numel(), 0.0f);
...@@ -278,7 +282,7 @@ ConvEltwiseAddAffineChannelFusePass::ConvEltwiseAddAffineChannelFusePass() { ...@@ -278,7 +282,7 @@ ConvEltwiseAddAffineChannelFusePass::ConvEltwiseAddAffineChannelFusePass() {
.IsType<std::vector<int>>() .IsType<std::vector<int>>()
.End() .End()
.AddAttr("data_format") .AddAttr("data_format")
.IsStringIn({"NCHW", "NHWC", "AnyLayout"}) .IsStringIn({"NCHW" /*, "NHWC", "AnyLayout"*/})
.End(); .End();
AddOpCompat(OpCompat("affine_channel")) AddOpCompat(OpCompat("affine_channel"))
.AddInput("X") .AddInput("X")
...@@ -295,7 +299,7 @@ ConvEltwiseAddAffineChannelFusePass::ConvEltwiseAddAffineChannelFusePass() { ...@@ -295,7 +299,7 @@ ConvEltwiseAddAffineChannelFusePass::ConvEltwiseAddAffineChannelFusePass() {
.IsTensor() .IsTensor()
.End() .End()
.AddAttr("data_layout") .AddAttr("data_layout")
.IsStringIn({"NCHW", "NHWC", "AnyLayout"}) .IsStringIn({"NCHW" /*, "NHWC", "AnyLayout"*/})
.End(); .End();
AddOpCompat(OpCompat("elementwise_add")) AddOpCompat(OpCompat("elementwise_add"))
.AddInput("X") .AddInput("X")
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
// //
// Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License. // you may not use this file except in compliance with the License.
...@@ -57,7 +57,7 @@ ConvElementwiseAddFusePass::ConvElementwiseAddFusePass() { ...@@ -57,7 +57,7 @@ ConvElementwiseAddFusePass::ConvElementwiseAddFusePass() {
.AddAttr("dilations") .AddAttr("dilations")
.End() .End()
.AddAttr("data_format") .AddAttr("data_format")
.IsStringIn({"NCHW", "NHWC", "AnyLayout"}) .IsStringIn({"NCHW" /*, "NHWC", "AnyLayout"*/})
.End(); .End();
AddOpCompat(OpCompat("elementwise_add")) AddOpCompat(OpCompat("elementwise_add"))
...@@ -87,7 +87,7 @@ void ConvElementwiseAddFusePass::ApplyImpl(ir::Graph* graph) const { ...@@ -87,7 +87,7 @@ void ConvElementwiseAddFusePass::ApplyImpl(ir::Graph* graph) const {
patterns::ConvElementwiseadd pattern(gpd.mutable_pattern(), pattern_name); patterns::ConvElementwiseadd pattern(gpd.mutable_pattern(), pattern_name);
pattern(x); pattern(x);
int found_conv_eltwise_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) { Graph* g) {
if (!IsCompat(subgraph, g)) { if (!IsCompat(subgraph, g)) {
...@@ -135,9 +135,12 @@ void ConvElementwiseAddFusePass::ApplyImpl(ir::Graph* graph) const { ...@@ -135,9 +135,12 @@ void ConvElementwiseAddFusePass::ApplyImpl(ir::Graph* graph) const {
// Delete the unneeded nodes. // Delete the unneeded nodes.
GraphSafeRemoveNodes(graph, {conv_op, conv_out, elementwise_add_op}); GraphSafeRemoveNodes(graph, {conv_op, conv_out, elementwise_add_op});
found_conv_eltwise_count++;
}; };
gpd(graph, handler); gpd(graph, handler);
// check if detect conv2d_fusion subgraph!
AddStatis(found_conv_eltwise_count);
} }
} // namespace ir } // namespace ir
......
