提交 334c8452 编写于 作者: Z zchen0211

lstm unit

上级 44002846
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/lstm_unit_op.h"
namespace paddle {
namespace operators {
class LstmUnitOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of LSTM should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("C_prev"),
"Input(C_prev) of LSTM should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("C"),
"Output(C) of LSTM should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("H"),
"Output(H) of LSTM should not be null.");
auto *x = ctx.Input<framework::Tensor>("X");
auto *c_prev = ctx.Input<framework::Tensor>("C_prev");
PADDLE_ENFORCE_EQ(x->dims().size(), 2, "Input(X)'s rank must be 2.");
PADDLE_ENFORCE(x->dims()[0] == c_prev->dims()[0],
"Batch size of inputs and states must be equal");
PADDLE_ENFORCE(x->dims()[1] == c_prev->dims()[1] * 4,
"Dimension of FC should equal to prev state * 4");
int b_size = c_prev->dims()[0]; // batch size
int s_dim = c_prev->dims()[1]; // state dim
ctx.Output<framework::LoDTensor>("C")->Resize({b_size, s_dim});
ctx.Output<framework::LoDTensor>("H")->Resize({b_size, s_dim});
}
};
template <typename AttrType>
class LstmUnitOpMaker : public framework::OpProtoAndCheckerMaker {
public:
LstmUnitOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "FC input before the non-linear activation.");
AddInput(
"C_prev",
"The cell state tensor of last time-step in the Lstm Unit operator.");
AddOutput("C", "The cell tensor of Lstm Unit operator.");
AddOutput("H", "The hidden state tensor of Lstm Unit operator.");
AddComment(R"DOC(Lstm-Unit Operator
Equation:
i, j, f, o = split(X)
C = C_prev * sigm(f + forget_bias) + sigm(i) * tanh(j)
H = C * sigm(o)
)DOC");
AddAttr<AttrType>("forget_bias", "The forget bias of Lstm Unit.")
.SetDefault(0.0);
}
};
class LstmUnitGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("C")),
"Input(C@GRAD) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("H")),
"Input(H@GRAD) should not be null");
ctx.Output<framework::LoDTensor>(framework::GradVarName("X"))
->Resize(ctx.Input<Tensor>("X")->dims());
ctx.Output<framework::LoDTensor>(framework::GradVarName("C_prev"))
->Resize(ctx.Input<Tensor>("C_prev")->dims());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(lstm_unit, ops::LstmUnitOp, ops::LstmUnitOpMaker<float>,
lstm_unit_grad, ops::LstmUnitGradOp);
REGISTER_OP_CPU_KERNEL(lstm_unit,
ops::LstmUnitKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using framework::LoDTensor;
using framework::Tensor;
template <typename T>
inline T sigmoid(T x) {
return 1. / (1. + exp(-x));
}
template <typename T>
inline T tanh(T x) {
return 2. * sigmoid(2. * x) - 1.;
}
template <typename Place, typename T, typename AttrType = T>
class LstmUnitKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto* x_tensor = ctx.Input<framework::Tensor>("X");
auto* c_prev_tensor = ctx.Input<framework::Tensor>("C_prev");
auto* c_tensor = ctx.Output<framework::Tensor>("C");
auto* h_tensor = ctx.Output<framework::Tensor>("H");
auto forget_bias = static_cast<T>(ctx.Attr<AttrType>("forget_bias"));
int b_size = c_tensor->dims()[0];
int D = c_tensor->dims()[1];
T* C = c_tensor->mutable_data<T>(ctx.GetPlace());
T* H = h_tensor->mutable_data<T>(ctx.GetPlace());
const T* X = x_tensor->data<T>();
const T* C_prev = c_prev_tensor->data<T>();
for (int n = 0; n < b_size; ++n) {
for (int d = 0; d < D; ++d) {
const T i = sigmoid(X[d]);
const T f = sigmoid(X[1 * D + d] + forget_bias);
const T o = sigmoid(X[2 * D + d]);
const T g = tanh(X[3 * D + d]);
const T c_prev = C_prev[d];
const T c = f * c_prev + i * g;
C[d] = c;
const T tanh_c = tanh(c);
H[d] = o * tanh_c;
}
C_prev += D;
X += 4 * D;
C += D;
H += D;
}
}
};
template <typename Place, typename T, typename AttrType = T>
class LstmUnitGradKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()),
"It must use CPUPlace.");
auto x_tensor = ctx.Input<Tensor>("X");
auto c_prev_tensor = ctx.Input<Tensor>("C_prev");
auto c_tensor = ctx.Input<Tensor>("C");
auto h_tensor = ctx.Input<Tensor>("H");
auto hdiff_tensor = ctx.Input<Tensor>(framework::GradVarName("H"));
auto cdiff_tensor = ctx.Input<Tensor>(framework::GradVarName("C"));
auto xdiff_tensor = ctx.Output<Tensor>(framework::GradVarName("X"));
auto c_prev_diff_tensor =
ctx.Output<Tensor>(framework::GradVarName("C_prev"));
auto* X = x_tensor->data<T>();
auto* C_prev = c_prev_tensor->data<T>();
auto* C = c_tensor->data<T>();
auto* H = h_tensor->data<T>();
auto* H_diff = hdiff_tensor->data<T>();
auto* C_diff = cdiff_tensor->data<T>();
auto* C_prev_diff = c_prev_diff_tensor->mutable_data<T>(ctx.GetPlace());
auto* X_diff = xdiff_tensor->mutable_data<T>(ctx.GetPlace());
int N = c_tensor->dims()[0];
int D = c_tensor->dims()[1];
auto forget_bias = static_cast<T>(ctx.Attr<AttrType>("forget_bias"));
for (int n = 0; n < N; ++n) {
for (int d = 0; d < D; ++d) {
T* c_prev_diff = C_prev_diff + d;
T* i_diff = X_diff + d;
T* f_diff = X_diff + 1 * D + d;
T* o_diff = X_diff + 2 * D + d;
T* g_diff = X_diff + 3 * D + d;
const T i = sigmoid(X[d]);
const T f = sigmoid(X[1 * D + d] + forget_bias);
const T o = sigmoid(X[2 * D + d]);
const T g = tanh(X[3 * D + d]);
const T c_prev = C_prev[d];
const T c = C[d];
const T tanh_c = tanh(c);
const T c_term_diff = C_diff[d] + H_diff[d] * o * (1 - tanh_c * tanh_c);
*c_prev_diff = c_term_diff * f;
*i_diff = c_term_diff * g * i * (1 - i);
*f_diff = c_term_diff * c_prev * f * (1 - f);
*o_diff = H_diff[d] * tanh_c * o * (1 - o);
*g_diff = c_term_diff * i * (1 - g * g);
}
C_prev += D;
X += 4 * D;
C += D;
H += D;
C_diff += D;
H_diff += D;
X_diff += 4 * D;
C_prev_diff += D;
}
}
};
} // namespace operators
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册