...@@ -80,6 +80,7 @@ if (WITH_MKLDNN AND TENSORRT_FOUND AND WITH_GPU) ...@@ -80,6 +80,7 @@ if (WITH_MKLDNN AND TENSORRT_FOUND AND WITH_GPU)
set_tests_properties(test_fc_fuse_pass PROPERTIES TIMEOUT 240) set_tests_properties(test_fc_fuse_pass PROPERTIES TIMEOUT 240)
set_tests_properties(test_simplify_with_basic_ops_pass_autoscan PROPERTIES TIMEOUT 60) set_tests_properties(test_simplify_with_basic_ops_pass_autoscan PROPERTIES TIMEOUT 60)
set_tests_properties(test_adaptive_pool2d_convert_global_pass_autoscan PROPERTIES TIMEOUT 60) set_tests_properties(test_adaptive_pool2d_convert_global_pass_autoscan PROPERTIES TIMEOUT 60)
set_tests_properties(test_conv_eltwiseadd_affine_channel_fuse_pass PROPERTIES TIMEOUT 100)
endif() endif()
if (WITH_MKLDNN) if (WITH_MKLDNN)
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -12,216 +12,148 @@ ...@@ -12,216 +12,148 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import unittest from auto_scan_test import PassAutoScanTest, IgnoreReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import numpy as np import numpy as np
from inference_pass_test import InferencePassTest import paddle.inference as paddle_infer
import paddle.fluid as fluid from functools import partial
import paddle.fluid.core as core from typing import Optional, List, Callable, Dict, Any, Set
from paddle.fluid.core import PassVersionChecker import unittest
import hypothesis
class ConvAffineChannelFusePassExplicitPaddingTest(InferencePassTest): from hypothesis import given, settings, seed, example, assume, reproduce_failure
def setUp(self): import hypothesis.strategies as st
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(
name="data", shape=[-1, 3, 64, 64], dtype="float32") class TestConvAffineChannelFusePass(PassAutoScanTest):
conv_out = fluid.layers.conv2d( def is_program_valid(self, program_config: ProgramConfig) -> bool:
input=data, return True
num_filters=3,
filter_size=3, def sample_program_config(self, draw):
groups=3, padding_algorithm = draw(st.sampled_from(["EXPLICIT", "SAME", "VALID"]))
padding=[1, 1, 1, 1], groups = draw(st.integers(min_value=1, max_value=3))
bias_attr=False, data_format = draw(st.sampled_from(["NCHW", "NHWC"]))
act=None) axis = draw(st.sampled_from([1]))
input_scale = fluid.layers.create_parameter( filter_channel = draw(st.integers(min_value=1, max_value=16)) * 4
shape=[3], dtype="float32") filter_size = draw(st.integers(min_value=1, max_value=4))
input_bias = fluid.layers.create_parameter( in_channel = groups * filter_channel
shape=[3], dtype="float32") out_channel_factor = draw(st.integers(min_value=1, max_value=16)) * 4
ac_out = fluid.layers.affine_channel( out_channel = groups * out_channel_factor
x=conv_out, scale=input_scale, bias=input_bias) batch_size = draw(st.integers(min_value=1, max_value=4))
dilations = draw(
self.feeds = { st.lists(
"data": np.random.random([1, 3, 64, 64]).astype("float32"), st.integers(
} min_value=1, max_value=2), min_size=2, max_size=2))
self.fetch_list = [ac_out] paddings = draw(
st.lists(
def test_check_output(self): st.integers(
self.check_output() min_value=0, max_value=2), min_size=2, max_size=2))
strides = draw(
self.assertTrue( st.lists(
PassVersionChecker.IsCompatible('conv_affine_channel_fuse_pass')) st.integers(
min_value=1, max_value=2), min_size=2, max_size=2))
has_bias = draw(st.booleans())
class ConvAffineChannelFusePassValidPaddingTest(InferencePassTest):
def setUp(self): x_shape = [
with fluid.program_guard(self.main_program, self.startup_program): batch_size, in_channel, 64, 64
data = fluid.data( ] if data_format == "NCHW" else [batch_size, 64, 64, in_channel]
name="data", shape=[-1, 3, 64, 64], dtype="float32") w_shape = [out_channel, filter_channel, filter_size, filter_size]
conv_out = fluid.layers.conv2d( scale_shape = [out_channel]
input=data, bias_shape = [out_channel]
num_filters=3,
filter_size=3, def generate_input():
groups=3, return np.random.random(x_shape).astype(np.float32)
padding='VALID',
bias_attr=False, def generate_weight():
act=None) return np.random.random(w_shape).astype(np.float32)
input_scale = fluid.layers.create_parameter(
shape=[3], dtype="float32") def generate_bias():
input_bias = fluid.layers.create_parameter( return np.random.random(bias_shape).astype(np.float32)
shape=[3], dtype="float32")
ac_out = fluid.layers.affine_channel( def generate_scale_bias():
x=conv_out, scale=input_scale, bias=input_bias) return np.random.random(bias_shape).astype(np.float32)
self.feeds = { conv2d_op = OpConfig(
"data": np.random.random([1, 3, 64, 64]).astype("float32"), "conv2d",
} inputs={
self.fetch_list = [ac_out] "Input": ["input_data"],
"Filter": ["conv2d_weight"],
def test_check_output(self): },
self.check_output() outputs={"Output": ["conv_output"]},
data_format=data_format,
self.assertTrue( dilations=dilations,
PassVersionChecker.IsCompatible('conv_affine_channel_fuse_pass')) padding_algorithm=padding_algorithm,
groups=groups,
paddings=paddings,
class ConvAffineChannelFusePassSamePaddingTest(InferencePassTest): strides=strides,
def setUp(self): has_bias=has_bias,
with fluid.program_guard(self.main_program, self.startup_program): is_test=True)
data = fluid.data( ac_op = OpConfig(
name="data", shape=[-1, 3, 64, 64], dtype="float32") "affine_channel",
conv_out = fluid.layers.conv2d( inputs={
input=data, "X": ["conv_output"],
num_filters=3, "Scale": ["affine_channel_scale"],
filter_size=3, "Bias": ["affine_channel_bias"]
groups=3, },
padding='SAME', outputs={"Out": ["affine_channel_ouput"]},
bias_attr=False, data_layout=data_format)
act=None) if has_bias == True:
input_scale = fluid.layers.create_parameter( conv2d_op.inputs["Bias"] = ["conv2d_bias"]
shape=[3], dtype="float32") ops = [conv2d_op, ac_op]
input_bias = fluid.layers.create_parameter(
shape=[3], dtype="float32") program_config = ProgramConfig(
ac_out = fluid.layers.affine_channel( ops=ops,
x=conv_out, scale=input_scale, bias=input_bias) inputs={
"input_data": TensorConfig(data_gen=partial(generate_input)),
self.feeds = { },
"data": np.random.random([1, 3, 64, 64]).astype("float32"), weights={
} "conv2d_weight":
self.fetch_list = [ac_out] TensorConfig(data_gen=partial(generate_weight)),
"affine_channel_scale":
def test_check_output(self): TensorConfig(data_gen=partial(generate_scale_bias)),
self.check_output() "affine_channel_bias":
TensorConfig(data_gen=partial(generate_scale_bias)),
self.assertTrue( },
PassVersionChecker.IsCompatible('conv_affine_channel_fuse_pass')) outputs=["affine_channel_ouput"])
if has_bias == True:
program_config.weights["conv2d_bias"] = TensorConfig(
class ConvEltwiseAddAffineChannelFusePassExplicitPaddingTest(InferencePassTest): data_gen=partial(generate_bias))
def setUp(self): return program_config
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data( def sample_predictor_configs(self, program_config):
name="data", shape=[-1, 3, 64, 64], dtype="float32") config = self.create_inference_config(use_gpu=True)
param_attr = fluid.ParamAttr( yield config, ['conv2d', 'elementwise_add'], (1e-4, 1e-4)
initializer=fluid.initializer.Xavier(uniform=False),
learning_rate=0.001) config = self.create_inference_config(use_mkldnn=True)
conv_out = fluid.layers.conv2d( yield config, ['conv2d', 'elementwise_add'], (1e-4, 1e-4)
input=data,
num_filters=3, def add_ignore_pass_case(self):
filter_size=3, # If the problem has been fixed, the judgment
groups=3, # in is_program_valid needs to be deleted!!!
padding=[1, 1, 1, 1], def teller1(program_config, predictor_config):
bias_attr=param_attr, if program_config.ops[0].attrs['data_format'] == "NHWC":
act=None) return True
input_scale = fluid.layers.create_parameter( return False
shape=[3], dtype="float32")
input_bias = fluid.layers.create_parameter( # mkldnn Output has diff with bias!
shape=[3], dtype="float32") def teller2(program_config, predictor_config):
ac_out = fluid.layers.affine_channel( return predictor_config.mkldnn_enabled() and program_config.ops[
x=conv_out, scale=input_scale, bias=input_bias) 0].attrs['has_bias'] == True
self.feeds = { self.add_ignore_check_case(
"data": np.random.random([1, 3, 64, 64]).astype("float32"), teller1, IgnoreReasons.PASS_ACCURACY_ERROR,
} "The output format of conv2d is wrong when data_format attribute is NHWC, \
self.fetch_list = [ac_out] because currently its fused op (Conv2DFusion) only supports data format of channel first (NCHW)."
)
def test_check_output(self):
self.check_output() self.add_ignore_check_case(
teller2, IgnoreReasons.PASS_ACCURACY_ERROR,
self.assertTrue( "Currently mkldnn Output has diff with bias!")
PassVersionChecker.IsCompatible(
'conv_eltwiseadd_affine_channel_fuse_pass')) def test(self):
self.run_and_statis(
quant=False,
class ConvEltwiseAddAffineChannelFusePassValidPaddingTest(InferencePassTest): passes=["conv_affine_channel_fuse_pass"], )
def setUp(self):
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(
name="data", shape=[-1, 3, 64, 64], dtype="float32")
param_attr = fluid.ParamAttr(
initializer=fluid.initializer.Xavier(uniform=False),
learning_rate=0.001)
conv_out = fluid.layers.conv2d(
input=data,
num_filters=3,
filter_size=3,
groups=3,
padding='VALID',
bias_attr=param_attr,
act=None)
input_scale = fluid.layers.create_parameter(
shape=[3], dtype="float32")
input_bias = fluid.layers.create_parameter(
shape=[3], dtype="float32")
ac_out = fluid.layers.affine_channel(
x=conv_out, scale=input_scale, bias=input_bias)
self.feeds = {
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
}
self.fetch_list = [ac_out]
def test_check_output(self):
self.check_output()
self.assertTrue(
PassVersionChecker.IsCompatible(
'conv_eltwiseadd_affine_channel_fuse_pass'))
class ConvEltwiseAddAffineChannelFusePassSamePaddingTest(InferencePassTest):
def setUp(self):
with fluid.program_guard(self.main_program, self.startup_program):
data = fluid.data(
name="data", shape=[-1, 3, 64, 64], dtype="float32")
param_attr = fluid.ParamAttr(
initializer=fluid.initializer.Xavier(uniform=False),
learning_rate=0.001)
conv_out = fluid.layers.conv2d(
input=data,
num_filters=3,
filter_size=3,
groups=3,
padding='Same',
bias_attr=param_attr,
act=None)
input_scale = fluid.layers.create_parameter(
shape=[3], dtype="float32")
input_bias = fluid.layers.create_parameter(
shape=[3], dtype="float32")
ac_out = fluid.layers.affine_channel(
x=conv_out, scale=input_scale, bias=input_bias)
self.feeds = {
"data": np.random.random([1, 3, 64, 64]).astype("float32"),
}
self.fetch_list = [ac_out]
def test_check_output(self):
self.check_output()
self.assertTrue(
PassVersionChecker.IsCompatible(
'conv_eltwiseadd_affine_channel_fuse_pass'))
if __name__ == "__main__": if __name__ == "__main__":
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
...@@ -12,41 +12,144 @@ ...@@ -12,41 +12,144 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from __future__ import print_function from auto_scan_test import PassAutoScanTest, IgnoreReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import unittest
import numpy as np import numpy as np
from inference_pass_test import InferencePassTest import paddle.inference as paddle_infer
import paddle.fluid as fluid from functools import partial
import paddle.fluid.core as core from typing import Optional, List, Callable, Dict, Any, Set
from paddle.fluid.core import PassVersionChecker import unittest
from paddle.fluid.core import AnalysisConfig
"""Test for fusion of conv and elementwise_add.""" import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
class ConvElementwiseAddFusePassTest(InferencePassTest):
def setUp(self):
with fluid.program_guard(self.main_program, self.startup_program): class TestConvEltwiseAddFusePass(PassAutoScanTest):
data = fluid.data( def is_program_valid(self, program_config: ProgramConfig) -> bool:
name="data", shape=[-1, 3, 100, 100], dtype="float32") attrs = [
param_attr = fluid.ParamAttr( program_config.ops[i].attrs
initializer=fluid.initializer.Xavier(uniform=False), for i in range(len(program_config.ops))
learning_rate=0.001) ]
conv_out = fluid.layers.conv2d(
input=data, num_filters=3, filter_size=3, bias_attr=param_attr) if attrs[0]['data_format'] == "NHWC" and attrs[1]['axis'] != 3:
return False
self.feeds = {
"data": np.random.random((1, 3, 100, 100)).astype("float32") return True
}
self.fetch_list = [conv_out] def sample_program_config(self, draw):
self.enable_mkldnn = False padding_algorithm = draw(st.sampled_from(["EXPLICIT", "SAME", "VALID"]))
groups = draw(st.integers(min_value=1, max_value=3))
def test_check_output(self): data_format = draw(st.sampled_from(["NCHW", "NHWC"]))
if core.is_compiled_with_cuda(): axis = draw(st.sampled_from([1]))
use_gpu = True filter_channel = draw(st.integers(min_value=1, max_value=16)) * 4
self.check_output_with_option(use_gpu) filter_size = draw(st.integers(min_value=1, max_value=4))
self.assertTrue( in_channel = groups * filter_channel
PassVersionChecker.IsCompatible('conv_elementwise_add_fuse_pass')) out_channel_factor = draw(st.integers(min_value=1, max_value=16)) * 4
out_channel = groups * out_channel_factor
batch_size = draw(st.integers(min_value=1, max_value=4))
dilations = draw(
st.lists(
st.integers(
min_value=1, max_value=2), min_size=2, max_size=2))
paddings = draw(
st.lists(
st.integers(
min_value=0, max_value=2), min_size=2, max_size=2))
strides = draw(
st.lists(
st.integers(
min_value=1, max_value=2), min_size=2, max_size=2))
x_shape = [
batch_size, in_channel, 64, 64
] if data_format == "NCHW" else [batch_size, 64, 64, in_channel]
w_shape = [out_channel, filter_channel, filter_size, filter_size]
scale_shape = [out_channel]
bias_shape = [out_channel]
def generate_input():
return np.random.random(x_shape).astype(np.float32)
def generate_weight():
return np.random.random(w_shape).astype(np.float32)
def generate_bias():
return np.random.random(bias_shape).astype(np.float32)
def generate_scale_bias():
return np.random.random(bias_shape).astype(np.float32)
conv2d_op = OpConfig(
"conv2d",
inputs={
"Input": ["input_data"],
"Filter": ["conv2d_weight"],
},
outputs={"Output": ["conv_output"]},
data_format=data_format,
dilations=dilations,
padding_algorithm=padding_algorithm,
groups=groups,
paddings=paddings,
strides=strides,
is_test=True)
eltwise_op = OpConfig(
"elementwise_add",
inputs={"X": ["conv_output"],
"Y": ["conv2d_bias"]},
outputs={"Out": ["elementwise_output"]},
axis=axis)
ops = [conv2d_op, eltwise_op]
program_config = ProgramConfig(
ops=ops,
inputs={
"input_data": TensorConfig(data_gen=partial(generate_input)),
},
weights={
"conv2d_weight":
TensorConfig(data_gen=partial(generate_weight)),
"conv2d_bias":
TensorConfig(data_gen=partial(generate_scale_bias)),
},
outputs=["elementwise_output"])
return program_config
def sample_predictor_configs(self, program_config):
config = self.create_inference_config(use_gpu=True)
yield config, ['conv2d_fusion'], (1e-4, 1e-4)
# # TRT
config = self.create_trt_inference_config()
config.enable_tensorrt_engine(
workspace_size=1 << 20,
max_batch_size=4,
min_subgraph_size=1,
precision_mode=paddle_infer.PrecisionType.Float32,
use_static=False,
use_calib_mode=False)
yield config, ['conv2d_fusion'], (1e-4, 1e-4)
def add_ignore_pass_case(self):
# If the problem has been fixed, the judgment
# in is_program_valid needs to be deleted!!!
def teller1(program_config, predictor_config):
if program_config.ops[0].attrs['data_format'] == "NHWC":
return True
return False
self.add_ignore_check_case(
teller1, IgnoreReasons.PASS_ACCURACY_ERROR,
"The output format of conv2d is wrong when data_format attribute is NHWC, \
it will trigger Broadcast dimension mismatch bug \
when data_format attribute is NHWC and axis of eltwise op is 1 for this pass."
)
def test(self):
self.run_and_statis(
quant=False,
passes=["conv_elementwise_add_fuse_pass"], )
if __name__ == "__main__": if __name__ == "__main__":
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import PassAutoScanTest, IgnoreReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
class TestConvEltwiseAddAffineChannelFusePass(PassAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
attrs = [
program_config.ops[i].attrs
for i in range(len(program_config.ops))
]
if attrs[0]['data_format'] == "NHWC" and attrs[1]['axis'] != 3:
return False
return True
def sample_program_config(self, draw):
padding_algorithm = draw(st.sampled_from(["EXPLICIT", "SAME", "VALID"]))
groups = draw(st.integers(min_value=1, max_value=3))
data_format = draw(st.sampled_from(["NCHW", "NHWC"]))
axis = draw(st.sampled_from([1]))
filter_channel = draw(st.integers(min_value=1, max_value=16)) * 4
filter_size = draw(st.integers(min_value=1, max_value=4))
in_channel = groups * filter_channel
out_channel_factor = draw(st.integers(min_value=1, max_value=16)) * 4
out_channel = groups * out_channel_factor
batch_size = draw(st.integers(min_value=1, max_value=4))
dilations = draw(
st.lists(
st.integers(
min_value=1, max_value=2), min_size=2, max_size=2))
paddings = draw(
st.lists(
st.integers(
min_value=0, max_value=2), min_size=2, max_size=2))
strides = draw(
st.lists(
st.integers(
min_value=1, max_value=2), min_size=2, max_size=2))
has_bias = draw(st.booleans())
x_shape = [
batch_size, in_channel, 64, 64
] if data_format == "NCHW" else [batch_size, 64, 64, in_channel]
w_shape = [out_channel, filter_channel, filter_size, filter_size]
scale_shape = [out_channel]
bias_shape = [out_channel]
def generate_input():
return np.random.random(x_shape).astype(np.float32)
def generate_weight():
return np.random.random(w_shape).astype(np.float32)
def generate_bias():
return np.random.random(bias_shape).astype(np.float32)
def generate_scale_bias():
return np.random.random(bias_shape).astype(np.float32)
conv2d_op = OpConfig(
"conv2d",
inputs={
"Input": ["input_data"],
"Filter": ["conv2d_weight"],
},
outputs={"Output": ["conv_output"]},
data_format=data_format,
dilations=dilations,
padding_algorithm=padding_algorithm,
groups=groups,
paddings=paddings,
strides=strides,
has_bias=has_bias,
is_test=True)
eltwise_op = OpConfig(
"elementwise_add",
inputs={"X": ["conv_output"],
"Y": ["conv2d_bias"]},
outputs={"Out": ["elementwise_output"]},
axis=axis)
ac_op = OpConfig(
"affine_channel",
inputs={
"X": ["elementwise_output"],
"Scale": ["affine_channel_scale"],
"Bias": ["affine_channel_bias"]
},
outputs={"Out": ["affine_channel_ouput"]},
data_layout=data_format)
if has_bias == True:
conv2d_op.inputs["Bias"] = ["conv2d_bias"]
ops = [conv2d_op, eltwise_op, ac_op]
program_config = ProgramConfig(
ops=ops,
inputs={
"input_data": TensorConfig(data_gen=partial(generate_input)),
},
weights={
"conv2d_weight":
TensorConfig(data_gen=partial(generate_weight)),
"conv2d_bias": TensorConfig(data_gen=partial(generate_bias)),
"affine_channel_scale":
TensorConfig(data_gen=partial(generate_scale_bias)),
"affine_channel_bias":
TensorConfig(data_gen=partial(generate_scale_bias)),
},
outputs=["affine_channel_ouput"])
return program_config
def sample_predictor_configs(self, program_config):
config = self.create_inference_config(use_gpu=True)
yield config, ['conv2d', 'elementwise_add'], (1e-4, 1e-4)
config = self.create_inference_config(use_mkldnn=True)
yield config, ['conv2d', 'elementwise_add'], (1e-4, 1e-4)
# TRT
config = self.create_trt_inference_config()
config.enable_tensorrt_engine(
workspace_size=1 << 20,
max_batch_size=4,
min_subgraph_size=1,
precision_mode=paddle_infer.PrecisionType.Float32,
use_static=False,
use_calib_mode=False)
yield config, ['conv2d', 'elementwise_add'], (1e-4, 1e-4)
def add_ignore_pass_case(self):
# If the problem has been fixed, the judgment
# in is_program_valid needs to be deleted!!!
def teller1(program_config, predictor_config):
if program_config.ops[0].attrs['data_format'] == "NHWC":
return True
return False
# mkldnn Output has diff with bias!
def teller2(program_config, predictor_config):
return predictor_config.mkldnn_enabled() and program_config.ops[
0].attrs['has_bias'] == True
self.add_ignore_check_case(
teller1, IgnoreReasons.PASS_ACCURACY_ERROR,
"The output format of conv2d is wrong when data_format attribute is NHWC, \
it will trigger Broadcast dimension mismatch bug \
when data_format attribute is NHWC and axis of eltwise op is 1 for this pass."
)
self.add_ignore_check_case(
teller2, IgnoreReasons.PASS_ACCURACY_ERROR,
"Currently mkldnn Output has diff with bias!")
def test(self):
self.run_and_statis(
quant=False,
passes=["conv_eltwiseadd_affine_channel_fuse_pass"], )
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册